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Abstract: In this paper we consider the problem of controlling the dynamic behavior of the
robot agents while collaborating with the human worker. The presented dynamic behavior
control method leads to achieving optimized interaction performance of the human-multi-robot
collaboration system. We investigate in depth the dynamics equation of the robot agents
collaborating with the human worker. Considering the unknown parameters in the system
dynamics, the adaptive dynamic programming method is utilized to deal with the optimized
interaction control problems during human-multi-robot collaboration process. To achieve the
coordination of the multi robot agents, multi-agent adaptive dynamic programming method is
employed in this paper. The neural networks with one hidden layer are utilized to approximate
both the unknown system dynamics as well as the optimized cost function. The simulation
studies verify the effectiveness of the presented algorithm.

Keywords: Human-multi-robot collaboration, optimized control, dynamic behavior control,
multi-agent adaptive dynamic programming, neural network approximation.

1. INTRODUCTION

The collaborative robots integrate into human society and
conduct close and complex interactions with human be-
ings, e.g., physical interactions such as medical care, reha-
bilitaion, multi-robot collaboration, and human-robot col-
laboration in the manufacturing industry Li et al. (2011).
Human-robot collaboration control and multi-robot col-
laboration control have been extensively investigated in
many fields Li et al. (2015b,a); Reed and Peshkin (2008);
Moertl et al. (2012); Lawitzky et al. (2010); Noohi et al.
(2016); Wu et al. (2016). Human-robot collaboration inte-
grates the advantages of the human being and the robot, to
better carry out the tasks. For multi-robot collaboration,
the capability of a single robot is expanded. Human-multi-
robot collaboration further combines the advantages of
human-robot collaboration and multi-robot collaboration,
and will be utilized in more and more application sce-
narios, such as human-multi-robot interaction Sklar et al.
(2013), human-multi-robot search and rescue Cacace et al.
(2016), in which the human worker leads, supervises, or
coordinates the cooperation among multi robot agents.
However, there are few researches in the field of physi-
cal human-multi-robot collaboration, which is the most
important motivation of this paper.

? This work was supported in part by the National Natural Science
Foundation of China under Grant 91748208, and in part by the China
Scholarship Council under Grant 201706280378.

Impedance control has been widely used in physical
human-robot collaboration control and multi-robot col-
laboration control Albu-Schäffer et al. (2007); Ge et al.
(2014); Li et al. (2015b,a), which regulates the dynamic be-
havior at the interaction points rather than the interaction
force Hogan (1985). Impedance control is a special case
of dynamic behavior control. The impedance parameters
describe a simple and compact relationship between the
robot motion and the interaction force at the interac-
tion point. Whereas in practice, there are many kinds
of dynamic behavior models, which cannot be limited to
impedance model. A typical example is the human-multi-
robot interaction control problem. In human-multi-robot
interaction, the controller for one robot should consider
not only the states of this robot, but also the states of other
robots and the human worker. Obviously, this cannot be
described by the traditional impedance model and a more
general dynamic behavior model is needed.

For human-multi-robot collaboration control, optimization
plays an important role because the control objective of
interaction control includes both the force regulation and
trajectory tracking and usually it is the tradeoff of these
two objectives Ge et al. (2014). This mimics the human
beings’ adaptation of force and impedance as a concurrent
minimization of instability, motion error and metabolic
cost in muscle space Franklin et al. (2008). In the pre-
vious literature, the Linear Quadratic Regulator (LQR) is
selectedin to determe the impedance parameters but the
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environment dynamics needs to be known Matinfar and
Hashtrudi-Zaad (2005). For practical applications, this
always does not hold. Adaptive dynamic programming
(ADP) method has been widely studied in the previous
literature Vrabie et al. (2009), Gao et al. (2016) to realize
optimal control of the systems with unknown dynamics.
Several publications utilized ADP method for optimized
interaction control of robot manipulator Ge et al. (2014),
Wang et al. (2015), Li et al. (2015b). For human-multi-
robot collaboration, the human worker is deemed as the
environment, with unknown dynamics and position pa-
rameters, which leads to the system dynamics function
partially unknown. In this paper, we aim to develop the
human-multi-robot shared control with optimized interac-
tion performance, in which the adaptive dynamic program-
ming method using neural networks (NN) is employed to
solve the optimized control problem subject to unknown
system dynamics Liu et al. (2013). In addition, to achieve
coordination of the robot agents in human-multi-robot
collaboration, multi-agent reinforcement learning method
has been utilized to achieve the coordination of the robot
agents, or the robot agent and the human worker Li et al.
(2015a), and will be utilized in this paper. The obtained
optimized interaction controller is different from the tradi-
tional impedance controller, which is deemed as one kind
of dynamic behavior control.

The rest of this paper is organized as follows. In Section
II, the dynamic behavior control framework of the human-
multi-robot interaction is presented and described. In
Section III, optimized shared control strategy for human-
multi-robot collaboration is proposed. In Section IV, the
implementation procedure of the presented method is
given. Simulation studies of the above human-multi-robot
collaboration control problems are made in Section V.
Then, the conclusion of this paper is given in Section VI.

2. HUMAN-MULTI-ROBOT COLLABORATION
CONTROL

2.1 System Description

When a human worker and N robots interact with each
other, as shown in Fig. 1, the description of the human-
multi-robot collaboration system is given as below.
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Fig. 1. Human-multi-robot collaborative manipulation for
moving the object.

The collaborative task we consider is a 1DOF point-to-
point task where a human worker and N robot agents

collaboratively move a circular object with mass m by
applying forces l1 and fi, i = 1, 2, · · · , N on the object, just
as shown in Fig. 1. The position of the object is denoted
as x, and xi and xf are the start and end positions of
the object, respectively. To facilitate analysis, the torques
generated during the carrying process are not considered.
During the manipulation process, all robot agents can
communicate with each other and exchange information,
to achieve the coordination of the robot agents.

2.2 Dynamic Behavior Control Framework

To achieve optimized control for human-multi-robot col-
laboration, a dynamic behavior control framework is
adopted, which is shown in Fig. 2.

Task model

Force control of robot 1
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Robot states

Human states
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Multi-agent adaptive dynamic 

programming via neural networks

Optimized interaction control

Manipulated 
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Force control of robot 2

Force control of robot N
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Fig. 2. Dynamic behavior control for physical human-
multi-robot interaction.

The proposed framework mainly consists of four parts,
namely the task model part, the optimized interaction
control part, the robot model part, and the human model
part. The task model part specifies tasks to the human
worker as well as the robot agents according to the task
management system. The optimized interaction control
part receives task information from the task model part,
the robot state information from the robot model part,
and the human state information from the human model
part. After receiving the above information, the optimized
interaction control part will generate the optimized control
and send to the robot model part. The robot force control
loop will be realized in this part, after which the robot
states will be generated and fed back to the optimized
interaction control part. Further, for human-multi-robot
collaboration system, the robot model and the human
model will interact with each other to generate the system
states, which will all be fed back to the optimized interac-
tion control part. It is noteworthy that the human model
is also considered and the robot model and the human
model form a complete system model to achieve optimized
collaboration control performance.

The aim of the human-multi-robot interaction control
algorithm is to reduce the conflicts between different robot
agents, which can therefore reduce the waste of energy.
Further, the more important aim is to achieve optimized
interaction control of the robot agents, which will be
discussed in the following sections.
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3. OPTIMIZED CONTROL FOR
HUMAN-MULTI-ROBOT COLLABORATION

3.1 System Model and Problem Description

Consider the system composed of N robots collaborating
with a human worker to move a rigid object, whose
dynamics are modeled as follows:

mẍ = l1 +

N∑
i=1

fi, (1)

where x ∈ R is the position of the manipulated object,
m ∈ R is the mass of the object, l1 ∈ R denotes the
interaction force exerted by the human worker, fi ∈ R
denotes the interaction force exerted by the i-th robot
agent.

Assume the control input of the human worker l1 is
modeled as follows,

l1 = Kp(xd − x) +Kd(ẋd − ẋ), (2)

where Kp ∈ R and Kd ∈ R denote the stiffness and
damping coefficients, xd ∈ R and ẋd ∈ R denote the
desired position and velocity of the human worker, x and ẋ
denote the actual position and velocity of the manipulated
object. Because the object is assumed to be rigid, the
position and velocity of the object is considered equivalent
to the positions and velocities of the human worker and
the robot agents.

In particular, the desired trajectory xd of the human
worker is generated by a given system{

ẇ = U1w,

xd = V1w,
(3)

where w ∈ R is an auxiliary state, and U1 and V1 are two
matrices designed to generate xd.

Similarly, the desired trajectory of the robot agents xd1 ∈
R is generated by a given system{

ẇ1 = U2w1,

xd1 = V2w1,
(4)

where w1 ∈ R is an auxiliary state, and U2 and V2 are two
matrices designed to generate xd1.

Then, by denoting z = [ẋ x w w1]
T

, we have the complete
system description

ż = Az +

N∑
i=1

Bifi, y = Cz, (5)

where A = m−1

−Kd −Kp KpV2 +KdV2U2 0
1 0 0 0
0 0 U1 0
0 0 0 U2

, Bi =

m−1 [1 0 0 0]
T

. According to the definition of the com-
plete state z, the state xd, i.e., the desired trajectory of the
human worker is unknown to the robot agents. Therefore,

the output feedback variable y is defined as y = [ẋ x w1]
T

,

and C =

[
1 0 0 0
0 1 0 0
0 0 0 1

]
.

We consider that the system’s control objective is to
minimize the infinite-horizon cost function

Γ =

∫ ∞
0

c(t)dt,

c(t) = (x− xd1)TQ1(x− xd1) + ẋTQ2ẋ+

N∑
i=1

fTi Rifi,

(6)
where the weights Q1, Q2 ∈ R ≥ 0, and Ri ∈ R >
0, i = 1, 2, · · · , N . The first term of the above cost
function penalizes the error between the actual and desired
positions of the robot agents. The third term determines
the contribution of the interaction forces of the robot
agents.

According to the definition of the output feedback variable
y, the cost function (6) can be rewritten as

Γ =

∫ ∞
0

[yTQy +

N∑
i=1

fTi Rifi]dt, (7)

where Q =

Q1 0 0
0 Q2 −Q2V2

0 −V T
2 Q2 V

T
2 Q2V2

.

3.2 Multi-Agent Dynamic Programming

Human-multi-robot shared collaboration control can be
investigated on the basis of game theory. In particular,
the robot agents are involved in a common game and have
individual objectives. There are different solutions to the
game that will result in different multi-agent behaviors Li
et al. (2015a), and Nash equilibrium is considered in this
paper to achieve the coordination of the multi-robots to
collaborate with the human worker.

Then, the Nash equilibrium can be achieved by the optimal
control

f∗i = −1

2
R−1

i BiPz
∗, (8)

where P is obtained by solving the following well-known
Riccati equation

ATP + PA+Q−
N∑
i=1

PBiR
−1
i BT

i P = 0. (9)

Remark 1: If the control coefficients Kp, Kd, the human
desired trajectory xd, and the mass of the object m are all
known to the robot agents, it is obvious that the system
matrices A and Bi are known to the robot agents. There-
fore, the optimal control forces fi, i = 1, 2, · · · , N can be
easily computed via the coupled algebraic Riccati equation
(ARE) (9). In this paper we assume that the control
coefficients Kp, Kd, and the mass of the object m, are
unknown to the robot agents. Thus, the system matrices
A and Bi, i = 1, 2, · · · , N are unknown to the robot agents.
For this case, the adaptive dynamic programming method
with neural networks will be utilized in this paper.

3.3 Adaptive Dynamic Programming via Neural Networks

For the optimized interaction control problem with un-
known dynamics, the adaptive dynamic programming
method developed in Liu et al. (2013) will be utilized, to
address the optimization problem discussed above.
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In particular, the optimal control f∗i that minimizes the
cost function (6) subject to the system function is given
by

f∗i (z) = −1

2
R−1

i BT
i (z)Γ∗z, (10)

where Γ∗z = ∂Γ∗

∂z and Γ∗ = minf1(z),f2(z),··· ,fN(z)Γ is the

optimal cost function. However, as A, BT
i and Γ∗ are

unknown due to unknown dynamics of the human and the
mass of the object, the above optimal control needs to be
obtained by approximation.

First, an observer has been designed to identify the system
with unknown dynamics, as below

˙̂z = A0ẑ + Ĝ(ẑ, f1, f2, · · · , fN ) + L(y − Cẑ), (11)

where A0 is a given Hurwitz matrix, Ĝ(z, f1, f2, · · · , fN )

is the estimate of G = Az +
∑N

i=1Bifi − A0ẑ, ẑ is
the output of the observer, and L is chosen such that
A − LC is also a Hurwitz matrix. Ĝ(ẑ, f1, f2, · · · , fN ) is
approximated using a three-layer neural networks (NN),
which is expressed as below

Ĝ(ξ) = Ŵ1S1(V̂1ξ), (12)

where ξ =
[
ẑT f1 f2 · · · fN

]T
is the NN input, p1 ∈ R

denotes the number of neural nodes in the hidden layer,
V̂1 ∈ Rp1×(4+N) and Ŵ1 ∈ R4×p1 are the estimates of
the ideal weights V1 ∈ Rp1×(4+N) and W1 ∈ R4×p1,
respectively. Ŵ1 is updated according to the following
weight update law

˙̂
W1 =− k1A

−T
c CT ‖ ỹ ‖ ST (V̂1ξ)− k2 ‖ ỹ ‖ Ŵ1,

˙̂
V1 =− kT3 ‖ ỹ ‖ CA−1

c Ŵ1(Ip1 − diag(S1(V̂1ξ))))
Tsgn(ξ)

− k4 ‖ ỹ ‖ V̂1,
(13)

where ỹ = y − Cẑ, k1, k2, k3, k4 ∈ R are positive scalars,
Ac = A0 − LC, and L is selected such that A0 − LC
is a Hurwitz matrix. With the above approximation of
the system dynamics, the control force fi, which is the
estimate for the optimal control f∗i , can be achieved as

fi = −1

2
R−1

i (
∂Ĝ(ẑ, f1, f2, · · · , fN )

∂fi
)T Γ̂ẑ, (14)

where ∂Ĝ(ẑ,f1,f2,··· ,fN )
∂fi

is

∂Ĝ(ẑ, f1, f2, · · · , fN )

∂fi
=Ŵ1

∂S1(V̂1ξ)

∂V̂1ξ
V̂1

[04×1 λ1 λ2 · · · λi · · · λN ]
T
,

(15)
where λk, k = 1, 2, · · · , N denote the coefficients for the
control forces of different robot agents, λk = 1 for k = i,
and λk = 0 otherwise.

Second, another critic NN is used to approximate Γ(ẑ),
which is shown as below

Γ̂(ẑ) = ŴT
2 S2(ẑ), (16)

where Ŵ2 ∈ Rp2×1 is the estimate of the ideal weight
W2 ∈ Rp2×1, and S2(ẑ) ∈ Rp2×1 denotes the activation
function, p2 ∈ R is the number of hidden neurons that is
similar as in (12). Ŵ2 is online updated according to the
following weight update law

˙̂
W2 = −k5

σ

(σTσ + 1)2
(σT Ŵ2 + ẑTQẑ+

N∑
i=1

fTi Rifi) (17)

where k5 is a positive scalar and

σ = [
∂ST

2 (ẑ)

∂ẑ
]T ˙̂z. (18)

Thus, Γ̂ẑ is obtained as

Γ̂ẑ =
∂Γ̂(ẑ)

∂ẑ
= Ŵ2

∂ST
2 (ẑ)

∂ẑ
. (19)

Remark 2: In summary, the control input in (10) can
be obtained with the two NN approximation equations
(12) and (16), with the weight updating law in equations
(13) and (17), respectively. The specific implementation
procedure of the proposed algorithm will be given in the
following section.

4. IMPLEMENTATION PROCEDURE OF THE
PROPOSED ALGORITHM

The implementation procedure of the proposed algorithm
is as follows.

Step 1: The human-multi-robot collaboration control sys-
tem is initialized. The parameters Q1, Q2, R1, and R2

in the cost function are set. The desired trajectory of
the robot agents is determined. The initial values of the
NN parameters, such as the weights of the two NNs, W1,
V1, W2, and the learning parameters k1, k2, k3, k4, k5, are
predetermined.

Step 2: When the collaboration system starts running, the
initial interaction control fi in (14), is utilized. Collect
the motion and force data and feed back to the presented
adaptive dynamic programming algorithm, in which the
weight values of the two NNs, W1, V1, and W2, are updated
according to (13) and (17), respectively.

Step 3: The updated weight values of the two NNs are
utilized in (14) for the next time moment.

5. SIMULATION STUDIES

5.1 Simulation Conditions

Without loss of generality, here we consider two robots
collaborating with a human worker to move the object,
and the method proposed in this paper can be extended
to N robots (N > 2) collaborating with human worker,
easily.

The parameters used in the simulation of the optimized
control for human-multi-robot collaboration system are as
follows,

m = 1kg, Kp = 900, Kd = 60, U1 = -1, V1 = 1, U2 = -0.8,
V2 = 1, xi = 0.2m. Then,

A =

−60 −900 852 0
1 0 0 0
0 0 −1 0
0 0 0 −0.8

, Bi =

1
0
0
0

, C =

[
1 0 0 0
0 1 0 0
0 0 0 1

]
,

i = 1, 2.
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For the cost function parameters chosen for simulation, Q1

= 1, Q2 = 1000, R1 = 0.01, R2 = 0.001.

It is noteworthy that the parameters in the system func-
tion, Kp, Kd, U1, V1, and the mass of the object m, are
unknown to the two robot agents. These parameters are
just set for simulation.

The matrices A0 and L are selected as follows.

A0 =

−50 −500 500 0
1 0 0 0
0 0 −0.8 0
0 0 0 −0.8

, L =

10 10 0
0 0 0
0 0 0
0 0 0

.

The observer NN is a three-layer NN with one hidden layer
to approximate the unknown system dynamics. The input
layer involves 6 neurons and the output layer contains 4
neurons, and the numbers of neural nodes in the hidden
layer, p1, is set as 15. The activation function S1(·) is
selected as hyperbolic tangent function tanh(·). Let the
learning rates be k1 = k3 = 10 and the parameters be
k2 = k4 = 10. Additionally, the initial weights of W1 and
V1 are all set to be random within [0, 0.2]. Then, we can
complete the design of the NN observer for the unknown
system dynamics.

Then, based on the observed states, a feedforward neuro-
controller is constructed via the ADP method to obtain the
optimized control of the human-multi-robot collaboration
system Liu et al. (2013), in which a critic NN is built
to approximate the cost function. Since the cost function
is a quadratic function of the system state variables, the
activation functions of the critic NN are chosen from the
second-order series expansion of the value function, which
is shown as below.

S2(ẑ) = [ẑ2(1), ẑ(1)ẑ(2), ẑ(1)ẑ(3), ẑ(1)ẑ(4), ẑ2(2),

ẑ(2)ẑ(3), ẑ(2)ẑ(4), ẑ2(3), ẑ(3)ẑ(4), ẑ2(4)].
(20)

It is obvious that the number of neurons in the hidden layer
is p2 = 10. In addition, the initial weights of W2 ∈ R10×1

are set as [0, 0, . . . , 0]T, and the learning rate k5 = 1.5.

5.2 Simulation Results

For the given set of cost function parameters, using the
presented algorithm, after simulation, the convergence
results of the NN weight parameters W1, V1, and W2 are
shown in Figs. 3, 4, respectively.

Fig. 3. The convergence results of W1 and V1 parameters.

The resulted system states and the estimation results
of the human-multi-robot collaboration system states are
shown in Fig. 5.

Fig. 4. The convergence results of the W2 parameters.
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Fig. 5. The actual robot states and the estimation results
of the human-multi-robot collaboration system.

The resulted control forces of the two robot agents in the
human-multi-robot collaboration is shown in Fig. 6.
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Fig. 6. The control forces of the two robot agents.

5.3 Simulation Results Discussion

From the simulation results in Figs. 3, 4, we can see that
the weight matrices W1, V1, and W2 in the two neural
networks converge steadily to the optimized solutions. In
addition, when the weight parameter for the interaction
force of the robot agent 1, R1, is larger than R2, the
corresponding interaction forces f1 are smaller than f2,
which is shown in Fig. 6 and very consistent with the
theoretical derivation.

It can also be seen from Fig. 5 that the estimation results of
the system states ẋ, x, and xd1 quickly and steadily follow
the changes of the actual system states. This verifies the
stability of the presented algorithm using neural networks.

For the convenience of system modeling and computation,
the impedance parameters of the human worker Kp and
Kd are assumed to be constant. In practice, this assump-
tion is hard to be satisfied as the human can adaptively
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regulate these parameters for better working performance
or stability. Therefore, in the future work, these two pa-
rameters will be assumed to be changeable to make the
assumptions more realistic.

In this paper, the human-multi-robot collaborative task is
considered as a 1DOF point-to-point task, which is some-
what simplified. In practical applications, the collaborative
task should be conducted in three-dimensional space. It is
noteworthy that the algorithm presented in this paper can
be easily extended to the collaborative scenarios in three-
dimensional space. In addition, the torques generated in
the human-multi-robot collaborative task is neglected for
convenience of analysis, which will be considered in the
future work.

For the stability and the boundedness of the approxima-
tion error of the two neuron networks used for adaptive dy-
namic programming, in the previous work Liu et al. (2013),
the authors have given the proof. Therefore, in this paper,
the neural networks are utilized in the adaptive dynamic
programming algorithm for the optimized collaboration
control. Also, in the future work, the presented algorithm
in this paper will be verified through experimental studies.

6. CONCLUSION

In this paper, an optimized control method for physi-
cal human-multi-robot shared collaboration system has
been developed. The coordination of the robot agents
have been taken into account in the problem formulation.
Considering the unknown human dynamics and position
parameters during human-multi-robot collaboration, the
multi-agent adaptive dynamic programming method has
been employed to present an optimized control algorithm
subject to unknown system dynamics. The neural net-
work approximation method was utilized in this paper
to approximate the unknown system dynamics and the
cost function to obtain the optimized control policy. The
effectiveness of the presented method has been verified
through simulation studies.
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Albu-Schäffer, A., Ott, C., and Hirzinger, G. (2007). A
unified passivity-based control framework for position,
torque and impedance control of flexible joint robots.
The International Journal of Robotics Research, 26(1),
23–39.

Cacace, J., Finzi, A., and Lippiello, V. (2016). Implicit
robot selection for human multi-robot interaction in
search and rescue missions. In 2016 25th IEEE Inter-
national Symposium on Robot and Human Interactive
Communication (RO-MAN), 803–808.

Franklin, D.W., Burdet, E., Tee, K.P., Osu, R., Chew,
C.M., Milner, T.E., and Kawato, M. (2008). CNS learns
stable, accurate, and efficient movements using a simple
algorithm. Journal of Neuroscience, 28(44), 11165–73.

Gao, W., Jiang, Y., Jiang, Z.P., and Chai, T. (2016).
Output-feedback adaptive optimal control of intercon-
nected systems based on robust adaptive dynamic pro-
gramming. Automatica, 72(8), 37–45.

Ge, S.S., Li, Y., and Wang, C. (2014). Impedance adapta-
tion for optimal robot-environment interaction. Inter-
national Journal of Control, 87(2), 249–263.

Hogan, N. (1985). Impedance control: An approach to
manipulation, part i - theory, part ii - implementation,
part iii - applications. ASME Transactions Journal of
Dynamic Systems & Measurement Control B, 107(1),
304–313.

Lawitzky, M., Mrtl, A., and Hirche, S. (2010). Load
sharing in human-robot cooperative manipulation. In
19th International Symposium in Robot and Human
Interactive Communication, 185–191.

Li, Y., Ge, S.S., and Yang, C. (2011). Impedance control
for multi-point human-robot interaction. In 2011 8th
Asian Control Conference (ASCC), 1187–1192.

Li, Y., Tee, K.P., Chan, W.L., Yan, R., Chua, Y., and
Limbu, D.K. (2015a). Continuous role adaptation for
human–robot shared control. IEEE Transactions on
Robotics, 31(3), 672–681.

Li, Y., Tee, K.P., Yan, R., Limbu, D.K., and Ge, S.S.
(2015b). Shared control of human and robot by approxi-
mate dynamic programming. In 2015 American Control
Conference (ACC), 1167–1172. IEEE.

Liu, D., Huang, Y., Wang, D., and Wei, Q. (2013). Neural-
network-observer-based optimal control for unknown
nonlinear systems using adaptive dynamic program-
ming. International Journal of Control, 86(9), 1554–
1566.

Matinfar, M. and Hashtrudi-Zaad, K. (2005).
Optimization-based Robot Compliance Control:
Geometric and Linear Quadratic Approaches. Sage
Publications, Inc.

Moertl, A., Lawitzky, M., Kucukyilmaz, A., Sezgin, M.,
Basdogan, C., and Hirche, S. (2012). The role of roles:
Physical cooperation between humans and robots. In-
ternational Journal of Robotics Research, 31(13), 1656–
1674.

Noohi, E., efran, M., and Patton, J.L. (2016). A model for
humanhuman collaborative object manipulation and its
application to humanrobot interaction. IEEE Transac-
tions on Robotics, 32(4), 880–896.

Reed, K.B. and Peshkin, M.A. (2008). Physical collabo-
ration of human-human and human-robot teams. IEEE
Transactions on Haptics, 1(2), 108–120.

Sklar, E., Parsons, S., Ozgelen, A.T., Schneider, E., and
Epstein, S.L. (2013). Hrteam: A framework to support
research on human/multi-robot interaction. In Interna-
tional Conference on Autonomous Agents & Multi-agent
Systems.

Vrabie, D., Pastravanu, O., Abu-Khalaf, M., and Lewis,
F.L. (2009). Brief paper: Adaptive optimal control for
continuous-time linear systems based on policy itera-
tion. Automatica, 45(2), 477–484.

Wang, C., Li, Y., Ge, S.S., and Lee, T.H. (2015). Op-
timal critic learning for robot control in time-varying
environments. IEEE Transactions on Neural Networks
& Learning Systems, 26(10), 2301–2310.

Wu, M.H., Ogawa, S., and Konno, A. (2016). Symme-
try position/force hybrid control for cooperative object
transportation using multiple humanoid robots. Ad-
vanced Robotics, 30(2), 131–149.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9347


