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Abstract: Robust experimental design (RED) of sampling time scheduling has been discussed
for parametric uncertain systems. Four RED methods, i.e., the pseudo-Bayesian design, the
maximin design, the expectation-variance design, and the online experimental redesign, are
investigated under the framework of model-based optimal experimental design (OED). Both
the D-optimal and the E-optimal criteria are used as performance metrics. Two numerical
procedures, the Powell’s method and the semi-definite programming (SDP), are employed to
obtain the optimum solution for REDs. The robustness performance of the four REDs are
compared using a benchmark enzyme reaction system. In comparison to a typical uniform
sampling strategy, the sampling time profiles from REDs are more focused on regions where
the dynamic system has higher parametric sensitivities, indicating choice of informative data
for parameter identification. The designed sampling strategies are also assessed by bootstrap
parameter estimation with randomly generated initial points, where the difference between the
REDs can be observed.
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1. INTRODUCTION

Building mathematical models for complex systems from
experimental data is widely explored in many sciences
and engineering applications. Collecting data that contain
the most relevant information about the system dynam-
ics is crucial for model discrimination, parameter estima-
tion and model validation (Morgan and Stallings, 2017).
Optimal experimental design (OED) is a powerful tool
developed to find the experimental settings under which
the most informative data can be obtained for modelling.
A standard OED method uses measures based on Fisher
information matrix (FIM) mainly because, under certain
assumptions, the inverse of FIM provides the lower bound
for parameter estimation error covariance. A comprehen-
sive review of OED can be found in (Franceschini and Mac-
chietto, 2008). Since FIM is formulated on local parametric
sensitivities, the reliability of OED can hardly be ensured
when large uncertainty exists in initial modelling.

A few number of robust experimental design (RED) meth-
ods have been proposed for systems with large uncer-
tainties such as the pseudo-Bayesian approach (Walter
and Pronzato, 1987) and the maximin approach (Asprey
and Macchietto, 2002; Dette et al., 2005). The maximin
method maximises the information content for the possi-
ble worst performance within the uncertain region, while
the pseudo-Bayesian design considers the averaged per-
formance over the whole uncertain parameter space. An
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improved utility function is proposed for measurement set
selection design that combines both the pseudo-Bayesian
approach and the maximin method (Zhang and Drovandi,
2017).

Instead of a single experimental design as mentioned
above, iterative design is an alternative option for RED.
According to the time and experimental resources pro-
vided, OEDs can be performed in sequential (Walter and
Pronzato, 1987), parallel (Galvanin et al., 2007), or hybrid
procedures (Franceschini and Macchietto, 2008). The re-
produced data is used for model update in each iteration
to reduce the impact of model uncertainty. This iterative
idea can also be applied to a single (batch) experimental
design by dividing the whole experiment horizon into sev-
eral sub-experiments. This is often called ”online” optimal
experimental redesign which was first applied to linear
systems (Mehra, 1974; Gerencsér and Hjalmarsson, 2005),
and extended to nonlinear systems later on (Stigter et al.,
2006; Galvanin et al., 2009). In a recent work (Wang
and Yue, 2019), an auto-updating strategy is proposed
to address the issue that an iterative scheme can become
unreliable when it uses inadequate prior knowledge to
assure practical identifiability.

The design of sampling time scheduling is of particular
importance for dynamic systems with a long operating
horizon. An equally-spaced sampling strategy is normally
adopted in practice, which can become arduous and costly
if the experiment takes a long time and the sampling fre-
quency is high. OED on sampling time looks for a sampling
profile that includes only the most informative data at the
selected time points. A sampling time design is in principle
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an infinite-dimensional non-convex dynamic optimisation
problem. Partial derivatives are normally required to solve
the problem, which is numerically cumbersome (Yu, 2018).
Powell’s method (Powell, 1964) can be applied to update
the selected sampling times iteratively to approach the
optimum without using performance function derivatives.
Another option is to transform the infinite continuous
problem into a semi-definite programming (SDP) problem
(Yu, 2018), which can be solved more easily.

In this work, several RED methods on sampling profile
design are reviewed and compared for systems with para-
metric uncertainties. Key aspects in RED, such as prob-
lem formulation, optimisation algorithm, implementation
readiness, computational load and robustness performance
are assessed. The remaining of the paper is organized
as follows. Section 2 gives the preliminaries on model
assumptions, parameter estimation and typical OED for-
mulation. In Section 3, four RED methods on sampling
time scheduling are presented in optimisation framework.
Two numerical methods employed for RED are discussed
in Section 4. In Section 5, simulation studies are conducted
on a benchmark enzyme reaction system, and the results
are compared. Conclusions are made in Section 6.

2. PRELIMINARIES

Consider a general nonlinear system with n variables, p
parameters, and m output variables.

Ẋ (t) = f (X (t) ,θ) ,X (t0) = X0

Y (t) = h (X (t)) + ξ (t)
(1)

where f (·) are a set of continuous state transition functions
that have first-order derivatives; X ∈ Rn is the state vector
for n state variables and X0 is the initial condition of
X; θ ∈ Rp denotes the p parameters; Y ∈ Rm is the
vector for m output variables, which is selected from the n
state variables (the selection function is denoted by h (·)
); ξ ∈ Rm is the vector of measurement errors, which are
considered to be independent, identical distributed zero-
mean Gaussian noise with variance σ2

j for j = 1, . . . ,m.

2.1 Sampling Time Points for Parameter Estimation

The sampling time points for measurement variables stay
in a continuous bounded region (infinite time points avail-
able). In order to simplify the design problem, the con-
tinuous time region is relaxed to a discrete region with Nt

available time points. In parameter estimation, outputs are
measured at Nsp (Nsp ≤ Nt) time points that are selected
from the Nt available time points. Taking the least square
estimation (LSE) method, the parameter estimation can
be formulated as:

θ̂ = arg min
θ∈Θ

m∑
j=1

Nt∑
i=1

ω̄i (yj(ti)− ỹj(θ, ti))2
(2)

where yj and ỹj are measured and model prediction of the
jth output; ω̄i is the weight of the ith available sampling
time point which is either 0 or 1 (1 means measurement
is taken at this sampling time point and 0 not taken).
The sampling time weighting vector, denoted as ω̄ =
[ω̄1, ω̄2, · · · , ω̄Nt ]

T , should satisfy 1T ω̄ = Nsp, where 1 is
a column vector of ones.

2.2 Optimal Experimental Design (OED)

For systems in Section 2.1, FIM can be written as

FIM(ω̄,θ) =
∑Nt

i=1 ω̄i ·S(ti)
T ·Σ−1 ·S(ti), where S(ti) =

∂X
∂θ |ti is the local parametric sensitivity matrix at time
ti, Σ is the measurement error covariance matrix. Ac-
cording to the Cramer-Rao lower bound inequality, the
inverse of FIM provides a lower bound for the parameter
error covariance matrix from (2). The OED of sampling
time scheduling can be written as the following integer
programming problem:

arg min
ω̄

ψ
(

(FIM (ω̄,θ))
−1
)

s.t. ω̄i ∈ 0, 1, 1T ω̄ = Nsp

(3)

where ψ(·) is a scaler function that is normally selected as
determinant (D-optimal), L2 norm (E-optimal), or trace
(A-optimal) of FIM. This would only work well when
model uncertainty is small since FIM is formulated by
local parametric sensitivities, which depend on the prior
knowledge of model parameters.

An exhaustive searching method can be employed to
solve (3) when Nt is relatively small, but this method
becomes computationally demanding for design with large
Nt. The optimisation problem in (3) can be relaxed into
an approximate continuous optimisation problem, which
is convex for some design criteria.

arg min
ω

ψ
(

(FIM (ω,θ))
−1
)

s.t.

Nt∑
i=1

ωi = 1, ωi ≥ 0
(4)

Here the weighting factors in ω = [ω1, · · · , ωi]
T

are real
numbers rather than binary 0 or 1.

3. ROBUST EXPERIMENTAL DESIGN (RED)

3.1 Maximin Robust Experimental Design

A maximin RED method optimizes the worst possible
performance for any parameter values (Asprey and Mac-
chietto, 2002) to ensure the design result is acceptable for
all possible parameters. The RED problem is written as
follows:

arg min
ω

arg max
θ∈Θ

ψ
(

(FIM (ω,θ))
−1
)

(5)

where Θ is the admissible domain for θ. With this RED
method, only the upper and lower bounds of parameter
uncertainty are required for robust design.

Exhaust searching algorithms can be used to solve this
problem, which can be numerically demanding for high
dimension systems. A more computationally efficient
method has been proposed (Körkel et al., 2004; Flaherty
et al., 2006), in which the first-order Taylor expansion is
used to approximate either the parameter error covariance
matrix or the FIM taking into account parameter uncer-
tainties.
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FIM (θ∗ + δθ) ≈ FIM (θ∗) +
∂FIM (θ∗)

∂θ

∣∣∣∣
θ∗
δθ + · · ·

=

Nt∑
i=1

ωi ·
{
ST (ti,θ

∗)Σ−1S(ti,θ
∗) +

(
dST (ti,θ)

dθ

∣∣∣∣
θ∗
·

Σ−1S(ti,θ
∗) + ST (ti,θ

∗)Σ−1 dST (ti,θ)

dθ

∣∣∣∣
θ∗

)
δθ

}
= FIM (θ∗) + ∆

(6)

3.2 Pseudo-Bayesian Robust Experimental Design

In a pseudo-Bayesian design, the optimisation is made
on the averaged or the expectation of the performance
over the whole uncertain parameter regions (Walter and
Pronzato, 1987). Assume the distribution of parameter
uncertainty can be described by its probability density
function (PDF), i.e., θ ∼ p(θ), the pseudo-Bayesian RED
can be formulated as:

arg min
ω

∫
θ∈Θ

ψ
(

(FIM (ω,θ))
−1
)
p(θ) dθ (7)

In this design, the PDF of parameter distribution is re-
quired. The analytical solution of this optimisation prob-
lem is hard to find. Instead, the Monte-Carlo method can
be used to solve this problem by sampling from the pa-
rameter uncertainty space. Assume that p(θ) is of uniform
distribution, and Np sampling sets are taken for θ in its
distribution region, then (7) can be rewritten as:

arg min
ω

1

Np

Np∑
l=1

ψ
(

(FIM (ω,θl))
−1
)

(8)

3.3 Expectation and Variance Based Method

The pseudo-Bayesian design could be less sensitive to the
outliers in parameter space due to its averaging algorithm.
To tackle with this limitation, Zhang and Drovandi (2017)
proposed a design method that combines the expectation
and variance terms into the objective function:

arg min
ω

E + λ

√√√√ 1

Np

Np∑
l=1

(
ψ
(

(FIM (ω,θl))
−1
)
− E

)2


(9)

where E = 1
Np

∑Np

l=1 ψ
(

(FIM (ω,θl))
−1
)

and λ is a

weighing factor defined by users to balance contribu-
tions between mean and variance. The idea of this RED
method is that the design result should not only be a
good choice for the averaged effect from parameter un-
certainty, but also keeps the information content rela-
tively stable for all possible parameters. A problem is

that ψ
(

(FIM (ω,θl))
−1
)

can differ largely for different

parameter sets. To keep them on a comparable scale,
logarithm or other scaling measures can be applied to ψ(·).

3.4 Iterative Strategy—Online Experimental Redesign

In the online experimental redesign method, the whole ex-
periment (process) is divided into several sub-experiments
(in time zones). Model parameters are updated at the end

of each sub-experiment with all data collected up to this
time, and the updated model parameters are used as the
prior information for the next sub-experiment. This RED
method is easy to implement and is adjustable for changing
operation conditions. With this design, the number of sub-
experiments and the length of each sub-experiment need
to be defined by users. The identifiability problem may
appear if the length of a sub-experiment is too short to
cover the dynamics. An auto-updating redesign method is
proposed recently that not only ensures the identifiability
but also improved the robustness performance under para-
metric uncertainty. The detailed design procedure can be
found in Wang and Yue (2019).

4. NUMERICAL METHODS

For the OED problem in (4), if the D-optimal criterion
is adopted, the OED can be proved to be convex and
solved by Powell’s quadratically convergent method; if the
E-optimal criterion is adopted, the OED can be transferred
into a SDP problem. These two numerical algorithms will
be used to solve the RED problems in this work.

4.1 Powell’s Method for D-optimal Design

The Powell’s quadratically convergent method first ran-
domly selects the Nsp time points from the Nt available
time points. It then gets rid of one point in the selection
set and substitutes it with a non-selected point to reach
minimum objective value. Repeat this process until all the
selected Nsp time points are updated. In order to keep the
algorithm reliable, the whole procedure will be repeated
several times by taking different initially selected Nsp time
points, and the updating process can also have several
iterations.

A successful implementation of Powell’s method to solve
the sampling time OED can be seen in a previous work
Yu (2018). This method hasn’t been applied to RED, in
which the objective function needs to be reformulated to
incorporate parametric uncertainties.

Using the D-criterion for sampling scheduling, the max-
imin design objective function in RED can be written as

det

sup
θ∈Θ


Nsp∑

i=1

n∑
j=1

1

σ2
j

Sj(ti,θ)TSj(ti,θ)

−1

 (10)

For the pseudo-Bayesian design, the D-optimal objective
function in RED is written as

det

 Np∑
l=1

Nsp∑
i=1

n∑
j=1

1

σ2
j

Sj(ti,θl)
TSj(ti,θl)

−1
 (11)

In the expectation-variance based method, using E to
represent (11), the objective functions can be written as:

E + λ/
√
Np·√√√√√√ Np∑

l=1

det

Nsp∑
i=1

n∑
j=1

1

σ2
j

Sj(ti,θl)TSj(ti,θl)

−1

− E


2

(12)
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4.2 SDP for E-optimal Design

Using E-optimal criterion, the OED of measurement set
selection can be transformed into SDP to get the optimal
solution. This was extended to the OED of sampling time
design (Yu, 2018), but hasn’t been explored to REDs of
sampling time scheduling. In this section, the sampling
time REDs with the maximin method and the pseudo-
Bayesian method are transformed to SDP, which can be
solved by established optimisation tools such as SeDuMi
(Sturm, 1999).

Without loss of generality, FIM in (6) can be written as:

FIM (θ∗ + δθ) =

Nt∑
i=1

ωi

 n∑
j=1

1

σ2
j

ST
j (ti)Sj(ti) + ∆i


(13)

where ∆i is a m × m matrix at ti. The maximin design
problem in (5) can be cast as a standard SDP with the as-
sumption on ∆i’s magnitude: ‖blk diag(∆1, · · · ,∆Nt)‖ ≤
ρ. Following (Flaherty et al., 2006), assuming that ∆1 =
· · · = ∆Nt , the E-optimal maximin RED can be written
as a regularised optimisation problem:

arg min
ω

−s

s.t.

Nt∑
i=1

ωi

 n∑
j=1

1

σ2
j

ST
j (ti)Sj(ti)

− ρ√Nt‖ω‖2J ≥ sI

(14)

where J , I ∈ Rm×m are unit matrix and identity matrix;
the uncertainty bound ρ is a regularisation parameter.

For the pseudo-Bayesian Design, the E-optimal RED in
(8) can be reformed as:

arg min
ω

−s

s.t.
1

Np

Np∑
l=1

Nt∑
i=1

n∑
j=1

ωi ·
1

σj
Sj(ti,θl)

TSj(ti,θl) ≥ sI

(15)

5. CASE STUDY

5.1 System Settings

An enzyme reaction system is used for simulation stud-
ies. The reaction mechanism is shown in Fig. 1. This
system has 10 state variables, among which 5 states,
{S,N, P,Q,R}, are measurable. The 11 reaction rates,
{k1, k−1, k2, k−2, k3, k−3, k4, k−4, k5W , k−5, k6}, are
model parameters. For this benchmark system, the model
description, parameter nominal values and the initial con-
ditions of state variables can be found in Yue et al. (2013).
The parameters, k2, k−3 and k5W are the focus of pa-
rameter estimation because they are found to be most
influential to system outputs through sensitivity analysis.
The other 8 parameters are assumed known and set to
their nominal values in the following study.

The experiment duration is 6,000 seconds and the 5
measurable variables are assumed to be sampled at the
same time points. Assume that there are 201 sampling
points available (Nt = 201), produced uniformly at [0 :

Fig. 1. Enzyme reaction system(Yu, 2018)

30 : 6, 000](s), among them 21 points will be selected
for parameter estimation (Nsp = 21). For the three un-
certain parameters k2, k−3 and k5W , the nominal val-
ues are [100, 200, 5000], the lower and upper bounds are
[50, 100, 2500] and [200, 400, 7500]. The parameters are
uniformly distributed within the bounds. The same pa-
rameter samples which are generated by Latin hypercube
sampling (LHS) are used for all REDs employing the
Monte-Carlo method.

5.2 D-Optimal REDs Solved by Powell’s Algorithm

Four RED strategies, i.e., maximin design, pseudo-Bayesian
design, expectation–variance method, and online experi-
mental redesign are applied to D-optimal design of sam-
pling time scheduling, which are solved by the Powell’s
method. The design results are listed in Table 1.

Table 1. D-optimal RED results (Powell’s
method)

Design method Sampling time points (s)

pseudo−
Bayesian

[60, 540, 600, 660, 720, 1080, 1740, 2640,
2790, 3000, 3330, 3420, 4380, 4560, 4770,

4830, 5100, 5160, 5400, 5850, 5880]

maximin
[60, 90, 300 : 30 : 540,

2100 : 30 : 2280, 2340, 2370, 4980]

expectation−
variance

[360, 450, 540, 690, 1440, 1860, 1890, 2250,
2400, 2460, 2610, 2850, 3120, 3240, 3300,

3390, 3690, 4020, 4500, 4530, 5580]

online
redesign

[450, 480, 510, 1200, 1230, 1950, 1980, 2100,
2820, 3930, 3960, 4740, 4770, 5850 : 30 : 5970]

non− design [0 : 300 : 6000]

The designed sampling profiles and the relative sensitivi-
ties of the 3 key parameters to the state, S, are shown in
Fig. 2, from which it can be seen that the RED sampling
profiles are more focused on the regions where parameter
sensitivities are relatively high, e.g., [300− 2, 500](s).

In order to explore the robust performance of REDs
under parametric uncertainties, 1,000 parameter sets are
drawn from the bounded region, and the statistics of
logarithmic D-values (log

[
det
(
FIM−1

)]
) are used for

comparison (Table 2). A smaller D-value corresponds to
a possible smaller parameter estimation error using the
collected experimental data. It can be seen from Table 2
that the pseudo-Bayesian design has the smallest mean,
the largest maximum and the largest standard deviation
of the D-value among all REDs, which means that it
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Fig. 2. Sampling profiles and parameter relative sensitivi-
ties to S (D-optimal, Powell’s method)

achieves the best result at the averaged level within the
uncertainty region, but has a large variation range. On
the contrary, the maximin design has the largest mean,
but the smallest maximum of the D-value, which means
that it has the best performance at the worst parameter
case. The expectation–variance based method has the
smallest standard deviation following its design nature.
The statistics of the online redesign method fall in between
the other three REDs.

Table 2. Statistics of D-values (logarithmic) of
RED methods (Powell’s method)

Design method mean D max D std D

pseudo−Bayesian 12.1776 17.9201 1.4941

maximin 13.2543 15.1271 1.0499

expectation− variance 12.2352 15.2357 0.7672

online redesign 12.4989 15.5762 1.5003

non− design 12.5441 16.3155 1.2802

To examine the data quality for parameter estimation from
different REDs, 100 parameter estimations are obtained
by the bootstrap parameter estimation method (using
random initial values for parameters taken from the uncer-
tainty region). The results are illustrated in Fig. 3, from
which it can be seen that the pseudo-Bayesian design has
more extreme outliers than the other three REDs.

Fig. 3. Bootstrap parameter estimation of {k2, k−3} using
sampling data obtained from D-optimal REDs

Fig. 4. Boxplots of k2 estimation under D-optimal REDs
and non-design

To see more clearly the outliers, a box-plot is produced
for k2 in Fig. 4. The red line inside each rectangular box
indicates the median level of the box. The ”whiskers”
below and above each box show the smallest and the
largest estimations that are not outliers, and the outliers
are in red crosses. The circles besides all box-plots are esti-
mations obtained by corresponding RED samplings. Again
Fig. 4 shows that with the pseudo-Bayesian design, the
parameter estimations have more outliers distributed in a
wider range. For the maximin design, the estimations stay
closely around the nominal value. Most estimations using
RED samplings have smaller estimation errors compared
to the results using the evenly spaced non-design sampling.

5.3 E-optimal REDs solved by SDP

In this section, the SDP algorithm is used to solve E-
optimal REDs on sampling time scheduling. The sampling
patterns for each RED method are listed in Table 3. Again
the RED sampling profiles capture regions with more
sensitive data compared to the non-designed strategy.

Table 3. E-optimal RED results (SDP)

Design method Sampling time points (s)

pseudo−
Bayesian

[0, 30, 60, 120, 390, 450, 480, 510, 570,
840, 900, 990, 1050, 1080, 1200, 3180,

3360, 3390, 3480, 3540, 4230]

maximin [30, 60, 90, 330 : 30 : 600, 3750 : 30 : 3960]

online
redesign

[30 : 30 : 120, 330 : 30 : 390, 1860, 1890, 3510 :
30 : 3630, 3690 : 30 : 3780, 5400 : 30 : 5460]

non− design [0 : 300 : 6000]

Similarly, 1,000 parameter sets are drawn from the uncer-
tainty space to examine the robustness. The statistical at-
tributes of logarithmic E-values (log

[
max eig

(
FIM−1

)]
)

are shown in Table 4. The results are mostly consistent
with D-optimal REDs solved by Powell’s method. The only
exception is that, using the SDP solver, all REDs have bet-
ter results than the non-design method in all aspects. Then
100 parameter estimations are obtained using the boot-
strap method taking arbitrary initial parameter settings.
The box-plot for k2 estimations with E-optimal REDs are
shown in Fig. 5. In this case, the pseudo-Bayesian method
has very few outliers, and the estimations are located close
to the nominal value. With the maximin method, though
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most of the estimations are tightly close to the nominal
value, it has more outliers than the other two REDs. The
non-design strategy has the worst performance compared
to REDs in that it has more outliers, and many estimations
stay far away from the nominal value.

Table 4. Statistics of E-values (logarithmic) of
REDs (SDP)

Design method mean E max E std E

pseudo−Bayesian 10.4854 12.6242 0.7608

maximin 10.6349 11.6682 0.6417

online redesign 10.6720 12.2990 0.8150

non− design 11.2688 12.7040 0.7778

Fig. 5. Boxplots of k2 estimations under E-optimal REDs
and non-design (SDP solver)

6. CONCLUSIONS

From the comprehensive discussions on REDs of sampling
time scheduling, it can be concluded that the robust per-
formance under large parametric uncertainties can be ob-
tained, and the optimisation design problems can be solved
by established solvers such as Powell’s method and SDP.
Typical experimental design criteria such as E-optimal
and D-optimal measures are employed in REDs. Using
a benchmark enzyme reaction system, simulation results
demonstrate clear improvement of REDs in robustness
compared to traditional evenly spaced sampling.

Among the four REDs, the pseudo-Bayesian design has
achieved good robustness performance over the parametric
uncertainty domain in a weighted averaged metric. The
maximin design shows the best performance on the worst
case scenario. The Bayesian design is more suitable for
systems with large uncertainties and the maximin design
suits systems with smaller parametric uncertainties. The
expectation–variance design and the online redesign also
provide satisfactory robustness performance.

When comparing the two optimisation solvers, Powell’s
method is computationally more demanding, the SDP is
more efficient. In using the latter, the optimisation design
problem needs to be relaxed to SDP form and proper use
of implementation software is required. Further investi-
gations will be made to cover some practical issues such
as systems subject to varying operating conditions, mea-
surements are only available for combined state variables,
which requires novel methods for both OED and RED.
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Walter, É. and Pronzato, L. (1987). Optimal experiment
design for nonlinear models subject to large prior uncer-
tainties. Am. J. Physiol. Regul. Integr. Comp. Physiol.,
253(3), R530–R534.

Wang, K. and Yue, H. (2019). Auto-updating of sampling
time redesign for system identification under parameter
uncertainty. In 25th IEEE Int. Conf. Automation &
Comput., 169–174.

Yu, H. (2018). Optimal experimental design and its
applications to biochemical engineering systems. Ph.D.
thesis, University of Strathclyde.

Yue, H., Halling, P., and Yu, H. (2013). Model develop-
ment and optimal experimental design of a kinetically
controlled synthesis system. IFAC Proceedings Volumes,
46(31), 327–332.

Zhang, J. and Drovandi, C.C. (2017). Robust optimal
experimental design for integer-valued design spaces: A
case study in functional response experiments.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

645


