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Abstract: In recent years, the Koopman operator was the topic of many extensive investigations in the
nonlinear system identification community. Especially, when dealing with nonlinear systems no straight
forward method is available to identify systems of this class. In modern data science a standard method is
using artificial neural networks to extract models from data. This method is mainly used when there is a
certain function behind the measured data, but little other information is available. This paper combines
the Koopman framework and artificial neural networks to achieve a linear model for nonlinear systems.
The structure of the network is similar to an autoencoder. The input part is the encoder which itself
consists of two different parts. The first part propagates the measurements directly to the middle part.
The second encoder introduces the state-space lifting which characterizes the Koopman framework.
The middle layer of the network represents an estimation of a linear state-space system that acts on
a Koopman operator invariant subspace. After this layer, the extended state-space must be decoded so
that the outputs of the Koopman linear system are functions of the true states. The method is evaluated
with a single pendulum and a nonlinear yeast glycolysis model. Additionally, we show the advantage of
considering inputs as true inputs rather than additional states.

Keywords: Koopman operator, System identification, Data Science, Neural networks, Optimization,
Dynamical system

1. INTRODUCTION

To face problems like creating control strategies for technical
systems a mathematical model is vital. This model should
be able to recreate the behavior of the system with as few
restrictions as possible. Mathematical models of dynamical
systems can be achieved in two ways. Precisely, at first there
is an analytical and at second there is a data-based way. The
second method is often called system identification in that
specific context. First research in this topic was done in the mid
1960s by e.g. Åström and Bohlin (1965).

Those mathematical models can be separated in a variety of
ways. The most common one categorizes them in white-, gray-
and black-box models. A white-box model is characterized by
fully known dynamics. This can be achieved by using physical
laws which are often based on differential equations and related
parameters. In contrast to this, a black-box identification model
is mostly data-based. It is used when almost no information
about the internal structure of a system, but data is available.
Everything in between is called a gray-box model. In fact, in
practical applications often there is only a little information
about the process available. This might be for example the
systems order. According to Ljung (1999) it affects the iden-
tified model in a positive way the more information about the
underlying system is fed into the identification process. In this
paper we will examine data-based black-box identification.

At the beginning of an identification we need to set up the
method. Mostly this also requires the selection of a certain
system model. In the best case the model reproduces the system
behavior globally, i.e. the mathematical model does not depend

on a certain equilibrium point of the dynamical system. This is
especially important in the context of nonlinear systems with
many equilibria. In many practical applications the nonlinear
behavior is reproduced by a manifold of linear systems which
are built around certain equilibrium points. Depending on the
region of validity of each individual linear model a huge num-
ber of linear substitutes might be necessary.

Since most of the identification algorithms are based on linear
systems, mostly transfer functions or linear state-space equa-
tions, the identified system is not capable to reproduce the out-
put of a nonlinear system in the entire state-space. Facing this
problem, one of the first approaches was made by holding onto
linear models but adding nonlinearities like saturation to the
input and/or the output. Those are also known as Hammerstein,
Wiener or Hammerstein-Wiener models.

A special problem, when identifying dynamical systems, is the
input selection. This describes the process of selecting cer-
tain variables that might influence another considered variable
which therefore is related to model selection. This occurs for
example, when we estimate a polynomial as an approxima-
tion for the first equation of a nonlinear state-space system
x1,k+1 = f1(x2,k). One can clearly see, that x1,k does not
influence x1,k+1. When computing an estimation for x1,k+1 by
considering x1,k and x2,k as inputs we hope that the parameters
related to monomials in x1,k will be estimated to zero or at least
small in comparison to the constants related to monomials in
x2,k. But due to noise, possibly neglected nonlinearities and nu-
merical effects quite the opposite is the case. Depending on the
nonlinearities and chosen monomials, the selected algorithm
might find an even worse solution when only x2,k is considered.
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A popular approach is choosing a certain number of models and
selecting the best one according to a certain loss function. Even
though the model selection results using Dynamic Mode De-
composition (DMD) in Mangan et al. (2017) were promising,
it suffers from high order models with large polynomial order
or a huge number of candidate functions for nonlinearities in
general.

Another still not completely answered and structure estimation
related problem concerns the identification of systems with
nonlinear dynamics, i.e. ẋ = −x3. A modern approach to this
problem is the Koopman operator. This linear operator propa-
gates so called state observables of a nonlinear system forward
in time. In general, this operator is of infinite dimension. Thus,
the nonlinearities of a finite dimensional system are traded for
a linear system of infinite dimension.

Since an infinite-dimensional system cannot be handled, much
research of the past few years addressed the problem of approx-
imating a finite dimensional invariant subspace of the Koopman
operator in the form of a state-space system and its matrices.
Not only it is not guaranteed that such a subspace exists, as
seen in Kutz et al. (2018), the solution is also highly dependent
on the choice of the aforementioned observables. Furthermore,
the estimation does not necessarily converge to trajectories of
the base system with an increasing number of observables.

Thus, choosing these observable functions influences the identi-
fication results vigorously. Therefore, much research of the past
few years approached this problem by using artificial neural
networks (ANNs) like Takeishi et al. (2017), Lusch et al. (2018)
or Yeung et al. (2019) to mention a few. Most of them used an
ANN structured similar to an autoencoder.

This autoencoder structure is used in several system identi-
fication approaches as an alternative to the intensively used
Singular Value Decomposition to extract the most important
parts of the system dynamics from data. Erichson et al. (2019)
used it to extract the most significant features of a fluid flow. In a
more related topic Li et al. (2017) investigated the use of neural
networks which lift the states to a higher dimension and used
this as a dictionary followed by an iterative process where the
Koopman operator and the observables are trained in alternating
order. Otto and Rowley (2017) extended this idea so it can be
used with small sets of data with high dimensional systems. In
contrast to the encoder approach Li et al. (2019) used a graph
neural network to estimate Koopman observables.

A different approach to the above ones was conducted by Mardt
et al. (2018). The authors proposed a way to estimate stochastic
processes using the variational approach for Markov processes
(VAMP) with deep learning. In this framework one can define
scores of VAMP-r family, Wu and Noé (2020). The VAMP-2
score used in Mardt et al. (2018) can then be maximized to
achieve a better suited model to given data.

Our black-box (dark-gray-box) identification approach pro-
posed in this paper builds mainly on the work of Lusch et al.
(2018) and Yeung et al. (2019). Furthermore, it differs from the
above methods in two ways. On the one hand, it introduces the
possibility to include a control term to develop linear controllers
for the Koopman linear system achieved by our method. On
the other hand, we introduce linear layers in parallel to the en-
coders. These layers can be used to ensure that the state vector
occurs directly in the Koopman operator subspace. Moreover,

the linear layers can be used to feed the algorithm predefined
observables that might be beneficial to use.

Introducing inputs to these promising ANN based methods is
of great interest since the input of a system is the interface
for control engineers. Additionally, inputs complicate the entire
framework, since excited systems may have an infinite number
of equilibria in comparison to their unexcited counterparts.

For the ANN approach it is necessary to take a closer look to
systems with inputs. The EDMD approach on the one hand with
a previously chosen set of observables delivers an additional
column in the solution matrix which is dedicated to this certain
input. The ANN approach on the other hand cannot handle
this in the same way because the observables delivered by the
encoder network is then a function of the state and the input
and cannot be simply separated into a system- and an input-
matrix necessary for a linear controller design. One of the ulti-
mate goals of the Koopman framework is controlling nonlinear
systems with extended linear controllers as shown in Fig. 1.
Please note that an input decoder g−1

w
(wk) is not estimated

in this paper as this will be a topic for future research. This
controller in its entirety is nonlinear but with known nonlin-
earities combined with a linear state-controller of a Koopman
linear system. To use this structure, we need a Koopman linear
system with a dedicated input which is again a function of the
system’s input.

xk+1 = f (xk,uk)

Koopman linear system
zk+1 = Kzzk +Kwwk

-R

g
z
(xk)g−1

w

(
wc,k

)

xk+1

zkwc,k

uc,k

uk

Identification

Control law

vk

Controller

Fig. 1. Koopman control loop. The gray double lined arrows
indicate a dependency but no information is transmitted.

The paper is separated into six sections. First, we shortly
introduce the used nomenclature. Second, we describe the
Koopman framework that is used throughout the paper. In
section 4 we explain the developed method in detail followed
by section 5, where the method is tested using a nonlinear
yeast glycolysis system and a single pendulum. At the end,
we summarize the achieved results and give a short outlook for
future research topics.

2. NOTATION

In what follows vectors and matrices are illustrated with an
underline and as lowercase and uppercase letters, respectively.
Scalars will be shown as normal letters. A single measurement
of the i-th state-variable at time step k is written as xi,k.

To compute meaningful estimations for the system our first
goal must be a good fit to training, validation and possibly test
data. To evaluate the fit, we use the mean relative squared error
(MRSE) of the output
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(1)

with the number of samples N and the number of outputs n.

3. KOOPMAN FRAMEWORK

The general idea of the Koopman operator dates to the
year 1931 and was presented by Koopman (1931). He intro-
duced an infinite-dimensional linear operator K acting on an
infinite-dimensional Hilbert space H spanned by eigenfunc-
tions ϕj (x) : Rn → R to evolve nonlinear dynamics forward
in time linearly. Due to the linear character of the Koopman
operator, observable functions gi (x) ∈ H can be created by a
weighted sum of the eigenfunctions. These observables evolve
with the equation

Kg(xk) = g ◦ f

with K : H → H. This idea was rediscovered by Mezić (2005)
in the context of dynamical systems a few years ago. As we
will see this method is not restricted to a specific use-case,
instead quite the opposite is the case. It is a general framework
to expand the dimension or change the basis of the state-
space to represent certain nonlinear behavior as linear modes
in an infinite-dimensional Hilbert-space H using measurement
coordinates or observable functions gi(x). Those observables
can also be understood as states zi of a linear state-space
system. In general, those observables include all imaginable
combinations and modifications of the states. For example zl =
x3 ·sin (x1x

2
2) may be one of them. Choosing meaningful states

is a topic on its own and needs experience or strategies like the
one presented in Brunton et al. (2016).

Since the Koopman operator is infinite-dimensional, what can-
not be handled, we seek for a finite dimensional invariant sub-
space of the Koopman operator. By assuming observables as
states zi the linear state-space system

zk+1 = Kzk.

with K : Rne → Rne can be defined assuming z ∈ H holds. To
be precise the derived state-space must not be of higher order,
i.e. ne > n. It can also be transformed to a different basis with
a nonlinear transformation with ne = n and handled linear in
those coordinates as seen in Lusch et al. (2018) or Kaiser et al.
(2018).

As presented by Proctor et al. (2018) the idea of Koopman
can be extended, so that an external excitation can be used.
We will neglect mixed observables (g(x,u) = 0) due to the
chosen structure displayed in Fig, 1. Thus, the observables we
will use are only functions of x or u i.e. g

z
(x) : Rn → Rne

and g
w

(u) : Rm → Rme . The final Koopman linear state-space
equation will then be

zk+1 = Kzzk + Kwwk (2)

with the extended Koopman state-space z ∈ Rne and Koopman
input space w ∈ Rme .

4. DEEP KOOPMAN OPERATOR LEARNING WITH
CONTROL

In the presented work we look at nonlinear state-space systems

ẋ = f (x,u)

or their discrete time equivalent

xk+1 = f (xk,uk) . (3)

In this section we propose the Deep Koopman Operator Learn-
ing with Control (DKLc) algorithm. It mainly builds on certain
previous works of Lusch et al. (2018) and Yeung et al. (2019).
They introduced ways to estimate a Koopman operator sub-
space from data using deep learning. Lusch et al. (2018) used
an autoencoder structure with a linear layer after the encoder.
This linear layer has a certain structure backed with an aux-
iliary network to achieve a parameterized linear system. With
these modifications it was possible to estimate systems with
a continuous spectrum such as a simple single pendulum or
even complex fluid flows. Yeung et al. (2019) used a similar
structure but they used a network to encode measured states to
observable functions and used the transformed data to compute
an estimation for the Koopman operator with Dynamic Mode
Decomposition.

Our contribution is extending the general idea of those two
methods to allow for inputs and the possibility to give the
model restrictions. This is done by arranging multiple layers
in parallel before the Koopman linear state-space layer. The
network is shown in Fig. 2. The linear layers are used to feed the
extended linear state-space model the states and inputs directly.
Furthermore, previously chosen observable functions like x1x2
can be included with those linear layers. Therefore, we can
give the estimation knowledge about the system and reduce the
degrees of freedom in a heuristic way.

Additionally, this specific structure avoids the occurrence of
mixed observables gi (x,u) which reduces the complexity if
it is not necessary. Furthermore, we assume that the output
space of the Koopman operator can be restricted to be solely
in the function-space of the state observables. A deeper insight
is given in Appendix A.

Our artificial neural network model is pictured in Fig. 2. It
consists of five parts:

[1] Linear encoders
[2] Nonlinear encoders
[3] Koopman operator estimation layer
[4] Linear state-decoder
[5] Nonlinear decoders

The linear encoders [1] have only one not trainable layer with
the identity matrix I of appropriate dimensions as weighting and
a bias term equal to zero. The nonlinear encoders [2] deliver the
observables z̃i and w̃j of the states and excitation, respectively.
Both the output of the linear and the nonlinear encoders are then
concatenated and fed to the Koopman operator estimation layer
[3].

Since we want to extract a linear discrete state-space system
from the network’s layer weights, the Koopman operator esti-
mation layer [3] has a linear activation function. The idea is
that this layer propagates the extended state vector zk one time
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Fig. 2. Network model to identify a finite dimensional subspace approximately invariant to the infinite-dimensional Koopman
operator of a nonlinear system. The linear layer in the middle holds the Koopman state-equation from equation (2).

step into the future. Thus, the output of the Koopman operator
estimation layer is given by

zk+1 =
[
Kz, Kw

] [ zk
wk

]
.

To ensure that the first n outputs of layer [3] deliver the
true states or the previously chosen observables we propagate
them directly to one output of the network through the linear
state-decoder [4]. If this would be the only output, it is not
guaranteed that the remaining ne − n outputs of layer [3]
are indeed functions of the state x. Thus, we need to ensure
that the additional states passed through the Koopman operator
estimation layer, are functions of the state x again. To do so,
we feed the remaining outputs of layer [3] to the nonlinear
state-decoder g−1

z
(z̃) which is the inverse function if the state-

encoder g
z

(x). The nonlinear excitation-decoder delivers the
inverse function g−1

w
(w̃) of the excitation-encoder g

w
(u) that

is used to compute the true excitation from the excitation-
observables. This function can be used to compute the control
signal passed to the nonlinear model as shown in Fig. 1.

5. EXAMPLES

5.1 Single Pendulum

As a seemingly easy introductory example we will use the
excited frictionless pendulum

ẋ =

[
x2

− sin (x1)

]
+

[
0
1

]
u (4)

with all parameters set to 1. We stimulate the system with u =

0.5 sin (2t) and an initial state x0 = [π/2, 0]
>. The amplitude

of the input signal is limited to avoid chaotic behavior.

The used ANN consists of three layers of [10, 20, 10] nodes
in the state-encoder. The state-decoder has the same structure.
To approximate the Koopman operator subspace we added two

0 10 20 30
−2

−1

0

1

2

x
1

(a)

0 10 20 30
−2

−1

0

1

2

(b)

0 10 20 30
−2

−1

0

1

2

Time (s)

x
2

0 10 20 30
−2

−1

0

1

2

Time (s)

Fig. 3. Single pendulum measurement (−) versus prediction
(−−)

observables to the two original states. We neither used the
encoder nor the decoder for the excitation.

The two plots on the left in Fig. 3 ((a)) show that our model is
able to reconstruct the systems behavior just as seen in Lusch
et al. (2018) but with a present excitation. Furthermore, the two
plots on the right show the autonomous behavior of our model.
The model is able to reconstruct the dynamics quite accurately
in magnitude but not in frequency. Thus, the influence of the
input is not estimated exactly. This problem could be faced by
the consideration of more than one sample to predict the future
outputs in one estimation step. This is a topic of future research.
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Fig. 4. Simulation results versus data from the nonlinear yeast
glycolysis system from equation (5). Solid lines (−): non-
linear system; Dotted lines ( · · · ): Koopman system esti-
mation

5.2 Yeast Glycolysis System

To go one step further we look at a yeast glycolysis system.
The standard model from Daniels and Nemenman (2015) with
Michaelis-Menten dynamics will be used. It is given by

ẋ =




−v1
2v1 − v2 − v3

v2 − v4
v4 − v5 − v6
v2 − v5 − v3

−2v1 + 2v4 − k5x6
µv6 − kx7




+




1
0
0
0
0
0
0



u (5)

with

v1 =
k1x1x6

1 +
(

x6

K1

)q

v2 = k2x2(N − x5)

v3 = k6x2x5
v4 = k3x3(A− x6)

v5 = k4x4x5
v6 = κ(x4 − x7).

The parameters used in this paper are given in table B.1. It
should be mentioned that the vi’s are not Koopman states
but variables to simplify the above equation. The excita-
tion u is the input flux of glycolysis through the cell mem-
brane. For identification purposes we excite the system with
a normally distributed signal with 2.5 mM/min mean and a
variance of 4 mM2/min2. The excitation-signal u is shown
in Fig. 6. We start the simulation with an initial state of
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Fig. 5. Simulation results versus data from the nonlinear yeast
glycolysis system from equation (5). Solid lines (−): non-
linear system; Dotted lines ( · · · ): Saturated Koopman sys-
tem estimation. Dashed lines (−−): Koopman system es-
timation without considered saturation

x0 = [ 1.5, 1.5, 0.15, 0.2, 0.2, 1.5, 0.075 ] mM which is mo-
tivated by the data given in Daniels and Nemenman (2015) and
also used in Yeung et al. (2019) for comparability.

The used ANN consists of two layers of 14 and 21 nodes in
the encoder. Even though this special network is not deep we
would use deep networks rather than wide networks, due to
Eldan and Shamir (2017). The decoder has the same structure
but mirrored, meaning the first decoder layer has 21 nodes and
so forth. Furthermore, we add 7 observables to the 7 original
states. A system with 7 additional states (14 in total) resulted
in the best fit in a range from 1 to 10 additional states. No
excitation-encoder is used.

The system is sampled for 100 min at a sampling rate of
0.01 min which results in a data set of 10,000 samples. The
training of the ANN is done with the Adam algorithm at a
learning rate of 0.1 over 2000 epochs but is interrupted if the
loss function (MSE of the output) does not improve by 10−4

over 100 training steps. Since an increased number of batches
resulted in a vast increase in the loss only one batch with the
whole data set is used to train the network. Even though this
made the whole algorithm sensitive to the initial weighting
matrices, the results are much better after a certain amount
of estimated systems. As activation functions the hyperbolic
tangent is used due to previous tests that resulted in a better
fit compared to other activation functions.

The one step predictions of the best estimation are shown in
table 1. Different runs deliver a good ANN fit as well but no
good Koopman layer fits. This seems to be the case due to
a poor choice of the initial weights. One can see that all the
data sets can be reconstructed almost perfectly from both the
whole ANN and the linear layer. But this is also the case for a
DKLc model with the input signal as an additional state. The
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Fig. 6. One realization of an excitation-signal for system (5)
with and without saturation between 0.5 and 4.5

prediction of the input signal is obviously neglected in this
consideration.

In the next step to validate the model’s true prediction perfor-
mance we give the model only one initial state and look at the
first 500 time steps of the prediction. As shown in Fig. 4 the
prediction with the whole network does reproduce the systems
behavior quite accurately with a fit of 89% with a test data set
that is not used to train the ANN. The first 50 time steps are cut
off due to settling behavior that is not estimated.

Table 1. One step prediction fits of the estimated
system (5)

Model Training Validation Test
Network > 99% > 99% 98%

Koopman Layer 95% 94% 95%

A model with the input as an additional state could not re-
produce the systems dynamics over only a few time steps.
Moreover, such a system is not usable prospectively due to the
concepts mentioned in the introduction and shown in Fig. 1.

If we do the prediction with the Koopman layer only it is not
as accurate anymore neither with training nor with validation
or test data. This might be the case due to neglected Koopman
prediction loss in this paper. Editing the loss function by adding
explicit Koopman layer prediction capability holds huge poten-
tial as seen in Lusch et al. (2018).

To this moment we only analyzed systems with an affine input
term. Since we defined our base model (3) with a nonlinear
excitation term, we look at a more complex example. In this
example all the conditions are equal to the above examined
system, but the input is saturated between 0.5 and 4.5. One
realization of a saturated input signal is shown in Fig. 6. Fig.
5 shows the network’s prediction with considered saturation by
using an additional input observable approximated by an input
encoder with two layers and two nodes each. This results in
a 92% fit. An estimation with equal initial weightings without
an input signal encoder cannot reproduce the systems behavior
as accurate as seen in the same plot as thin dashed lines. A
clear drift can be seen in the data set which worsens with time.
The same effect was observed in Yeung et al. (2019) with an
autonomous version of the system.

Additionally, one can see, that the fit of the saturated system is
even better than the system with an affine input term without a
saturated input-signal. This might be due to the more complex
model. Furthermore, with an input encoder the network might

be more suitable to fit to a Koopman operator invariant sub-
space, since this subspace may also consist of observables that
are functions in u as well, Proctor et al. (2018). Hence, it is no
necessary condition that there are no additional observables in u
even if the underlying nonlinear system is excited by an affine
input term. Therefore, an ANN with an additional excitation-
encoder may approximate a better fitting subspace rather than
the true nonlinearity at the input. In any of both cases, this
example shows, that the presented algorithm is capable of esti-
mating systems with a nonlinearity at the input.

6. CONCLUSION

In this paper we showed a possible way to estimate an invariant
subspace of the Koopman operator of a nonlinear system using
artificial neural networks. With our method it is not only possi-
ble to hold onto the true states without a need to estimate them
by a neural network. One may also choose certain observables
previously and add additional states with the linear encoder.

To show the performance of the method we demonstrated the
algorithm using a single pendulum and the yeast glycolysis
pathway system which is a standard model for estimating
metabolism in biology. It is possible to find a partly linear
state-space system that represents the behavior of the system
for almost the entire state vector within the chosen region of
the state-space. Yet it was not tested, if the model can hold
its validity if we examine an excitation that is different in its
amplitude. This might result in a different point of operation of
the state-space and thus to a loss of validity of the identified
model.

During the work with this methodology several questions arose
that must be addressed in the future. First, we mentioned an
excitation-decoder that is necessary to finally compute con-
trollers based in the Koopman operator subspace. Furthermore,
we observed that many models estimated resulted in a poor
multi step prediction using the estimated state-space whereas
the one step fit is always almost 100%. This, on the one hand,
might be due to initial weightings or on the other hand an inap-
propriately chosen loss. Thus, the method needs to be extended
so that multiple time step are predicted during the training in
both the Koopman layer and the whole ANN. For example, the
loss used by Lusch et al. (2018) seems promising. Alternatively,
one might introduce an iterative process to the method as seen
in Li et al. (2017). Moreover, a fully linear prediction could not
be achieved, meaning that the state vector must be predicted
with the full network.

We have to point out, that the continuous spectrum of the
pendulum can only be represented in its entirety by a really high
order linear system or a parameterized system as seen in Lusch
et al. (2018). At this stage, our method has no option to adapt
to continuous spectra except to increase the model’s order. It
is a topic for further investigations to adopt the possibility of
a parameterized Koopman operator for systems with a control
input.

REFERENCES
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Appendix A. SEPARATION OF INPUT AND OUTPUT
SPACES

As given in Proctor et al. (2018) the linear state-equation in the
Koopman space can be written as

Kg (x,u) ≈
∞∑

j=1

σjψj (x) q
j

assuming that there are eigenfunctions that are solely func-
tion of the state x. Thus, the excitation-signal u is not evolv-
ing dynamically with the Koopman operator. Furthermore, the
eigenfunctions ψj (x) : Rn → R span the infinite-dimensional
subspace Hx of another infinite-dimensional Hilbert-Space H
where the Koopman operator is acting on. In our paper we
assume that there are only observables in x and u but no mixed
ones (Hxu = ∅). With the above equation we set the first ne
observables (state observables) to

g (x) =

∞∑

j=1

g̃
j
ψj (x) .

The remaining excitation-observables g (u) ∈ Hu are arbitrary
functions that are estimated with the artificial neural network
shown in Fig. 2. The constant vectors g̃

j
∈ Rne allocate the

different eigenfunctions to certain observables.

Appendix B. SYSTEM PARAMETERS

The used parameters in equation (5) are given in the table below
and are taken from Daniels and Nemenman (2015).

Table B.1. Parameters for system (5)

Parameter Value Parameter Value Parameter Value
k1 100 k2 6 k3 16
k4 100 k5 1.28 k6 12
k 1.8 κ 13 K1 0.52
µ 0.1 q 4 N 1
A 4
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