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Abstract: The paper deals with a novel modified backstepping algorithm to ensure the stability
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1. INTRODUCTION

Backstepping is one of the methods specially designed for
nonlinear systems control when nonlinearities may not be
constrained by linear bounds. The method was thoroughly
described in Kokotovic (1992) to demonstrate a way of
”peaking processes” problem resolving in nonlinear sys-
tems, including not feedback linearizable systems. Also, it
was persuasively discussed that high-gain linear feedback
control has a number of weaknesses and limitations while
dealing with nonlinear systems.

Among others, two important and interesting features
of backstepping were shown in Kokotovic (1992). First,
a system should be presented by ”strict feedback” form
to ensure global stability while the more general ”pure
feedback” (lower triangular) form guaranties nonvanishing
stability region, which may not be global. Some general-
izations of backstepping deals with system transformation
approach using a set of filters to provide the right form
Marino and Tomei (1993a), Marino (1990), Marino and
Tomei (1992). One of the basic results that describes a
transformation for nonlinear systems to obtain a partially
linear form (which can have a strict feedback linear part) is
Krener and Isidori (1983). In Furtat (2009), Furtat et al.
(2015), Furtat and Tupichin (2016), Vrazhevsky (2018),
the only one filter is used for a system to achieve the
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”strict feedback” form. The result of Vrazhevsky (2018) is
partially used in current research during the control system
synthesis stage as one of the more simple and effective
approaches in practice.

Second, a robust backstepping algorithm was presented
to control a system with interval parametric uncertainty
and nonlinear disturbances. More precisely the robust
backstepping is introduced in Freeman and Kokotovic
(1992), Freeman and Kokotovic (1993), Marino and Tomei
(1993b). Further research enlarge the class of nonlinear
systems for which backstepping can be utilized Polycarpou
and Ioannou (1993), Krstic and Deng (1998), Pan and
Basar (1999), Freeman and Praly (1998), Jiang and Ni-
jmeijer (1997), Zhou and Zhang (2004), Serrani and Isidori
(2000).

In Kokotovic and Arcak (2001) two restrictions of the
robust backstepping procedure are discussed. Nonlinear-
ities should be bounded by known functions in lower
triangular form depending only on state variables of the
system. Another restriction is that disturbances, wherever
they present in strict (or pure) feedback form of system
description, should be matched with state variables, which
are considered as a virtual control.

Mismatched disturbances presence is a standalone problem
in control theory. In Swaroop et al. (2000) a similar to
the backstepping procedure is designed to ensure semi-
global stability of the nonlinear system in the strict-
feedback form with mismatched disturbances presence
(both Lipschitz and non-Lipschitz). In Sun et al. (2015)
the modification of backstepping algorithm is designed
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for a class of nonlinear systems with unknown mismatch
disturbances.

Some backstepping algorithms provide high accuracy of
functioning without high gain components in control sys-
tem Miroshnik et al. (2013), Wang and Lin (2012), Khalil
(2002). In Nikiforov (2003) a not high-gain adaptive and
robust controller for linear systems output control is de-
signed. A set of generalizations for different classes of
nonlinear systems is considered in Freeman and Kokotovic
(1993), Marino and Tomei (1993b), Sun et al. (2015), Qu
(1993), Zheng and Yang (2007). Control systems based on
those results require a large set of filers need to be included
witch makes practical implementation difficult.

Within more recent works, there are many results that
combine robust and adaptive backstepping approaches
with neural networks and fuzzy logic. In Wen et al.
(2011) backstepping became a base for two controllers for
systems with input saturation without assumptions on the
uncertain parameters within a known compact set and an a
priori knowledge on the bound of the external disturbance.

The proposed approach is a modification of the backstep-
ping method and leads to control of a nonlinear plant
under unknown bounded disturbances. The modification is
based on the auxiliary loop method that was first proposed
in Tsykunov (2011). The auxiliary loop method is a model-
based robust control approach that permits to estimate
unknown disturbances and suppress them. There are a
set of solutions in different areas which are preferable
than analogs due to the simplicity of the implementa-
tion and high accuracy of signals in a steady-state, see
Belyaev et al. (2013), Furtat (2014), Furtat and Chugina
(2016), Furtat (2013), Fradkov and Furtat (2013), Furtat
et al. (2013),Vrazevsky et al. (2016). The auxiliary loop
technique was combined with the backstepping method in
Furtat (2009). In Furtat et al. (2015) it was shown that the
proposed algorithm compensates mismatched unknown
bounded disturbances in linear systems. In Furtat et al.
(2016) the stability of modified backstepping algorithm
from Furtat (2009) was proved for a linear case with
delays in the state vector. In current work, the result is
generalized in the area of nonlinear MIMO systems with
cross-couplings.

This research provides a backstepping based method to
control nonlinear MIMO systems with couplings and exter-
nal disturbances. Model transformation to provide a strict
feedback form of the system is given and only one filter
is used to obtain this transformation. The backstepping
method is combined with an auxiliary loop technique to
ensure the convergence of all signals in the closed-loop
system to a small enough set of attraction, which can be
regulated by a set of tunable parameters. High robustness
of the closed-loop system is demonstrated.

2. PROBLEM STATEMENT

Consider a nonlinear multi-agent system defined by

ẋi =

m∑
j=1

f ij(xj , εj) + bi(xi, εi)(ui + ϕi(xi, t)),

yi = hi(xi), i = 1,m, xi(0) = xi0, t0 = 0,

(1)

where f ij(xj , εj)
∣∣
j=i

+ bi(xi, εi)(ui + ϕi(xi, t)) is a self-

dynamics of i-th agent;
m∑
j=1

f ij(xj , εj), j 6= i are cross-

coupling functions; [ε1, ..., εm]
T ∈ ε are vectors of unknown

parameters and ε is a known bounded set; xi ∈ Rni are
state vectors; yi ∈ R are estimated scalar outputs; fi, bi
and hi are sufficiently smooth functions; ui ∈ R are scalar
control signals; ϕi ∈ R are unknown disturbance functions
which are bounded for all x and t (or bounded on t and
Lipschitz on x).

Define a control goal in the form

‖e‖ < δ, t > tf , (2)

where e = y(t)−yref (t), e = [e1, ..., em]
T

, y = [y1, ..., ym]
T

,

yref = [yref,1, ..., yref,m]
T

. Each ei = yi(t) − yref,i(t), i =
1,m, is defined as a tracking error of ith agent, δ is a small
enough number represents a desired tracking accuracy,
tf > 0 is a transient time, yref,i are reference signals which
are bounded with derivatives.

3. MODEL TRANSFORMATION

The plant (1) can be rewritten in generalized form

ẋ = f(x, ε) + b(x, ε)(u+ ϕ(x, t))
y = h(x),

(3)

where f(x, ε) =

[ m∑
j=1

f1
j (xj , εj), ...,

m∑
j=1

f ij(xj , εj)

]T

,

x = [x1, ..., xm]
T ∈ Rn, n =

m∑
i=1

ni, ε = [ε1, ..., εm]
T

,

u = [u1, ..., um)]
T

, ϕ(x, t) = [ϕ1(x1, t), ..., ϕm(xm, t)]
T

,
b(x, ε) = diag [b1(x1, ε1), ..., bm(xm, εm)],

h(x) = [h1(x1), ..., hm(xm)]
T

.

To construct a control system, the plant (3) need to
be transformed using known transformation methodology
provided in Isidori (1989). For this purpose, a relative
dynamic degree of the plant should be found. Following
the classical definition of relative dynamic degree for
a nonlinear system by Khalil (2002), Miroshnik et al.
(2013), the derivative of y defined by ẏ = Lfh(x, ε) +

Lbh(x, ε)(u + ϕ(x, t)), where Lfh(x, ε) = ∂h(x)
∂x f(x, ε),

Lbh(x, ε) = ∂h(x)
∂x b(x, ε) are called Lie derivatives of h

along f and b respectively. In case Lbh(x, ε) = 0, the
function ẏ becomes independent of u and so ẏ = Lfh(x, ε).

Continuing calculations for higher derivatives y(i), 2 ≤ i ≤
γ, the following notations are appropriated
∂(Lfh)

∂x
b(x, ε) = LbLfh(x, ε),

∂(Lfh)

∂x
f(x, ε) = L2

fh(x, ε),

...

∂(Lγ−1
f

h)

∂x
b(x, ε) = LbL

γ−1
f

h(x, ε),
∂(Lγ−1

f
h)

∂x
f(x, ε) = Lγ

f
h(x, ε).

Thus, the second derivative of y defined by ÿ =
∂(Lfh)
∂x ẋ =

L2
fh(x, ε) + LbLfh(x, ε)(u + ϕ(x, t)). If LbLfh(x, ε) = 0,

then ÿ = L2
fh(x, ε) independent of u. Repeating calcula-

tions until the equation with the dependence of control
signal will be found, we obtain on some step γ the repre-
sentation
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y(γ) = Lγfh(x, ε) + LbL
γ−1
f h(x, ε)(u+ ϕ(x, t)). (4)

The control system synthesis in the next Section deals
with representation (4) of the plant (3) under the following
assumptions:

(1) The relative degree γ of plant (3) is known or can be
estimated and function c(x, ε) = Lγfh(x, ε) is bounded

(or bounded on ε and Lipschitz on x).

(2) The sing of function β(x, ε) = LbL
γ−1
f h(x, ε) is

known. Let, without loss of generality, β(x, ε) > 0.
(3) There exists function φ−1(x) such that

x̄(t) = φ(x(t)) = [y(t), ẏ(t), ..., y(γ−1)(t)]
T

=

= [h(x), L1
fh(x), ..., Lγ−1

f h(x)]
T
.

Using representation (4), error equation e = y−yref can be
transformed into pγe = c(x, ε)+β(x, ε)(u+ϕ(x))−pγyref ,

where p = d
dt is a differential operator. Consider operator

Q(pγ−1) =
γ∑
g=1

kgp
γ−g such that Q(pγ) = pγ +Q(pγ−1) is

a Hurwitz polynomial. Using Q(pγ−1), rewrite pγe in the
form Q(pγ)e = u + ψ(x, u, ε, yref ), where ψ = c + βϕ +
(β−1)u−pγyref +Q(pγ−1)e is an augmented disturbance
function. Thus, error model takes the form

e(t) = Q(pγ)
−1
u(t) +Q(pγ)

−1
ψ(x, u, ε, yref , t). (5)

4. MAIN RESULT

For term Q(pγ)
−1
u(t) in (5) consider the following filter

v̇(t) = A0v(t) + lu(t),

v(t) =


v1(t)
v2(t)

...
vγ(t)

, l =


0
...
0
1

 , A0 =


−k1

−k2

...

Iγ−1

−kγ 0 · · · 0

 . (6)

Rewrite (5) as e(t) = v1(t) + Q(pγ)
−1
ψ(x, u, ε, yref , t).

For the convenience of further calculations let denote
e(t) = e1(t). The derivative of (5) takes the form

ė1(t) = −c1e1 − k1v1(t) + v2(t) + f1, (7)

where f1 = c1e1 + pQ(pγ)
−1
ψ(x, u, ε, yref , t) are new

disturbance functions.

According to the backstepping approach (see Kokotovic
(1992)), there exists an iterative procedure of control
scheme synthesis by calculating the set of virtual control
laws that leads to real control law formulation on the
last step. Construct additionally a set of auxiliary loops
to evaluate and compensate unknown disturbances as in
Tsykunov (2011). Such modification increases robustness
in a closed-loop system without using high-gain feedback
components.

4.1 Step 1

Consider auxiliary loops in the form ϑ

ėa1 = −c1ea1 − k1v1 + v2, (8)

and define mismatch errors ξ1 = e1 − ea1 with their
derivatives

ξ̇1 = ė1 − ėa1 = −c1ξ1 + f1. (9)

It follows from (9) that disturbances can be estimated by

the function f̂1 = ξ̇1 + c1ξ1. Rewrite (7) in the form

ė1 = −c1e1 − k1v1 + v2 + ξ̇1 + c1ξ1. (10)

Let the function v2 is a virtual control signal in (10).
Construct for each agent a virtual control law

ν1 = k1v1 − ˆ̇
ξ1 − c1ξ1, (11)

where
ˆ̇
ξ1 are evaluations of ξ̇1. The dirty differential

filter (DDF) is used as an observer to estimate unknown
derivatives

µ ˙̂y + ŷ = ẏ, (12)

where µ > 0 is a sufficiently small positive number, y
is a measured input, ŷ is an evaluation of ẏ. A high-
gain observer is used in order to simplify theoretical proof
analysis. It also should be noted that high-gain observer
usage does not make the control approach to be a high-
gain, except the small enough time period in the begin
of system functioning till the observer transients are over.
Denoting v2 = ν1, we get

ė1i = −c1e1 + e2 + η1, (13)

where η1 =
ˆ̇
ξ1 − ξ̇1 is an estimation error, e2 is a virtual

control error
e2 = v2 − ν1. (14)

4.2 Step 2

In accordance with (6), derivatives of (14) are defined by

ė2 = −k2v1 + v3 − ν̇1 ± c2e2. (15)

Consider auxiliary loops in the form

ėa2 = −c2ea2 − k2v1 + v3, (16)

and define a second set of mismatch errors

ξ2 = e2 − ea2 , (17)

with their derivatives

ξ̇2 = ė2 − ėa2 = −c2ξ2 + f2, (18)

where each function f2 = −ν̇1 + c2e2 is denoted as distur-
bance functions for the system (17) and, respectively, (15).
From (18) it follows that disturbances can be estimated by

f̂2(t) = ξ̇2 + c2ξ2. Rewrite (15)

ė2 = −c2e2 − k2v1 + v3 + ξ̇2 + c2ξ2. (19)

As it was done on the first step, suppose that functions v3

can be used as control signals for the system 19. Construct
virtual control laws

ν2 = k2v1 − ˆ̇
ξ2 − c2ξ2, (20)

where
ˆ̇
ξ2 are evaluations of ξ̇2. Denoting v3 = ν2, we get

ė2 = −c2e2 + e3 + η2, (21)

where η2 =
ˆ̇
ξ2 − ξ̇2 are estimation errors, e3 are virtual

control errors defined by e3 = v3 − ν2.

4.3 Step r, r = 3, γ − 1

The same calculations as on step 2 are correct for the
consecutive analysis of errors er = vr−ν(r−1), r = 3, γ − 1.
As a result, the following auxiliary loops should be formed

ėar = −crear − krv1 + v(r+1), r = 3, γ − 1. (22)
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Therefore, the mismatch errors ξr = er − ear , r = 3, γ − 1
can be found. Introduce virtual control laws in the form

νr = krv1 − ˆ̇
ξr − crξr, r = 3, γ − 1. (23)

Equation (23) provide error dynamic equations

ėr = −crer + e(r+1) + ηr, (24)

where e(r+1) = v(r+1) − νr and ηr =
ˆ̇
ξr − ξ̇r.

4.4 Step γ

Taking a derivative of the error eγ which is calculated on
the previous step, we get

ėγ = −kγv1 + u− ν̇(γ−1) ± cγeγ . (25)

Consider auxiliary loops

ėaγ = −cγea2 − kγv1 + u, (26)

and define a final set of mismatch errors ξγ = eγ − eaγ with
their derivatives

ξ̇γ = ėγ − ėγ = −cγξγ + fγ , (27)

where fγ = −ν̇(γ−1) + cγeγ is denoted as disturbance
functions for the system (25). From (27) it follows that
disturbance functions for the system (25) can be evaluated

by f̂γ = ξ̇γ + cγξγ and the system (25) can be rewritten as
follows

ėγ = −cγeγ − kγvγ + u+ ξ̇γ + cγξγ . (28)

Let us define a control law for each agent of the system
(28) by

u = kγvγ − ˆ̇
ξγ − cγξγ , (29)

where
ˆ̇
ξγ are evaluations of ξ̇γ . Substituting (29) into (28),

we get
ėγ = −cγeγ + ηγ , (30)

where ηγ =
ˆ̇
ξγ − ξ̇γ are estimation errors.

Theorem 1. Let the assumptions hold. There exist con-
stants cr > 0, µr0 > 0, r = 1, γ, such that for any
µr ∈ (0;µr0] the control system that consists in in the
filters (6), the set of auxiliary loops (8), (16), (22), (26),
observers (12), virtual control laws (11), (20), (23) and real
control laws (29) provides the control goal (2) for plant (1).

5. EXPERIMENTAL RESULTS

To demonstrate the applicability of the algorithm, we
use the platform ”Twin Rotor MIMO System” (TRMS).
The platform is intended for analyzing the efficiency of
control approaches on highly nonlinear systems with cross-
couplings and disturbances presence. It represents a sim-
plified copter dynamics in two planes: vertical and hori-
zontal. According to the flight dynamics definitions, the
vertical angle of the plant is denoted as a pitch angle and
the horizontal angle is denoted as a yaw angle. General
view of the system is shown in Fig. 1

Aerodynamic forces produced by rotation of main and
tail rotors control the position of the platform in both
planes. In turn, the torque of corresponding DC-motor
drives each rotor. The voltages applied to each DC-motor
are control inputs. Angular positions of the main beam
are plant outputs. Thus, the system can be described as

Fig. 1. Twin Rotor MIMO Syatem (TRMS)

two dynamically related subsystems, each one has its own
single input and single output channel.

TRMS dynamics is defined by

J1α̈ = −kf11α̇− kf12 sign (α̇) + gN1cosα−
− gN2 sinα−N3β̇

2 sinα cosα+ F1 (u1) ,

J2β̈ = −kf21β̇ − kf22 sign(β̇) + F2 (u2) ,

(31)

where α is a pitch angle of the plant, β is a yaw angle of the
plant, J1 = const, J2 = χ(α) are inertia moments for pitch
and yaw dynamics consistently, χ(α) is a smooth nonlinear
function, kfij , i, j = 1, 2 are friction forces coefficients,N1,3

are known numerical coefficients depend on weight and
size parameters, g is the acceleration of gravity, F1, F2

are nonlinear functions that combine a DC-motor and
aerodynamic forces dynamics. All numerical parameters
needed to be known to build a model of the system (31)
are presented in documentation Ltd. (1998). In our case,
the only information we need to build a control system is
its relative degree. In the documentation, the DC motor
dynamics and aerodynamical forces are approximated by
polynomials with high orders. Using this approximated
model, the plant represents two subsystems with equal
relative degrees γ1 = γ2 = γ = 2. The control system
parameters are chosen as follows

A0pitch,yaw
=

[
−2 1
−1 0

]
, cpitch =

[
0.05
0.05

]
,

cyaw =

[
0.075
0.075

]
, µpitch,yaw =

[
0.06
0.06

]
.

Experimental results are shown in Fig. 2 - 7 and demon-
strates a high quality of the closed-loop system in both
stabilisation and tracking modes. Considering the labora-
tory bench used and experimental result performance, the
proposed method is able to be successfully used in vari-
ous industrial, scientific and modern educational practical
oriented programs like in Čech et al. (2019).

6. CONCLUSION

A robust modified backstepping output control algorithm
for nonlinear MIMO systems with cross-couplings is pro-
vided. The control system demonstrates a high quality of
transients and high accuracy in steady-state. The proposed
algorithm provides robustness with respect to external
disturbances and cross-couplings. Practical applicability
is verified by experiments on laboratory bench both in
tracking mode and stabilization mode. Proposed control
method refers to decentralized approaches but it can be
easily transformed into the centralized one. Control goal
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Fig. 2. Transients and steady state of pitch angle stabiliza-
tion
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Fig. 3. Control signal of TRMS pitch stabilization system
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Fig. 4. Transients and steady state of TRMS yaw angle
stabilization
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Fig. 5. Control signal of TRMS yaw stabilization system.
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Fig. 6. Transients of TRMS pitch angle in tracking mode
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Fig. 7. Transients of TRMS yaw angle in tracking mode

(2) represents a synchronization process for the system (1)
in case of yref,i(t) = yref (t), i = 1, n:

‖e‖ < δ, t > tf ,

e = [e11, e12, . . . , e1n]
T
, e1i = yi(t)− yref (t), i = 1, n,

without additional changes required. This goal leads
to a centralized control algorithm in a tracking task
with one reference trajectory defined for all subsystems
(agents). Proposed control method refers to decentralized
approaches but it can be easily transformed into the cen-
tralized one by choosing the same parameter values for
each subsystem. It may lead to declining of attainable
quality of the closed-loop system because of the choice of
tuning parameters is based on the most ”uncomfortable”
agent dynamics. During the Lyapunov function analysis,
quite a rough inequalities were used. It means that ob-
tained parameters limitations could be “softer” in practi-
cal cases which confirms by experiment.
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Appendix A. PROOF OF THE THEOREM 1

Consider an error dynamic system by combining (12), (13),
(21), (24), (30)

ėj(t) = −cjej(t) + e(j+1) + ηj(t), j = 1, γ − 1,

ėγ(t) = −cγeγ(t) + ηγ(t),

µj1η̇j(t) = −ηj(t)− µj2ξ̈j(t), j = 1, γ.

(A.1)

Taking into account (A.1) and by choosing cj > 0, µj1 =
µj2 = µj > 0 it follows that each error ej is bounded
if corresponding observation errors ηj are bounded. From
the last equation of (A.1) it follows that all observation

errors are bounded if signals ξ̈j are bounded. To analyze

the boundedness property of ξ̈j use the following Lemma
Furtat (2014).

Lemma 2. Consider the system

ẋ = f(x, µ1, µ2, t), (A.2)

where x(t) ∈ RS1 , µ = col(µ1, µ2) ∈ RS2 , f(x, µ1, µ2, t) is
a Lipschitz function continuous in x, bounded on t and has
a bounded closed set of attraction for µ2 = 0 in the form
Ω = {x : P (x) ≤ C} , where P (x) ∈ RS1 is a continuous
positive-defined function. Let there exist some numbers
C1 > 0 and µ̄1 > 0 such that the following condition holds

sup
|µ1|≤µ̄1

[〈
[∇P (x)]

T
, f (x, µ1, 0, t)

〉∣∣∣P (x) = C
]
≤ −C1.

Then there exist µ0 > 0 such that for µ2 ∈ (0;µ0] the
system (A.2) has the same set of attraction Ω.

The asymptotic stability of the system (A.1) in case µj2 =
0 should be shown to satisfy Lemma conditions. Then the
set of attraction of the original system (A.1) with µj2 > 0
is the same as in the case with µj2 = 0.

Consider a Lyapunov function for the system (A.1)

V = 0.5

γ∑
j=1

e2
ji + 0.5

γ∑
j=1

η2
ji. (A.3)

Derivative of V along the trajectories (A.1) for µj2 = 0
takes the form

V̇ = −
γ∑
j=1

cje
2
j +

γ−1∑
j=1

eje(j+1) +

γ∑
j=1

ejηj −
γ∑
j=1

η2
j

µj1
. (A.4)

The following bounds are satisfied for (A.4)

eje(j+1) ≤
1

2
e2
j +

1

2
e2

(j+1), ejηj ≤
1

2
e2
j +

1

2
η2
j . (A.5)

Using (A.5), rewrite (A.4) in the form V̇ ≤ (1− c1)e2
1 +

γ−1∑
j=2

(1.5− cj)e2
j + (1− cγ)e2

γ +
γ∑
j=2

(0.5− µ−1
j1 )η2

j . There

exist constants c1,γ > 1, cj |j=2,γ−1 > 1.5, µ−1
j1

∣∣
j=1,γ

> 0.5

such that Lyapunov function derivative is strictly negative
and inequality (A.4) can be rewritten by

V̇ ≤ −c̄
γ∑
j=1

e2
j − µ̄

γ∑
j=1

η2
j ≤ −αV, (A.6)

where c̄ = sup
j=1,γ

cj , µ̄ = sup
j=1,γ

µ−1
j1 , α = sup(c̄, µ̄). From

(A.6) it follows that there exists a positive defined function
V (t) such that its derivative is a strictly negative function
along the trajectories (A.1) and solutions of the system
(A.1) exponentially tend to zero. This property guaran-
tees boundedness of all signals in (A.1). Thus, Lemma
conditions hold for case of µj2 = 0 and there exists a
parameter µ0 > 0 such that for any µj2 ∈ (0;µ0] the
system (A.1) has the same set of attraction as in case if
µj2 = 0. The asymptotic stability does not apply for non-
simplified case but it is possible to find a small enough
attraction set for µj2 > 0. Consider a Lyapunov function
(A.3) for the system (A.1) with µj2 > 0 and its derivative

takes the form V̇ = −
γ∑
j=1

cje
2
j +

γ−1∑
j=1

eje(j+1) +
γ∑
j=1

ejηj −
γ∑
j=1

((µj2/µj1 )ξ̈jηj + µ−1
j1 ηj). Using bounds (A.5) and tak-

ing into account µj1 = µj2 = µj |j=1,γ > 0, V̇ can be

bounded by V̇ ≤ (1− cj)e2
j

∣∣
j={1,γ} +

γ−1∑
j=2

(1.5− cj)e2
j +

γ∑
j=1

(0.5− µ−1
j )η2

j −
γ∑
j=1

ξ̈jηj . There exist constants µ−1
j >

0.5, cj |j={1,γ} > 1, cj |j=2,γ−1 > 1.5, such that Lyapunov

function satisfies the inequality

V̇ ≤ −αV −
γ∑
j=1

ξ̈jηj , (A.7)

α = sup
j=1,γ

{
( 2cj |j={1,γ} − 2); ( 2cj |j=2,γ−1

− 3); (2µ−1
j − 1)

}
. The

term
γ∑
j=1

ξ̈jηj can be represented by
γ∑
j=1

ξ̈jηj =
γ∑
j=1

µjp
4

µjp+1ξj

and, thus, satisfy the condition

lim
µj→0

 γ∑
j=1

ξ̈jηj

 = 0, j = 1, γ. (A.8)

From (A.7), (A.8) it follows that

V ≤ −e−αtV (0)− µj(1− e−αt)α−1ξ̄,

where ξ̄ =
γ∑
j=1

p4

µjp+1ξj . A set of attraction for the system

(A.1) can be can be evaluated by

‖e‖ ≤
√
−e−αt2V (0)− µj(1− e−αt)ξ̄α−1, j = 1, γ,

From the last inequality it follows that the accuracy of the
closed-loop system depends on parameters α and µj while
the parameter α is defined by choosing parameters µj , cj .
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