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Abstract: Predictive control is beneficial for effective energy demand management. Precise disturbance 

prediction is a decisive factor for the performance of predictive control. This paper focuses on the accurate 

prediction of pulsed heat loads caused by heat treatment in manufacturing industry processes. An applica-

tion-oriented method to predict heat load peaks is developed utilizing basic laws of thermodynamics, vali-

dated with process data from an industrial use case, and tested with a model predictive controller. Two core 

characteristics of the method enable a straightforward application in industry: 1. Historic data from few 

measurement points are sufficient. 2. Robustness against measurement noise. 
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1. INTRODUCTION AND MOTIVATION 

Decarbonisation of the power production induces an increas-

ing usage of renewable energy sources like wind, water or so-

lar. The fluctuating availability of these sources are a major 

challenge for power grid operators. Demand Side Management 

(DSM) is a portfolio of measures to stabilize the grid at the 

side of consumption (Palensky and Dietrich, 2011). DSM for 

industry plants is especially interesting as industry accounted 

for 41.9% of the worldwide electricity demand in 2017 

(International Energy Agency, 2019). Therefore, various 

methods like energy demand management (EDM) or demand 

response (DR) were developed to optimize the energy con-

sumption of industry plants. Grid operators introduced varying 

electricity prices and discounts for uniform power consump-

tion to encourage the industry to use EDM. Though the eco-

nomic potential for industry plants is shown in several studies, 

DSM is yet rarely applied in industry (Ding and Hong, 2013; 

Ayyappan et al. 2019). According to (McKane et al., 2008) 

this is among other reasons caused by the risk of affecting the 

production safety. 

To avoid production losses, sufficient energy has to be availa-

ble at any time. This is especially challenging for energy-in-

tensive batch-like processes where pulsed energy loads occur. 

Typical examples are manufacturing processes that include 

heat treatment steps, in which products undergo certain tem-

perature trajectories in order to reach quality attributes. To 

change the product temperatures quickly, high heat loads are 

required, often provided by power-to-heat components. A 

heating system consisting of a thermal energy storage (TES) 

and an electrical boiler and/or heat pump (HP) controlled by a 

model predictive controller (MPC) is a standard use case for 

heat distribution networks considered in literature (Killian, 

Mayer and Kozek, 2014; Fischer et al., 2016; Baeten, Rogiers 

and Helsen, 2017). In these studies, two major benefits of the 

MPC concepts were shown: reduced energy costs by load 

shifting and reduced investment costs through efficient utiliza-

tion of the equipment. A precise load prediction is crucial to 

realize both benefits and provide production safety. Previous 

publications based on that use case focused on building heat-

ing systems and thereby did not consider batch-like heat loads 

in their studies. In the field of heat integration, the time-inte-

grated heat load of batch processes is predicted using basic 

laws of thermodynamics (Sebelebele and Majozi, 2017). How-

ever, a research gap is evident for practically applicable pre-

diction methods for time-resolved batch-like heat loads. 

Therefore, in the present paper, the concept presented in 

(Sebelebele and Majozi, 2017) is adapted and extended. The 

main contributions of this paper are as follows: 

1. An efficient, accurate, and well-adjustable batch-con-

sumer heat load prediction model is proposed, obtained by 

a. a reformulation of the heat balances to fully ex-

ploit measurement data based on heat meter sen-

sors, and 

b. a simple but expedient method to recreate the 

typical time-domain behaviour of the batch con-

sumer's heat flow. 

2. The robustness and accuracy of the proposed prediction 

method is tested with measurement data from an industrial 

plant. 

3. An MPC-based closed-loop simulation study is conducted 

to compare the performance of a basic MPC concept when 

utilizing different load prediction strategies, based on his-

torical industrial plant data. 

This paper is organized as follows: In Section 2 the problem 

statement is made. In Section 3 the load prediction method is 

presented. In Section 4 the method is tested with measurement 

data from an industrial use case, and a closed-loop simulation 

study is conducted. In Section 5 the conclusions are made and 

an outlook is given.  
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2. PROBLEM STATEMENT 

The structure and characteristics of the considered heat distri-

bution network are displayed in Figures 1 and 2. The core com-

ponents are a heat source (HS), a thermal energy storage 

(TES), and 𝑁 batch-like heat consumers (BC) with tempera-

tures 𝑇𝐵𝐶,𝑛, (𝑛 = 1,2, … , 𝑁) which demand pulsed heat loads. 

The total heat flow 𝑄̇BC,sum of the BC shall be predicted in 

order to keep the heat stored in the TES 𝑄𝑇𝐸𝑆 within admissible 

bounds, via predictive control of the heat flow of the heat 

source 𝑄̇𝐻𝑆. Typical BC are heat treatment (HT) steps in the 

manufacturing industry, used to alter the physical or chemical 

properties of a material (e.g. annealing, tempering, pasteuriza-

tion). Heat treatments start with a heating phase, were the 

treated material is brought from the initial temperature 𝑇M,0 to 

a desired temperature level 𝑇M,end. As these temperatures are 

crucial for the effect of the HT, they are considered known in 

advance and can be utilized for the heat load prediction. The 

heating phases induce short pulse-like heat loads as displayed 

in Figure 2. Delayed or incomplete heating phases, caused by 

insufficient heat supply, may affect product quality and 

thereby cause economic losses. One central heat source pro-

vides the heat, thermal liquid and heat exchangers transport it 

to the BC. The maximum of 𝑄̇BC,sum is typically many times 

higher than the maximum heat production rate 𝑄̇𝐻𝑆. Therefore, 

a TES is installed to buffer the transient heating process.  

In this setting, precise load-prediction provides multiple eco-

nomic benefits: 1. bottlenecks in the heat supply can be de-

tected before the production process is affected, 2. the energy 

consumption can be shaped according to the objectives of 

EDM (e.g. reduce energy costs), 3. the usage of the HS can be 

smoothened, which reduces wear, 4. better exploitation of TES 

and HS enables a smaller design of these components, lower-

ing investment costs. 

  

Fig. 1 Industrial use-case consisting of a heat source (HS), a 

thermal energy storage (TES) and 𝑁 batch consumers (BC). 

 
Fig. 2: Typical pulse-like heat loads of BC compared to the 

maximum heat production. 

Modelling a pulse-like heat flow 𝑄̇ directly from measurement 

data is error-prone when the heating phase is short compared 

to the measuring intervals. Few data points available per HT, 

high measurement noise, inertia of the measurement, or simply 

unknown data pre-processing complicate data-based model-

ling significantly in practice. For these reasons, the following 

load prediction method was developed in a way that it does not 

rely on direct measurements of 𝑄̇ with high time resolution. 

Instead, the integrated heat flow 𝑄 before and after each heat 

treatment (HT) is utilized. At those times 𝑄 is constant and no 

time delay or inertia affects the measurement accuracy. 

In summary, the following assumptions are made for the pre-

diction method: The final 𝑇M,end and the initial temperatures 

𝑇M,0 of the treated material and the starting time t0 of the HT 

are known in advance and can be used as input for the predic-

tion model. Further, a record of 𝑄BC with low time resolution 

is available for a sufficient number of HT for all BC.  

3. LOAD PREDICTION METHOD 

The proposed load prediction method consists of two steps. 

First, the total heat quantity applied during heat treatment pro-

cess 𝑄HT,total is estimated utilizing the first law of thermody-

namics. Second the time constant of a first order delay element 

is estimated to recreate the typical time-domain behaviour of 

the heat flow 𝑄HT(𝑡). To apply this method values of the inte-

grated heat flow 𝑄 at 𝑡0 and at 𝑡𝑒𝑛𝑑  for a sufficient amount of 

HT is required for each BC. 

3.1 Prediction of 𝑄𝐻𝑇,𝑡𝑜𝑡𝑎𝑙 

Predicting the total heat Q𝐻𝑇,𝑡𝑜𝑡𝑎𝑙  instead of directly predicting 

𝑄̇HT enables a convenient usage of the conservation of energy 

with little available process data. The first law of thermody-

namics states that the change in internal energy ∆𝑈 is a func-

tion of the net quantity of heat supplied to the system 𝑄 and 

the work done by the system 𝑊:  

 

∆𝑈 = 𝑄 − 𝑊 (1) 

  

For most heat treatments, the assumptions are valid, that: 1. no 

work is done by the system (𝑊 = 0), 2. the change in internal 

energy is defined by the heat capacity of the system 𝐶S, and 

the difference between the starting temperature of the system 

𝑇S,0 and the end temperature of the heating phase 𝑇S,end. There-

fore, the heat quantity of the m-th heat treatment 𝑄HT,𝑚 is de-

scribed by: 

 

𝐶S,𝑚(𝑇S,end,𝑚 − 𝑇S,0,𝑚) = 𝑄HT,total,𝑚 (2) 

 

The considered system for heat treatments consists of two 

parts: the treated material and the surrounding component (e.g. 

oven, burner, cooker). The temperature of the treated material 

𝑇M is critical for each kind of heat treatment process. There-

fore, 𝑇M,end,𝑚 and 𝑇M,0,𝑚 of each single heat treatment process 

are known in advance and measured accurately. The compo-

nent temperature distribution at the beginning of the process is 

usually unknown, as it depends on multiple factors like timing, 

end temperature of the previous treatment or ambient temper-
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ature. In addition, the heat capacity of the components is usu-

ally unknown and thus the change in internal energy of the 

component during a heat treatment ∆𝑈BC,𝑛 is considered as an 

unknown constant that has to be estimated for all BC. There-

fore, (2) is rearranged to: 

  

∆𝑈BC,𝑛 + 𝐶M,𝑛(𝑇M,end,𝑚 − 𝑇M,0,𝑚) = 𝑄̂HT,total,𝑚 (3) 

 

where ∆𝑈BC,𝑛 and 𝐶M,𝑛 are unknown parameters. These 2𝑁 

constants are estimated utilizing the measurement data. Instead 

of 𝑄̇ measurements with high time resolution the estimation 

only needs the time-integrated heat flow 𝑄 at 𝑡0 and at 𝑡𝑒𝑛𝑑 for 

each HT. There is little effect of measurement noise on these 

values because 𝑄 stays constant between single HT and the big 

difference between 𝑄𝑡0
 and 𝑄𝑡𝑒𝑛𝑑

 causes a high signal to noise 

ratio. The values for 𝑇M,end,𝑚 and 𝑇M,0,𝑚 can be extracted from 

production plans. For the estimation of ∆𝑈BC,𝑛 and 𝐶M the least 

absolute residual (LAR) is used as statistical optimality crite-

rion to decrease the effect of outliers.  

3.2 Prediction of 𝑄̇𝐻𝑇 

To model the transient behaviour of the heat treatment process, 

first order dynamics are assumed:  

 

𝑄HT,𝑚(t) = QHT,total,𝑚 (1 − 𝑒−
𝑡
τ) (4) 

 

with unknown time constant τ. Data evidence shows that this 

linear PT1-structure is suitable when the state of charge (SOC) 

of the TES is sufficient to fully supply the heating process. In 

contrast, during a HT where the TES reaches a critically low 

SOC, 𝑄̇HT does not show first order dynamics. Thus, such HT 

should be excluded from the estimation of τ. To detect affected 

HT, QTES,use,𝑚 is defined as the enthalpy above the tempera-

ture level of a heat treatment stored in the TES at the beginning 

of the heat treatment:  

 

QTES,use,𝑚 =  𝐶𝑇𝐸𝑆(𝑇𝑇𝐸𝑆,𝑡0,𝑚
− 𝑇end,𝑚) (5) 

 

where 𝐶𝑇𝐸𝑆 is the heat capacity of the TES. To exclude data of 

HT with critically low SOC only HT fulfilling 

 

QTES,use,𝑚 ≥ 2𝑄̂HT,total,𝑚 (6) 

 

are considered in the estimation of τ. For the remaining of all 

𝑁 HT τ𝑛,𝑚 is calculated for all 𝑀 BC from measurement data 

using: 

 

𝑄HT,𝑚(3τ𝑛,𝑚) = 0.95 𝑄HT,total,𝑚 (7) 

 

The time constant τ̂𝑛 used for the heat load prediction is cal-

culated as the mean of all calculated 𝜏𝑛,𝑚 . Next, 𝑄̂
HT,𝑚

(t) is 

predicted with (4), and finally the discrete 𝑄̇̂BC,sum(ti) is cal-

culated for the desired sampling time 𝑡s as sum of all 𝑀 HT: 

 

𝑄̇̂BC,sum(𝑡𝑖)  = ∑
𝑄̂HT,𝑚(𝑡𝑖 + 𝑡s) − 𝑄̂HT,𝑚(𝑡𝑖)

𝑡𝑠

𝑀

𝑚=1

 (8) 

 

3.3 Model predictive controller 

A basic MPC formulated in the Matlab toolbox YALMIP 

(Lofberg, 2019) was utilized and modified for this paper. The 

system is represented by a discrete linear state-space model: 

 

x(𝑘 + 1)  =  Ax(𝑘) + Bu(𝑘) +  Ez(𝑘) 

 

y(𝑘) =  Cx(𝑘)                          
(9) 

 

where 𝑥 is the state, 𝑢 is the control input, 𝑧 is the disturbance, 

𝑦 is the plant output and 𝐴, 𝐵, 𝐸, 𝐶 are scalars. The cost func-

tion is defined as 

 

Ji =
1

2
∑  [(𝑦𝑘+1 − 𝑟𝑘+1)𝑇𝑄𝑅(𝑦𝑘+1 − 𝑟𝑘+1) 

𝑖+𝑁𝑃−1

𝑘=𝑖

 

   +  𝑢𝑘
𝑇𝑅𝑢𝑘 + (𝑢𝑘 − 𝑢𝑘−1)𝑇𝑃(𝑢𝑘 − 𝑢𝑘−1)] + 𝑠𝑄𝑠 

𝑠. 𝑡. 

𝑥𝑐𝑟𝑖𝑡 − 𝑠 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥  

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥 

𝑠 ≥ 0 

(10) 

where 𝑁𝑃 is the prediction horizon, 𝑄𝑐, 𝑄𝑠 𝑅 and 𝑃 are weight 

factors and 𝑠 is a slack variable.  Defining the storage as simple 

integrator with 𝑥 = 𝑄𝑇𝐸𝑆 as state, 𝑢 = 𝑄̇𝐻𝑆 as input and 

𝑧 = 𝑄̇BC,sum as disturbance, the system is represented by: 

 

𝑄𝑇𝐸𝑆(t𝑖 + 1) = 𝑄𝑇𝐸𝑆(ti) + 𝑡s𝑄̇𝐻𝑆(𝑡𝑖) + ts𝑄̇BC,sum(𝑡𝑖) (11) 

 

The limits of 𝑄𝑇𝐸𝑆 and 𝑄̇𝐻𝑆 were taken from Table 1. The ref-

erence trajectory 𝑟𝑘 is defined at 0.5𝑥𝑚𝑎𝑥 and 𝑥𝑐𝑟𝑖𝑡  as 0.3𝑥𝑚𝑎𝑥 

for all time-steps. Gurobi is used as solver (Gurobi, 2018). For 

more details on the optimization problem see Lofberg (2004).  

4. RESULTS & DISCUSSION 

In this Section, the industrial use case is presented. Industrial 

measurement data is used to validate the proposed prediction 

method and the results are discussed. Finally, different control 

strategies for the use case are tested in a simulation study, in-

cluding an MPC utilizing the predicted heat load. 

4.1 Description of the Industrial Use Case 

The components of the industrial use case are a heat pump as 

heat source, a stratified storage tank with five temperature 

measurements as TES and four batch consumers. The key pro-

cess parameters taken from datasheets are summarized in Ta-

ble 1. The dataset encompasses 602 heat treatments recorded 

with one-minute time intervals (𝑡𝑠 = 60𝑠). No temperatures or 

durations of heat treatments of the industrial use case are re-

ported here due to a confidentiality obligation. 
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Table 1. Key process parameters of industrial use case. 

 

 

The major challenge in the presented use case is the limited 

heat source power and heat storage capacity compared to the 

consumed loads. The maximum heat load 𝑄̇BCsum,max is the 

six-fold of the maximum heat production 𝑄̇HS,max, and a fully 

loaded TES can buffer 𝑄̇BCsum,max for approximately six 

minutes. Even though the maximum heat load is rarely applied, 

bottlenecks in the heat supply occur regularly in operation.  

4.2 Testing the prediction method with measurement data 

The data points necessary for the prediction method, 𝑄HT,𝑚, 

𝑇M,end,𝑚 and 𝑇M,0,𝑚, were read out of the dataset for all heat 

treatments. These data points were bisected into training and 

validation data and a regression using least absolute residuals 

as statistical optimality criterion was executed with the train-

ing data utilizing the Matlab® Curve-Fitting-Toolbox to esti-

mate ∆𝑈BC,𝑛 and 𝐶M. The results for all four BC are listed in 

Table 2. Figure 3 shows a histogram of the resulting prediction 

error calculated with the validation data. It shows that the pre-

diction method shows good results for most heat treatments, 

but outliers occur. Still, the prediction method shows good re-

sults, as the standard deviation lies at 12.5% and the estimation 

error is less than 20% for 85% of the heat treatments. The out-

liers were further examined and two causes detected. First, 

there were several exceptional tests and special programs run 

during the period causing different heat loads. Second, the 

temperature of the treated material at the beginning of the heat 

treatment 𝑇M,0,𝑚 was in some cases recorded at wrong time-

instants. Excluding the ouliers with more than 30% estimation 

error, the standard deviation further reduces to 7.8%. 

Next, the quality of the estimation of 𝑄𝐻𝑇(𝑡) is discussed. Fig-

ure 4 displays the measurements and prediction results for ten 

representative HT. To put the focus on the estimation of the 

transient behaviour the measured QHT,total,𝑚 was used to cal-

culate the estimations. Thus, the black line shows 

 

 

𝑄̂τ̂,𝑚(t) = QHT,total,𝑚 (1 − 𝑒−
𝑡
𝜏̂) (12) 

 

 

Table 2: Results of the parameter estimation. 

 ∆𝑈BC,𝑛, in MJ 𝐶M, in MJ 𝑅2 RMSE in MJ 

BC 1 35.2 87.3 0.993 5.36 

BC 2 55.8 65.52 0.996 4.58 

BC 3 32.2 105.4 0.995 3.60 

BC 4 30.8 61.74 0.996 2.67 

 
  

Fig. 3 Histogram of the estimation errors of all heat loads. 

Measurement data is displayed as dotted blue lines. Two of 

them show a qualitatively different much slower behaviour, 

caused by limited heat supply. As described in Section 3.2 

these data-points were excluded from estimating τ̂. The red 

dashed line shows 𝑄̂τ̂outliers,𝑚(t) were outliers where included 

in the estimation of τ̂𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠. Figure 4 shows that the first-or-

der-delay element is a good choice to recreate the trajectorie 

of the heat flow. In Figure 5 the estimation error of τ̂ is plotted 

against the ratio of QTES,use,𝑚 to QHT,total,𝑚. It visualizes that 

QTES,use,𝑚 is a good measure to detect bottlenecks in the heat 

supply. The estimation error of τ̂ is in close bounds for most 

HT where QTES,use,𝑚  ≥ 2𝑄̂HT,total,𝑚 (dashed line). At smaller 

ratios, time delays due to insufficient heat supply occurred reg-

ularly. 

In summary, the testing of the prediction method with meas-

urement data showed that little measurement data is needed to 

achieve a precise prediction. To apply this prediction method 

in industry, only measurement data from a heat meter and pro-

duction plans for a sufficient time ahead are necessary. In case 

no heat meters are available in the plant, portable heat meters 

can be installed flexible and cost efficient in most heat distri-

bution networks. Further process knowledge can be used to de-

tect outliers and QTES,use,𝑚 is an adequate measure to detect 

bottlenecks in the heat supply.  
 

 
 

Fig. 4 Comparison of measured trajectories of QHT, estimated 

trajectories and estimated trajectories excluding outliers for 

ten heat treatments from a selected timespan. 

𝑄̇HS,max 0.206 MW 

𝑄TES,max 504.000 MJ_ 

∑ 𝑄̇𝐵𝐶,𝑚𝑎𝑥

4

𝑛=1
 1.367 MW 
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Fig. 5 Estimation error of τ versus the normalized useable en-

thalpy in the TES. 

4.3 Applying prediction method for MPC 

The prediction method presented in this paper is motivated by 

the demand of an accurate load prediction for predictive con-

trol methods. In this subsection, the effect of disturbance pre-

diction on the performance of an MPC is demonstrated. Thus, 

the same MPC formulation was utilized three times: First, with 

a perfect disturbance prediction as benchmark. Second, with 

the disturbance prediction estimated with the method proposed 

in this paper. Third, with no disturbance prediction. Further, a 

hysteresis control concept, as it is currently applied in the in-

dustrial use case, is simulated. The MPC was not tuned. The 

chosen values for weight factors and 𝑁𝑃 are listed in Table 3. 

The MPC uses 𝑄̇HS as controlled variable while 𝑄TES is the 

plant output. One week with 26 HP was taken from the indus-

trial measurement data as simulation-data. The results of the 

simulations for eight hours are displayed in Figure 6a-c. Figure 

6a shows that the disturbance prediction made with the pro-

posed method (dashed line) matches the measured disturbance 

(solid line) well. In Figure 6b big differences in the utilization 

of the heat source become visible. It is detectable that the MPC 

is able to even out the utilization of the HS when a disturbance 

prediction is used. Naturally, the hysteresis control cannot de-

couple the heat production from the heat demand and thus can-

not support EDM. Figure 6c displays the SOC of the TES. The 

most interesting behaviour occurs at a process time of five 

hours. The hysteresis control and the MPC without disturbance 

prediction cannot keep the SOC above the critical level. This 

would have caused a bottleneck in the heat supply and a loss 

of production. In the whole simulation, the SOC falls below 

the critical value three times with hysteresis control and six 

times for the MPC without disturbance prediction. The MPC 

utilizing the disturbance prediction provided a sufficient SOC 

during the whole simulation. The performance of the MPC 

(e.g. peak reduction) could be further optimized by tuning the 

MPC. 

Table 3. MPC weighting factors and horizon. 

 

5. CONCLUSIONS AND FUTURE WORK 

The paper proposes a prediction method for pulse-like heat 

loads. It is validated with measurement data from an industrial 

use case. For application, only measurements of the batch con-

sumers, heat flows and the production plans are required. Port-

able heat meters can be retrofitted without big effort. Further, 

the method is robust against measurement errors and poor data 

quality. Thus, a straightforward application in industry plants 

is possible. Utilizing the load prediction as disturbance predic-

tion in an MPC enables an efficient energy demand manage-

ment. Variable energy prices can be taken into account and 

load peaks reduced. Thus, reduced energy costs are reached. 

The investment and operational costs for HS and TES can be 

decreased through efficient utilization and wear reduction. 

 
Fig. 6a Disturbance predictions. Fig 6b Utilizations of the HS. 

Fig 6c Courses of the SOC of the TES 

 

𝑁𝑃 400 

𝑄𝑐 10−6 

𝑄𝑠 108 

𝑅 10−1 

𝑃 103 
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Further, bottlenecks in the heat supply can be detected and 

avoided, increasing the production safety. Future work will 

deal with tuning an MPC for stochastic load predictions espe-

cially considering the influence of human operators on the con-

trol performance. Further, a generic control strategy for heat 

supply systems in manufacturing industry will be developed 

with focus on energy demand management. 
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Appendix A. NOTATION 

 

Notation Description 

Abbreviations  
BC batch consumer 

DSM demand side management 

EDM energy demand management 

HP heat pump 

HS heat source 

HT heat treatment 

LAR least absolute residuals 

MPC model predictive control 

SOC state of charge 

TES thermal energy storage 

  

Selected Symbols 

𝑁 quantity of batch consumers 

𝑀 quantity of heat treatments 

𝑄 heat quantity 

𝑇 temperature 

τ time const. of first-order-delay element 

Selected Indices  

𝑀 Material 

𝑆 System 
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