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Abstract: The paper presents an algorithm for the identification of PieceWise Affine Output-
Error (PWA-OE) models, which involves the estimation of the parameters defining affine
submodels as well as a partition of the regressor space. For the estimation of affine submodel
parameters, a bias-correction scheme is presented to correct the bias in the least squares
estimates which is caused by the output-error noise structure. The obtained bias-corrected
estimates are proven to be consistent under suitable assumptions. The bias-correction method
is then combined with a recursive estimation algorithm for clustering the regressors. These
clusters are used to compute a partition of the regressor space by employing linear multi-
category discrimination. The effectiveness of the proposed methodology is demonstrated via a
simulation case study.
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1. INTRODUCTION

PieceWise Affine (PWA) models can be used to describe
the behavior of hybrid dynamical systems, which are
governed by both continuous and discrete states. One of
the main advantage of the PWA modelling paradigm is
that tools developed for analysis and control of hybrid
systems can also be applied to systems represented in a
PWA form (Bemporad and Morari, 1999).

PWA models are defined by a set of affine functions,
each associated to a polyhedral region of the regressor
space. The problem of identifying these models consists of
estimating the parameters defining the affine sub-models
as well as a partition of the regressor space The main
methods proposed in the literature for learning PWA
models from data, include, among others, bounded-error
or set-membership approaches (Bemporad et al., 2005);
mixed-integer programming methods (Roll et al., 2004;
Naik et al., 2017); clustering-based two-stage approaches
(Nakada et al., 2005; Juloski et al., 2005; Ferrari-Trecate
et al., 2003; Bemporad et al., 2018; Breschi et al., 2016).

The underlying assumption in these methods is that the
output is generated by AutoRegressive with eXogenous
inputs (ARX) submodels. With this assumption, standard
linear Least Squares (LS) can be used to obtain consistent
estimates of the submodel parameters, given a partition.

? This work was partially supported by the European H2020-CS2
project ADMITTED, Grant agreement no. GA832003.

In this paper, we relax this assumption and develop an
identification algorithm for PWA output-error (PWA-OE)
models. PWA-OE models make the identification problem
more challenging, as the affine functions of the PWA map
depend on the (unmeasured) “noise-free” regressors.

Very few works in the literature have addressed the
identification of PWA-OE models. In (Canty et al., 2012),
PWA-OE algorithm is proposed with an Instrumental
Variable (IV) scheme. The correct choice of IVs is
critical as they need to be uncorrelated with the system
noise and correlated with the inputs. A Prediction Error
Method (PEM) is proposed in (Rosenqvist and Karlström,
2005) for identifying piecewise linear models under the
assumption that a partition is known. In (Breschi et al.,
2019), PEM is used to estimate more general Box-Jenkins
models, along with the estimation of the hidden mode
sequence, indicating the active sub-model at each time
instant. However, the PEM approach leads to a non-
convex optimization problem which requires an accurate
initial guess. In (Juloski and Weiland, 2006), PWA-OE
identification problem is treated in a Bayesian framework,
and a suboptimal algorithm is derived for estimating the
model parameters along with the unknown mode sequence.

In this work, we propose a bias-correction approach,
combined with a two-stage clustering based
algorithm (Breschi et al., 2016), for the identification of
PWA-OE models. Specifically, the bias-corrected least
squares estimates of the affine submodel parameters
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are derived and are proven to be consistent under the
assumption that the active mode sequence is known.
This assumption is then relaxed and mode sequence is
estimated from data using an iterative clustering-based
algorithm. Bias-correction methods have been proposed in
the literature for the identification of LTI systems (Hong
et al., 2007), LPV models (Piga et al., 2015; Mejari et al.,
2018) and for non-linear systems (Piga and Tóth, 2014).
To the best of our knowledge, this paper presents the
first contribution adapting the bias-correction method in
a hybrid modelling framework.

The paper is organized as follows. The identification
problem of PWA-OE models is formalized in Section
2. Bias-corrected least-squares estimates for the affine
submodels parameters are derived in Section 3. Section 4
presents the two-stage clustering-based iterative algorithm
for PWA-OE model identification. A numerical case study
is reported in Section 5 to show the effectiveness of
the presented algorithm. Finally, conclusions are given in
Section 6.

2. PROBLEM FORMULATION

Consider the following discrete-time, single-input single-
output nonlinear system So, with Output-Error (OE)
structure,

yo(k) = f(xo(k)), (1a)

y(k) = yo(k) + eo(k), (1b)

where yo(k) ∈ R and y(k) ∈ R are the noise-free and noise-
corrupted output of the system at time k respectively,
xo(k) denotes the noise-free regressor, namely,

xo(k)=[yo(k−1)· · · yo(k−na) u(k−1)· · ·u(k−nb)]>, (1c)

where na, nb are the parameters defining the model
order, with xo(k) ∈ X and eo(k) ∈ R is a zero-
mean additive white Gaussain noise with variance σ2

e ,
statistically independent of the regressor xo(k).

The map f : X → R is PieceWise Affine (PWA), namely,

f(xo) =


(θo

1)>
[
xo

1

]
if xo ∈ X1,

...

(θo
s)
>
[
xo

1

]
if xo ∈ Xs,

(1d)

where s ∈ N is the number of modes, and θo
i ∈

R(na+nb+1)×1 is the parameter vector associated to the
i-th affine submodel, and the set Xi ⊆ X is a polyhedron
defined as:

Xi
.
= {xo ∈ Rnx : Hixo ≤ Di} , (1e)

with Hi and Di being real matrices, for i = 1, . . . , s,
and {Xi}si=1 form a complete polyhedral partition 1 of the
regressor space X. Note that, unlike PWA-ARX models,
the polyhedral partition {Xi}si=1 is defined over the space
of noise-free regressors. As eo does not affect the evolution
of the output yo and the function f is piecewise affine,
So in (1) is a PieceWise Affine-Output Error (PWA-OE)
representation. Note that, the noise-free output yo and

1 The collection {Xi}si=1 is a complete partition of X if
⋃s

i=1
Xi = X

and
◦
Xi ∩

◦
Xj = ∅, ∀i 6= j, with

◦
Xi denoting the interior of Xi.

consequently the noise-free regressor xo are not available
for measurements.

In order to describe the true PWA-OE system So in
(1), the following parameterized model structure Mθ is
introduced,

y(k) =


θ>1

[
x(k)

1

]
+ε(k), if x(k) ∈ X1,

...

θ>s

[
x(k)

1

]
+ε(k), if x(k) ∈ Xs,

(2a)

where ε(k) is the residual term (not necessarily white)
modeling the mismatch between the true system and
model output, x(k) is the measured regressor vector, i.e.,

x(k)=[y(k−1)· · · y(k−na) u(k−1) · · ·u(k−nb)]>. (2b)

We remark that, the problem of model structure selection
(i.e., estimation of the model orders na, nb and the number
of modes s) is not addressed in this paper. Thus, we assume
that both the true system So and the modelMθ share the
same parameters na, nb and s, which are assumed to be
known.

The identification problem addressed in this paper is
formalized as follows,

Problem 1. Given a set of N input-output observations
{u(k), y(k)}Nk=1, generated by So in (1), compute
consistent estimates of the true parameters {θo

i }si=1
characterizing the affine submodels of the PWA map f ,
and find a polyhedral partition {Xi}si=1 of the regressor
space X.

To this aim, a novel identification algorithm based on bias-
corrected least squares is presented in the next sections.

3. BIAS-CORRECTED LEAST SQUARES

For an output-error model structure, ordinary LS give an
asymptotically biased estimate of the model parameters
(Ljung, 1999). To overcome this issue, we quantify the
bias in the LS estimates and show how to eliminate
it, in order to compute a bias-corrected estimate of the
model parameters {θi}si=1. For now, we assume the true
polyhedral partition of the regressor space X is known.
Under this assumption, we prove that the bias-corrected
least square estimates are consistent.

Let us define the mode function σ : N→ N, such that,

σ(k) = i ⇔ xo(k) ∈ Xi,
i.e., the active mode σ(k) ∈ {1, · · · s}, at time k, represents
the partition which the regressor xo(k) belongs to. In this
section, we assume that the sequence of active modes
{σ(k)}Nk=1 is known. This assumption is relaxed later.

Let Ni be the number of regressor/ouput data points
associated to the i-th affine submodel, with

∑s
i=1Ni = N .

Given the mode sequence {σ(k)}Nk=1, we define Yi ∈ RNi
as the output vector associated to the i-th affine submodel,
which is constructed from the output sequence {y(k)}Nk=1
such that,

y(k) is a row of Yi ⇔ σ(k) = i, (3)

and, analogously, let Xi ∈ RNi×(na+nb+1) be the regressor
matrix constructed from the sequence {x(k)}Nk=1 by
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stacking the extended regressors associated to the i-th
affine submodel, i.e.,[

x(k)
1

]>
is a row of Xi ⇔ σ(k) = i. (4)

Using the notation introduced above, we define the noise-
free output vector Yi,o ∈ RNi , the noise-free regressor

matrix Xi,o ∈ RNi×(na+nb+1) and the measurement
noise vector Ei,o ∈ RNi , by stacking the noise-free
outputs, noise-free extended regressors and the samples
of the measurement noise eo associated to the i-th mode,
respectively. Note that, Yi,o, Xi,o and Ei,o cannot be
constructed in practice, since the sequence of noise-free
output/regressor pairs {yo(k), xo(k)}Nk=1 and the sequence
of measurement noise {eo(k)}Nk=1 are not available.

3.1 Computation of the bias in the least squares estimate

Consider the least squares estimate of the i-th affine
submodel parameter, which is given by,

θLS
i =

(
X>i Xi
Ni

)
︸ ︷︷ ︸

ΓNi

−1X>i Yi
Ni

, (5)

where ΓNi is assumed to be invertible. In order to quantify
the bias in the least squares estimate, we compute the
difference between the LS estimate θLS

i and the true model
parameter θo

i . To this aim, let us rewrite the output vector
Yi using (1a), (1b) and (1d) as follows:

Yi = Yi,o + Ei,o = Xi,oθo
i + Ei,o,

= Xiθo
i + ∆Xiθo

i + Ei,o, (6)

where ∆Xi is defined as

∆Xi = Xi,o − Xi. (7)

By substituting (6) in (5), the difference between the LS
estimate θLS

i and the true parameter θo
i is expressed as

follows:

θLS
i − θo

i =

(
X>i Xi
Ni

)−1 X>i ∆Xi
Ni

θo
i︸ ︷︷ ︸

B∆(θo
i
,Xi,∆Xi)

+

(
X>i Xi
Ni

)−1 X>i Ei,o
Ni︸ ︷︷ ︸

Beo

.

(8)

As the measurement noise eo is assumed to be zero-
mean white noise statistically independent of u, and since
regressor x(k) depends only on past outputs, the noise
vector Ei,o is uncorrelated with the regressors Xi. Thus,
the term Beo in (8) asymptotically (as Ni →∞) converges
to 0 with probability 1 (w.p. 1), i.e.,

lim
Ni→∞

(
X>i Xi
Ni

)−1 X>i Ei,o
Ni

= 0 w.p. 1.

However, the term B∆(θo
i ,Xi,∆Xi) in (8) is not

guaranteed to converge to 0, inducing a non-zero bias in
the LS estimate. Thus, the LS estimate θLS

i in (5) is not
consistent, i.e.,

lim
Ni→∞

θLS
i 6= θo

i ,

even for the known true mode sequence.

3.2 Elimination of the bias in the least squares estimate

Since the bias term B∆(θo
i ,Xi,∆Xi) depends on the true

model parameter θo
i as well as on the noise-free regressor

matrix Xi,o (see (7)), it can not be computed based on the
observed input/output data. Therefore, the bias cannot be
simply eliminated from the LS estimate θLS

i .

Following the same rationale used in (Piga and Tóth,
2014), we define the corrected LS estimate θCLS

i as follows:

θCLS
i = θLS

i −B∆(θCLS
i ,Xi,∆Xi), (9)

where,

B∆(θCLS
i ,Xi,∆Xi) =

(
X>i Xi
Ni

)−1 X>i ∆Xi
Ni

θCLS
i (10)

The main idea behind the definition of θCLS
i in (9) is that,

the LS estimate is corrected by eliminating the bias term
B∆, which is evaluated at the estimate θCLS

i , rather than
at the unknown true model parameter θo

i . By substituting
equations (5) and (10) in (9) and with simple algebraic
manipulations, we obtain

θCLS
i =

(
X>i Xi + X>i ∆Xi

Ni

)−1 X>i Yi
Ni

. (11)

Proposition 1. Under the assumption that the following
limit exists:

lim
Ni→∞

(
X>i Xi + X>i ∆Xi

Ni

)−1

,

the corrected LS estimate θCLS
i in (11) is a consistent

estimate of the true model parameter θo
i , i.e.,

lim
Ni→∞

θCLS
i = θo

i , w.p. 1

See (Mejari et al., 2020, Proposition 1) for the proof.

Since ∆Xi depends on the noise-free regressors Xi,o (see
(7)), the estimates θCLS

i in (11) cannot still be computed
based on the available measurements. To overcome this
issue, the term X>i ∆Xi in (11) is replaced by a bias-
eliminating matrix Ψi, which is constructed using the
available information so to satisfy the following property:

C1 : lim
Ni→∞

1

Ni
X>i ∆Xi = lim

Ni→∞

1

Ni
Ψi w.p. 1.

Such a bias-eliminating matrix Ψi can be obtained
(following similar ideas used in (Mejari et al., 2018)) by
evaluating the expected value of the matrix E

{
X>i ∆Xi

}
,

such that E {Ψi} = E
{
X>i ∆Xi

}
is satisfied by

construction.

Proposition 2. The bias-eliminating matrix Ψi is given by,

Ψi = −σ2
eNi

[
Ina×na 0na×(nb+1),
0(nb+1)×na 0(nb+1)×(nb+1),

]
(12)

where σ2
e is the variance of eo and Ni is the number of

training data points associated with the i-th mode. The
matrix Ψi in (12) satisfies condition C1.

See (Mejari et al., 2020, Proposition 2) for the proof.

Note that, the bias-eliminating matrix in (12) depends on
the noise variance σ2

e which is assumed to be known.

3.3 Bias-corrected estimate

The bias-corrected LS estimate is obtained by replacing
X>i ∆Xi in (11) with the bias-eliminating matrix Ψi (eq.
(12)), i.e.,
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θBC
i =

(
X>i Xi + Ψi

Ni

)−1 X>i Yi
Ni

. (13)

Proposition 3. Assume that the following limit exists:

lim
Ni→∞

(
X>i Xi + Ψi

Ni

)−1

,

the bias-corrected estimate θBC
i in (13) is a consistent

estimate of the true model parameter θo
i , i.e.,

lim
Ni→∞

θBC
i = θo

i , w.p. 1

See (Mejari et al., 2020, Proposition 3) for the proof.

4. PWA-OE IDENTIFICATION ALGORITHM

In the previous section, consistent bias-corrected estimates
of the affine submodel parameters have been derived
under the assumption that the underlying discrete
mode sequence is known. In this section, we relax this
assumption and we estimate the mode sequence along
with the bias-corrected parameters in an iterative manner.
Using the estimated mode sequence, a partition of the
regressor space X is computed using multi-category
discrimination techniques as in (Breschi et al., 2016).

4.1 Iterative clustering and parameter estimation

Algorithm 1 summarizes the main ideas of the proposed
approach which involves the computation of the bias-
corrected estimates {θi}si=1 as well as the unknown discrete
state {σ(k)}Nk=1 and the clusters {Ci}si=1 characterizing the
regressor space partition. The cluster Ci is constructed by
stacking all (estimated) regressors x̂(k) associated to mode
i and its centroid ci is defined as ci = 1

Ni

∑
x̂(k)∈Ci x̂(k).

Given an initial guess {σ0(k)}Nk=1 of the mode sequence,
at each iteration m ≥ 1, Algorithm 1 alternates between
the computation of the bias-corrected model parameters
{θmi }si=1, for a fixed mode sequence {σm−1(k)}Nk=1
obtained at iteration (m − 1) (see Step 1.1), and the
estimation of the mode sequence {σm(k)}Nk=1, for fixed
bias-corrected model parameters {θmi }si=1 obtained at the
m-th iteration (Step 1.3). Specifically, at Step 1.1, the
estimates {θmi }si=1 are updated by computing the matrices
{Xi}si=1, {Yi}si=1 (eqs. (3) and (4)) and the bias-correcting
matrices {Ψi}si=1 (eq. (12)), based on the estimated mode
sequence {σm−1(k)}Nk=1 at the previous iteration. Then,
the model parameters {θmi }si=1 are used to update the
mode sequence at Step 1.3.

In particular, at Step 1.3, for each time index k ∈
[max(na, nb) + 1, N ], the simulated regressor x̂(k) is
computed based on the simulated outputs {ŷ(k − i)}nai=1
(Step 1.3.1). The simulated output is initialized as
ŷ(k) = y(k) for k ∈ [1,max(na, nb)]. At Step 1.3.2,
the prediction-error {ei(k)}si=1 are computed. Note that,
ei(k) is the output-error computed based on the bias-
corrected estimate θmi and simulated regressor x̂(k). Step
1.3.3 selects the best mode σm(k) to which the regressor
x̂(k) is associated with by minimizing the prediction-error
ei(k) and the distance between x̂(k) and the centroid ci
of the cluster Ci which contains all the regressors already

Algorithm 1 Iterative bias-corrected parameter
estimation and clustering.

Input: Observations {x(k), y(k)}Nk=1; noise variance σ2
e ;

number of modes s; tuning parameter λ; initial guess of
the mode sequence {σ0(k)}Nk=1; number of iterations M .

1. iterate for m = 1, . . . ,M do
1.1. compute {θmi }si=1 for fixed {σm−1(k)}Nk=1:

θmi =

(
X>i Xi + Ψi

Ni

)−1 X>i Yi
Ni

; ∀i = 1, . . . , s.

1.2. set Cmi = ∅, cmi = 0, Nm
i = 0 ∀i = 1, . . . , s;

1.3. for k = max(na, nb) + 1, . . . , N do
1.3.1. let

x̂(k) = [ŷ(k−1) · · · ŷ(k−na) u(k−1) · · ·u(k−nb)]>

1.3.2. let for i = 1, . . . , s

ei(k)← y(k)−(θmi )>
[
x̂(k)

1

]
;

1.3.3. let

σm(k)← arg min
i=1,...,s

λe2
i (k) + ‖x̂(k)−cmi ‖22;

1.3.4. let ŷ(k) = (θmσm(k))
>
[
x̂(k)

1

]
;

1.3.5. let Cmσm(k) ← C
m
σm(k) ∪ {x̂(k)};

1.3.6. let Nm
σm(k) ← Nm

σm(k) + 1;

1.3.7. update centroid

cmσm(k) ←
1

Nm
σm(k)

∑
x̂(k)∈Cm

σm(k)

x̂(k)

1.4. end for;
2. end for;

Output: Estimated parameters {θMi }si=1;
clusters {CMi }si=1; sequence of active modes {σM (k)}Nk=1.

assigned to mode i. A positive hyper-parameter λ is used
to weigh these two terms. The centroid penalty ||x̂(k)−ci||2
takes into account the assumption that regressors “close”
to each other are likely to belong to the same cluster while
the term e2

i (k) penalizes the model mismatch.

Based on the active mode σm(k) selected at Step 1.3.3, the
output ŷ(k) (used to construct the regressor) is updated
at Step 1.3.4, the regressors x̂(k) is assigned to cluster
Cσm(k) at Step 1.3.5 and the cardinality Nσm(k) of the
cluster Cσm(k) is increased by 1 (Step 1.3.6). The cluster’s
centroid cσm(k) is finally updated at Step 1.3.7.

4.2 Partitioning the regressor space

Given the clusters {Ci}si=1 obtained from Algorithm 1,
the partition {Xi}si=1 of the regressor space X can
be computed using the computationally efficient linear
multicategory discrimination algorithm proposed in
(Breschi et al., 2016) and briefly discussed in this
subsection.

In order to separate the clusters C1, . . . , Cs, we search for
a piecewise-affine separator function φ : Rnx → R defined
as

φ(x̂) = max
i=1,...,s

(
[ x̂> −1 ]

[
ωi

γi

])
, (14)
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where ωi ∈ Rnx and γi ∈ R are unknown parameters to
be computed.

Let Ni denote the cardinality of the i-th cluster Ci
and Mi ∈ RNi×nx be the matrix obtained by stacking
the regressors x̂>(k) belonging to Ci in its rows. The
parameters {ωi, γi}si=1, are computed by solving the
following convex optimization problem (Breschi et al.,
2016):

min
ξ

κ

2

s∑
i=1

(
‖ωi‖22 + (γi)2

)
+

s∑
i=1

s∑
j = 1
j 6= i

1

Ni

∥∥∥∥([Mi −1Ni ]
[
ωj−ωi
γj−γi

]
+ 1Ni

)
+

∥∥∥∥2

2

, (15)

where ξ = [ (ω1)> ... (ωs)> γ1 ... γs ]
>

, and for a given
x ∈ Rn, (x)+ denotes a vector whose i-th element is
max{xi, 0}. The regularization parameter κ > 0 makes
sure that the optimization problem (15) is strongly convex.

5. NUMERICAL EXAMPLE

The effectiveness of the proposed identification algorithm
is shown via a benchmark example. All computations are
carried out on an i7 1.9-GHz Intel core processor with 32
GB of RAM running MATLAB R2019a.

We consider the data-generating system So, introduced
in (Bemporad et al., 2005), modified to the output-error
structure in (1) as follows:

yo(k)=



−0.4yo(k−1)
+u(k−1)+1.5, if 4yo(k−1)−u(k−1)+10<0,

0.5yo(k−1)
−u(k−1)−0.5, if 4yo(k−1)−u(k−1)+10 ≥ 0,

and 5yo(k−1) + u(k−1)−6 ≤ 0,
−0.3yo(k−1)
+0.5u(k−1)−1.7, if 5yo(k−1)+u(k−1)−6 > 0,

y(k) = yo(k) + eo(k). (16)

The system is characterized by s = 3 discrete modes.
The input signal u is generated from a uniform random
distribution taking values in the interval [−4, 4]. The noise
eo corrupting the output signal is generated by a zero-
mean white Gaussian process with variance σ2

e = 0.64,
which corresponds to the Signal-to-Noise Ratio (SNR),

SNR = 10 log

∑N
k=1 y

2
o(k)∑N

k=1 e
2
o(k)

= 11.7 dB.

The training dataset consist of N = 5000 input/output
samples gathered from the system (16).

For the identification, we consider the PWA-OE model
structure defined in (2) with s = 3 modes, and model
orders na = 1, nb = 1. The tuning hyper-parameter
λ is set to the inverse of the noise variance, i.e., λ =
σ−2
e = 1.56. The model parameters and the unknown

mode sequence are estimated by running Algorithm 1 for
M = 20 iterations with a randomly generated initial guess
{σ0(k)}Nk=1 of the mode sequence. The computation time
to run Algorithm 1 is 2.6 sec.

The estimated affine submodel parameters obtained with
the proposed bias-correction approach are reported in

Table 1. True (θo
i ) and estimated model

parameters: LS (θLS
i ) vs BC (θBC

i ) estimates

Mode θo θBC θLS

−0.4000 −0.3933 −0.1889
s = 1 1.0000 1.0007 0.9691

1.5000 1.4816 2.2521

0.5000 0.5041 0.3341
s = 2 −1.0000 −1.0003 −1.0022

−0.5000 −0.4943 −0.6273
−0.3000 −0.3132 −0.2489

s = 3 0.5000 0.5056 0.5122
−1.7000 −1.6765 −1.9091

Table 1, along with the ones obtained via standard least
squares (i.e., using the LS estimate (5) in Algorithm 1). It
can be seen that the LS estimates are biased while the bias-
corrected estimates match closely with the true system
parameters. This is further highlighted by the obtained
norms of the parameter estimation errors reported in
Table 2, for BC and LS estimates.

The accuracy of the estimated mode sequence is expressed
by the Mode-Fit (MF) index

MF =

(
1

N

N∑
k=1

I(σM (k) = σ?(k))

)
× 100%, (17)

where I(·) is the indicator function, σM (k) and σ?(k) are
the estimated and the true 2 modes at time k, respectively.
The MF index achieved over the training data is 98.76%
with the bias-corrected estimates while it is 98.50% with
the LS estimates.

Based on the clusters estimated through Algorithm 1, the
polyhedral partition of the regressor space is computed by
solving the linear multicategory discrimination problem
(15), with regularization parameter κ = 10−5. The true
and the estimated polyhedral partitions of the regressor
space are shown in Fig. 1.

The estimated PWA-OE model is validated on a new
dataset of length Nval = 500. Based on the estimated
submodel parameters and the polyhedral partitions, the
output is simulated in open-loop as shown in Fig. 2 with
bias-corrected and LS estimates. Specifically, in validation,
using the estimated parameters {ωi, γi}si=1 defining the
partition of the regressor space, the active mode is selected
based on the value of the separator function (14) and
corresponding model parameter θBC is used to simulate
the output. For the sake of better visualization, only
a subset of validation data is plotted. The MF index
achieved over the validation dataset are 88.40% and
77.80% with bias-corrected and LS estimates, respectively.

The obtained results indicate that the affine submodel
parameters, the unknown mode sequence as well as the
partition of the regressor space have been accurately
estimated with the proposed approach.

6. CONCLUSION

We have presented a method for the identification of PWA
output-error models. A bias-correction scheme is combined
with recursive clustering to estimate the model parameters
2 The true mode sequence σ?(k) is considered only for evaluating
the MF index and it is not used in the estimation algorithm.
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Table 2. Norm of the parameter estimation
error. LS vs BC estimates.

Mode
∥∥θo − θBC

∥∥ ∥∥θo − θLS
∥∥

s = 1 0.0196 0.7818

s = 2 0.0070 0.2091

s = 3 0.0275 0.2156
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Fig. 1. True partition (dashed red lines) vs estimated
polyhedral partition of the regressor space.

320 325 330 335 340 345 350

−5

0

5

10

Samples

O
u

tp
u

t

True
LS
Bias-corrected

Fig. 2. Validation dataset: true output, simulated output of
the LS model and simulated output of the BC model.

as well as the unknown mode sequence. The estimates are
proven to be consistent under suitable assumptions. The
reported example shows that the bias-correction scheme
outperforms standard least squares in terms of achieving a
consistent estimate. Furthermore, the presented algorithm
estimates the partition of the regressor space with high
accuracy. Future research activities include the problem of
estimation of model orders and number of modes directly
from data. This requires to define a proper criterion to
be optimized, taking into account the output-error model
structure in the fitting cost.
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