
Development of a UI Submodel for the
Industry 4.0 Component

L. Baron ∗ A. Braune ∗

∗ Technische Universität Dresden, Institute of Automation, 01062
Dresden, Germany; {lukas.baron;annerose.braune}@tu-dresden.de

Abstract: A provision of user interfaces (UI) by use of the Industry 4.0 component and its
asset administration shell (AAS) requires the development of a new UI submodel. Depending
on the intended use case and the planned context of use, the submodel needs to be able to
store and characterize multiple UI fragments (Variants of the UI) that shall be included in
UI solutions. For that, appropriate properties need to be identified and a submodel structure
has to be designed. In order to apply the newly designed UI submodel in a plug and produce
scenario, the properties need to be formally specified, thus, being interpretable by automatic
tools. This contribution presents a UI submodel, a catalogue of UI fragment properties, and a
first case study applying these properties to UI fragments of existing industrial systems.

Keywords: Asset Administration Shell, Industry 4.0, Human Machine Interface, Semantics

1. INTRODUCTION

The Industry 4.0 (I4.0) component is often considered to
be the key element for addressing I4.0 use cases, such
as the Plug-and-Produce (PnP) scenario[6]. It consists of
an Asset Administration Shell (AAS) managing assets
that can be any physical or virtual item of value for
an organization[11]. The AAS provides submodels of the
asset and services for communicating with the asset or the
submodels.

In a PnP scenario, a technical plant is subject to structural
changes that could not be foreseen during plant design[33].
These can be simple changes, such as the replacement of a
failed device, but also complex ones, such as the removal
or integration of entire plant components, or even the com-
plete creation of a new plant. The objective of the PnP sce-
nario is for the plant and all its automation components to
adapt fully automatically to the new plant configuration in
order to minimize downtime or commissioning efforts[33].
In such a scenario, the I4.0 components serve as a source
of information for updating the process control system.

A User Interface (UI), through which human personnel
interacts with the plant or with individual components, is
also always part of a technical plant, even in future I4.0
systems[35]. Depending on the size and complexity of the
system as well as the scope and complexity of the tasks
to be performed using UIs, such UIs comprise complex
software and hardware components. UIs reflect the plant
by representing all information required for the work task
which often includes a suitable representation of individual
components, but also entire structures consisting of several
components, the technical processes, or the manufactured
products. Structurally, they are often closely related to the
plant, e. g. by reflecting the plant hierarchy and topology
in the navigation structure of a UI solution. However, in
addition to the plant, other factors, referred to as the
context of use[39], are influencing the design of the UI.

This includes user properties, properties of the hardware
platform on which a UI solution is executed – also UI
platform – as well as environmental properties[13; 15].

As a result of structural changes to the plant, corre-
sponding changes to work processes and the context of
use, changes to the UI solutions are unavoidable. New
or adapted work tasks must be supported, changes to
the plant structure must be adopted and changed context
properties must be applied to adapted UI designs. If the UI
solution is able to carry out such changes automatically, it
can be considered PnP-capable. If new system components
are put into operation, within the scope of a PnP scenario,
it is indispensable to deliver the necessary UI parts –
hereinafter referred to as UI fragments – coherently to the
components so that the UI fragments can be integrated
into the UI solution. Our approach is to use the AAS
of such process components to deliver the required UI
fragments. For that, it is necessary to develop a new UI
submodel carrying the UI fragments, since none has been
proposed in the relevant literature on the AAS[3; 4; 32] yet.

Using the UI submodel, however, not only exactly one UI
fragment per component has to be delivered, but many
design variants, thus, many UI fragments, due to the high
variability of requirements for different UI solutions. To
differentiate between multiple UI fragments, they must
be characterized in the submodel by expressive and un-
ambiguously interpretable properties. However, in a de-
velopment process for PnP-capable UI solutions, the UI
fragments shall be evaluated and selected according to
their properties for their suitability for the specific UI
solution. In the context of PnP scenarios, such a selection
should be made automatically by a UI development tool.
Therefore, the goal of our work is the development of a UI
submodel for the AAS that supports the provision of mul-
tiple UI fragments by providing their implementation and
a description using well-defined properties that enable the
automatic selection of suitable fragments. It shall be noted,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10530



that it is not the intention of our approach to describe
or replace the implementation of the fragments, thus, the
implementation shall still rely on existing UI technologies.

This contribution is structured as follows: In Sect. 2 below,
appropriate properties for the UI fragments are identified
according to the current requirements for industrial UIs.
In Sect. 3, we present excerpts of the current state of the
art. After that, the actual UI submodel will be designed
in Sect. 4. Finally, in Sect. 5, we present a first case study
of UI fragments that are described by use of the identified
properties.

2. REQUIREMENTS AND IDENTIFICATION OF
RELEVANT PROPERTIES

2.1 Stakeholder and UI Fragment Property Requirements

Several stakeholders are involved in the development and
the subsequent use of certain I4.0 components including
their UI fragments, cf. Fig. 1. Their respective tasks with
regard to the creation of UI fragments or UI solutions, and
the use of the UI solutions create several requirements for
the UI submodel and its features. In this contribution, only
the selection of existing fragments is being considered.

The plant operators and the associated personnel interact
with the plant using UI solutions. The UI solution must
be suitable for the respective use-case, i. e. for the concrete
work tasks of the individuals using it[39]. Furthermore, UI
solutions must be adequate for the contexts in which they
are used. These two influencing factors must be taken into
account in the development of usable user interfaces in
order to enable efficient and error-free work[14]. The indi-
vidual role of the user within the organization and the in-
dividual user properties, such as user knowledge and expe-
rience in relation to the task and the technical system, are
particularly important. However, when assembling a UI
solution from separately developed UI fragments, it is cru-
cial to ensure that the solution is consistent from a design
perspective[7; 8]. Thus, both content constraints (object
and scope of the UI) and design constraints (e. g. used sym-
bols) are to be considered for the respective UI solution.

UI fragment developers design and implement UI frag-
ments for components at any level of complexity. The
scope of these components can range from individual field
devices to more complex modules or entire plants. The
design of the components includes the definition of the
necessary work tasks related to each component in its
lifecycle and the information required by the subsequent
users to accomplish the tasks. Therefore, for the AAS of
the individual components, the UI fragment developers
create the UI submodels and the UI fragments to represent
the components in a UI solution. Depending on the do-
main, on typical and special work tasks with regard to the
component, and on the planned context of use, different
design variants are provided. These variants are realized
as individual UI fragments and are described in the AAS
using the UI submodel. The description is carried out using
suitable properties. For that, developers require appropri-
ate editors that support modeling those properties, which
in turn requires properties to be formally specified.

UI solution developers as part of the system integrators
create functional UI solutions from any number of avail-

able UI fragments. For this purpose, suitable fragments
must be selected based on the specific UI solution require-
ments (cf. Fig. 1) and applied to the solution. Today, these
tasks are mostly performed manually. In future, however,
system integrators will work more abstractly and with
the aid of automatic tools[33]. Instead of creating the
UI solution manually, UI solution developers should only
have to specify requirements for the UI solution. For the
selection of the UI fragments the same vocabulary must be
used by the UI submodel and by the requirements model
of the UI solution – the UI fragment properties. The use of
automatic tools requires those properties to be formally
and semantically unambiguously specified. The assembly
of UI fragments to a UI solution, additionally, requires the
implementation technologies used for each fragment to be
compatible to each other and to the design tool.

From these considerations, the following property cate-
gories for the characterization of UI fragments can be
derived:
A) use case properties for the description of the purpose of
the fragment, B) context of use properties for the descrip-
tion of the assumed design constraints, C) design prop-
erties for the description of design decisions ensuring the
UI solution’s consistency, and D) technical properties that
ensure the compatibility of UI fragments and design tools.

2.2 UI Fragment Properties

In this section, we elaborate on the identified property
categories by deriving some relevant properties from com-
mon requirements for industrial UI solutions, except for
the context of use properties that we will focus on in
subsequent publications. For better readability, properties
are labeled with monospaced fonts. Property categories are
additionally suffixed with the term properties. Due to
the high number of properties that can be found for each of
these categories, we only want to focus on a few examples.

Use Case Properties For the selection of UI fragments
for a UI solution, the specific work task particularily must
be used as one of the most important criteria for the
content and design of a UI fragment[14]. For the purpose
of a fine-granular differentiation of UI fragments in terms
of content, as demanded in the literature[21; 22], we un-
derstand the term specific work task as a) the task type
(also referred to as task class or abstract task [5; 12; 30])
in combination with b) the objects of interest of the UI
fragment (also the object of the work task). The use case of
the UI fragment results again from the specific work task
(a+b) and c) additional parameters for a more detailed
determination. An exemplary use case could thus be con-
structed, as shown in Fig. 2. The task type “Maintenance”
and the object “Component X” are indicated as well as the
domain “Mechanics” that represents an additional param-
eter, which, in this case, may correspond to a subsystem
of the component (the UI fragment shall support these
aspects specifically).

This results in the following properties for the description
of the UI use case:
Supported User Task Type: The UI fragment denotes
one or more types of user tasks that it supports. In the
life cycle of a technical plant different task types are rele-
vant with regard to individual field devices, but also with

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10531



<<AAS>>
<<Submodel>>
Identification

System Integrator / 
UI Solution Developer

Plant Operator / UI User

<<Runtime>>
UI Solution 1

<<Runtime>>
UI Solution 2

<<Asset>>

         

<<Asset>>

      

<<Document>>
UI Solution 1

 Requirements

<<Document>>
UI Solution 2

Requirements

...

<<Implementation>>
UI Fragment

Variant 1

<<Implementation>>
UI Fragment

Variant 2

UI Fragment Developer

Context 1 Context 2
UI Development 

Tools

Selection 
Mechanism

<<Submodel>> UI
UI Fragment 
Description

Fig. 1. UI stakeholders and their relations to a fragment-based UI design process

Use Case: „Maintenance of the mechanical Subsystem of Component X“
Task Type Additional Parameter (View Domain) Task Object

Fig. 2. Example for the decomposition of a use case.

regard to more complex subsystems and the entire plant
as well[29]: Different subsystems must be configured and
parameterized before, during, or after integration. They
must further be tested during commissioning, monitored,
managed, operated, charged, discharged, or evaluated and
maintained during operation, taken out of operation, in-
spected, and repaired in the event of a fault, put back into
operation, etc. Regarding the corresponding plant com-
ponent, each of these task types may require different UI
designs, due to different sub-tasks and specific UI contents.

Represented Entities: The UI fragment identifies the
objects of interest of the user tasks, and thus, the repre-
sented objects. In general, the asset (e. g. a process com-
ponent) of the I4.0 component to which the UI fragment is
assigned via the UI submodel in the AAS (see Fig. 1) would
be considered as the represented entity, i. e. this property
would point to the AAS that contains the UI fragment. In
such case, this property can be omitted because the object
of the UI fragment is already implicitly known. However,
especially within a complex I4.0 component, e. g. a process
module, a multitude of different subcomponents in differ-
ent combinations can be represented in a UI fragment.
At the same time, these different fragments possibly are
assigned to the same complex I4.0 component and also
to the same task type. By means of the Represented
Entities property, the individual fragments can be dis-
tinguished from each other explicitly. This enables the
assignment of the fragments to a superordinate AAS of
a complex component and the selection of a fragment
spcifically according to the user’s tasks.

View Domains: As one of many other task parameters[30],
the view domains property denotes the domain-specific
view in which the entities and the structures in between
them are displayed. This is decisive for the selection of the
UI fragment (see Sect. 5). In addition to the mechanics
domain already mentioned, electrical, energy, automation,
process or information technology, as well as product- or
process-specific disciplines are to be considered.

Design Properties In many cases, the organization
of the plant operator determines design guidelines either
locally at the plant level or globally for the entire company.
Typically, such guidelines, e.g. for graphical UIs, contain
instructions for coloring, for the use of certain symbols,

for the arrangement of elements within complex views
(order criterion), for structuring the navigation, or for
the use of animations for displaying certain process data.
The VDI/VDE Guideline 3699-2[36] contains, for exam-
ple, a color scheme for operator screens or DIN EN ISO
10628[1] specifies symbols for process engineering compo-
nents. Such guidelines have the purpose to support the
creation of consistent UI solutions[7; 8; 10] with regard to
the design of the representation and the interaction, taking
into account the context of use. However, the characteri-
zation of the context of use is not sufficient to ensure con-
sistent UI solutions, since the design decisions regarding
the UI appearance and behavior are made within a degree
of freedom given by the context of use[39]. Thus, design
guidelines are to be taken into account when selecting suit-
able UI fragments for a UI solution. The following property
describes the design guidelines applied to the UI fragment:

Applied Design Guideline: If available, applied design
guidelines shall be referenced.

If no guidelines are applicable, or if the applied guidelines
are not sufficiently specific for the concrete UI fragment, or
if certain design decisions were intentionally deviated from
the guidelines, the UI fragment must enlist further detailed
design properties. E. g. the Representing Symbol prop-
erty which assigns a specific encoding metaphor (e. g. a
color, a symbol) to something that is represented within
the UI (e. g. an entity, medium, state).

Technical Properties Many different process visual-
ization technologies are relevant in industry. These in-
clude manufacturer-specific technologies which are usu-
ally not standardized. Standardized UI technologies are
also common, such as the MTP-HMI or the FDI UI (cf.
Sect. 3.1). Furthermore, UIs based on generally available
UI frameworks are also common, e. g. based on WPF[38],
HTML5[20], etc. Furthermore, formal domain-specific lan-
guages such as MARIA[31] or UsiXML[27] are popular in
the research community. To describe the technology used
for the UI fragment implementation, we have identified the
following properties:

UI Technology Identifier: A UI fragment must iden-
tify the technology in which it was implemented.
UI Technology Version Supported: The version of the
UI technology used must be identified.

2.3 Remarks on the UI Fragment Properties

An initial identification of properties as we described in
the previous section is sufficient to ensure a common vo-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10532



cabulary between UI fragment developers and UI solution
developers (see Fig. 1). For the use of the properties in
the modeling of the UI submodel, however, according to
Sect. 2.1 a computational realization of their specification
is necessary. This will be discussed in Sect. 4.

As already suggested, not all properties are always re-
quired to describe a UI fragment. For example, the prop-
erty of the Represented Entity can be omitted if the
UI fragment is an elementary representation of only the
one component that contains the UI-Fragment. Other
properties can be considered redundant, e. g. the Applied
Design Guidelines Property is redundant to all re-
maining design properties, if the design guidelines already
contains these rules. Since this assumption cannot be en-
sured a priori and especially not, if the design guideline
is not known, the redundant properties, however, cannot
be ignored. Hence, it seems reasonable to specify and
use such properties even if they may be redundant to
other properties in order to always support a UI fragment
selection tool as best as possible.

Within a UI submodel, but also in the requirements for
the UI solution, a statement about the applicable or re-
quired value of a UI fragment property must be made (cf.
Sect. 3.2). To do so, it is necessary to assign at least one
data type to each property. For some properties, primitive
data types, such as a string, can be used. This is sufficient,
for example, for the UI Technology Identifier being repre-
sented by a string. For other properties, enumerated data
types can also be specified to simplify the creation of prop-
erty statements. However, not all property values can be
described using primitive data types, complex data types
such as references, lists, value ranges, and structured types
are also required. The Represented Entities property, as
the name implies, should be described as a list of references
to the represented entities (e. g. referencing AAS), since
a fragment can represent multiple entities and references
can be resolved unambiguously. Structured data types can
be used whenever multpiple statements need to be made
in combination, for example, to describe a representing
symbol property which requires to reference the symbol
together with the encoded concept.

3. STATE OF THE ART

3.1 UI Fragment Distribution using Components

Regarding existing industrial solutions on the distribution
of UI fragments by use of a process component, two stan-
dards are worth mentioning: the human machine interface
(HMI) of the Module Type Package (MTP) specified by
VDI/VDE/NAMUR 2658-2[37] and the Field Device In-
tegration (FDI) package specified by DIN EN 62769-2[16].

FDI provides a UI based on EDDL and WPF that provides
different variants for one process component only. These
variants are distinguished using a similar property to the
supported user task type, but only specifies three different
task types. Implicitly, the process component associated to
the package is considered as represented entity. Two other
properties regarding the context of use are provided: the
platform (desktop or mobile) and the user’s role (admin-
istrator or operator). Considering the technology neutral
design of the AAS, it seems not to be useful to specify the

UI submodel based on FDI since it depends on a specific
platform setup (interpreter and WPF required).

In contrast, the MTP-HMI specification is not limited
to any UI technology and provides an extensible UI de-
scription that constitutes process mimics for process mod-
ules. The technology of which (AutomationML) is very
similar to the data modeling approach of the AAS (cf.
Sect. 3.2 below). However, this package standard does
not support the provision of multiple UI fragments yet.
Different variants can only be created during the required
transformation step that makes use of properties similar
to the represented entity property in order to insert UI
Fragments into the mimics. However, the UI submodel
specification as presented in Sect. 4 can be used to extend
the MTP HMI description.

3.2 AAS Submodel Specification

The available literature on the AAS[3; 4; 32] provides hints
regarding the specification of submodels. A representative
excerpt of the proposed AAS metamodel concerning the
submodel specification is shown in Fig. 3. In the sub-
model, an arbitrarily nested data structure can be cre-
ated (by means of the class StructuralElement). Hereby,
the metamodel is completely generic, and hence, indepen-
dent from the concrete submodel. For a domain-specific
(i. e. submodel-specific) use of these data structures these
structural elements must be semantically tagged. For this
purpose semantic references[25; 32] (attribute semantics)
are used that assign a meaning to each structural element
and thus ensure an unambiguous interpretation of the data
structure. The semantic reference points to an external de-
scription of a knowledge unit (also referred to as concept –
a term agreed upon between parties[23]), e. g. a property
specification. The properties of the entities are described
by using property statements (class PropertyStatement).
The property statement assigns a concrete value (attribute
value) to a specific property which, however, can only
have primitive data types up to now. Again, a semantic
reference is used to indicate which property is meant.

semantics : String

StructuralElement

semantics : String

StructuralElement
PropertyStatement

semantics : String
value : Primitive

PropertyStatement

semantics : String
value : Primitive

AAS Metamodel (Submodel) External Semantics
Concept

id
Concept

id
Concept

id

Fig. 3. AAS Metamodel (representative excerpt) regard-
ing the submodel specification and the concept of
semantic references (left) using an external semantics
specification (right)

Various tools can be used for the external semantics
definition: In the industrial context, property catalogs
(also known as semantic dictionaries) have been estab-
lished, such as eCl@ss[17], CDD[26], ETIM[18], and others.
Within those catalogs, a series of properties is assigned to
classes of entities (e.g. the device class ’pump’ comprises
the property ’nominal power’ of the data type float). For
the description of an entity in the AAS, the semantic
reference of a structural element would point to the entity
class in the catalog. Furthermore, the structural element
would contain a series of property statements that in turn
point to the property specification in the catalog through

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10533



the use of their respective semantic references. Hence, an
entry in a property catalog can be sufficient to specify
the structure and content of the entire submodel, if the
submodel characterizes a single entity only by providing a
simple list of property statements as specified by a catalog
for the entity class.

For more complex submodels, in addition to the individual
properties, the structure of the submodel must also be
specified in order to establish the meaning of composed
structural elements. It has already been suggested to use
UML class diagrams[32] for the submodel specification as
their elements can be mapped to the AAS metamodel
(UML class to StructuralElement, UML attribute to
PropertyStatement, etc.). Other specification tools such
as EMF (Eclipse Modeling Framework[34]) software mod-
els, XML schemata[19], or ontologies[24] can also be used.
Using such tool, the entire semantics of the submodel and
its elements can be specified.

4. UI SUBMODEL DESIGN

In this section, we present our proposal for a submodel for
the component-based provision of UI fragments. Since sev-
eral UI fragments are to be described in the UI submodel
(see Fig. 1), a complex structure is required. Therefore,
the submodel specifications will be represented by using a
UML class diagram.

Due to the already suggested mapping of UML to AAS ele-
ments (cf. Sect. 3.2), all properties of a UI fragment would
need to be specified as attributes of a class that describes
the fragment. The identified properties however were also
found to be incomplete. Each time when further properties
are identified in the future, the UI submodel specification
would have to be modified. Therefore, it seems reasonable
to use UML for the specification of the submodel structure
only and to additionally develop a property catalog as a
separate tool that can be extended at any time without
changing the specification of the UI submodel.

Therefore, the following design is divided into two parts:
First, a suitable submodel structure must be defined (cor-
responds to left side of Fig. 3) and second, a property
catalog (corresponds to right side of Fig. 3) must be
developed based on a certain catalog tool.

4.1 Structure of the UI Submodel

Figure 4 shows our proposal for the structure of the
UI submodel. It is either realized by using the class
UIFragmentRepository with several UI fragments or the
class UIFragment for one fragment only. At first, each frag-
ment consists of at least one UIFragmentImplementation
object and a UIFragmentDescription object that carries
applied property statements. However, there are UI im-
plementation technologies available that support adapta-
tion mechanisms. One implementation may thus represent
multiple design variants, i. e. multiple UI fragments, at
once. Moreover, it is imaginable, not to understand the
mere implementation under the term UI fragment, but
the representation of a component in a UI. A UI fragment
may, thus, be realized by multiple implementations, each
relizing a UI fragment variant. Hence, a UI fragment may
consist of multiple implementation objects each of which

is described by at least one description object. The final
decision on how to organize the UI submodel can be
made by fragment developers. The only requirement is,
that the selection tool (cf. Fig. 1) determines a suitable
implementation of a UI fragment for subsequent tools.

The implementation is either provided by a download
link in the form of a URI (the implementation may be
provided from extern) or by direct access to a File
by means of the AAS (the implementation is shipped
with the I4.0 component). Due to the AAS metamodel
(cf. Fig. 3), a limitation has to be taken into ac-
count regarding the UI fragment properties: Value as-
signments in form of property statements are only ex-
pressed using primitive data types. Sect. 2.3, however,
states that complex data types such as lists, structures,
value ranges, or references are also required for UI frag-
ment properties. Therefore, the AAS metamodel class
PropertyStatement cannot be used if a concrete value
assignment is to be made for such a property. Instead,
a StructuralElement has to be used for a property
statement that, for example, in case of a list, contains a
PropertyStatement for each list entry. In the sense of
consistent modeling, a GeneralizedPropertyStatement
that contains PropertyValue objects is to be used to
describe the properties of a UI fragment until any ex-
tension of the AAS metamodel specification is made in
future developments. This generalized property statement
is able to describe primitive value assignments (classes
NumericValue, StringValue, etc.), but also complex ones
(class StructuredValue). Compared to the original prop-
erty statement as shown in Fig. 3, the generalized property
statement is also extended in accordance with the require-
ments in Sect. 2.3 to the effect that value ranges using
the minValue and maxValue references and lists of values
using the value reference can also be created. As with
the original property statement, the generalized property
statement is a generic data element without any meaning.
Therefore, it also refers to an external property definition
which is presented in Sect. 4.2 below by using a semantic
reference (attribute semantics – cf. Sect. 3.2).

In cases where a component is to be provided with a larger
number of UI fragment variants, we expect, also consider-
ing the large number of identified properties (see Sect. 2.2),
that some fragment descriptions will contain multiple iden-
tical property statements and only a few differing state-
ments. Hence, we have introduced the specialization
reference, allowing UIFragmentDescription objects to be
nested into each other. Thus, common properties can be
extracted into a superordinate description that is not nec-
essarily assigned to an implementation.

4.2 Property Catalog Specification

The most important requirements for property catalogs
are the ability to assign unique identifiers (referenceable
IDs, see Fig. 3) for the properties specified therein and to
ensure the availability of the specification to the modelers
and their modeling tools. This includes the modelers of
the submodels or the requirements for the UI solution (see
Fig. 1) and also the selection tool being part of the UI
development tools. The modelers must access the textual
representation and explanations of the catalog entries. The

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10534



fragments *fragments *

implementations *implementations *

ref

File

ref

File

uri:String

URI

uri:String

URI

descriptions* descriptions*

realization

1..* 0..1

realization

1..* 0..1

property* property*

*value *value

<<Submodel Root>>
UIFragmentRepository

<<Submodel Root>>
UIFragmentRepository

<<Submodel Root>>
UIFragment

<<Submodel Root>>
UIFragment

UIFragmentImplementationUIFragmentImplementation

StringValueStringValueNumericValueNumericValueStructuredValueStructuredValue

semantics : String

PropertyValue

semantics : String

PropertyValue

UIFragmentDescriptionUIFragmentDescription

0..1minValue 0..1minValue

0..1maxValue 0..1maxValue

semantics : String

GeneralizedPropertyStatement

semantics : String

GeneralizedPropertyStatement

...

specialization

*

specialization

*

Fig. 4. The proposed AAS UI submodel structure

design tools (e. g. the submodel editor) require access to
the formal specification of the data types of each prop-
erty in order to support the modelers. In the case of UI
fragments, these data types must allow the modeling of
primitive data types, but also more complex ones, such as
lists and structures (see Sections 2.3 and 4.1).

For the realization of a suitable property catalog, several
options are available according to Sect. 3.2. Existing cata-
logs such as the eCl@ss catalog could be extended with the
required properties. This however is typically not possible,
since the underlying tools (i. e. the catalog metamodels)
only allow to specify properties with primitive datatypes
(in the case of eCl@ss, see [2]). Some catalog tools are
based on the metamodel that is specified by the IEC
standard 61360[26], which also does not support complex
datatypes in general despite supporting ranges, lists, etc.

Therefore, in the context of the development of the UI
submodel, a separate catalog tool must be developed
and, based on this, the necessary catalog for UI fragment
properties. For the catalog tool, we decided to specify a
metamodel based on EMF[34], since it allows us to quickly
generate an appropriate catalog editor and other tools like
a generator for an online documentation for publishing our
catalog instances. The concrete specification of this catalog
tool, however, is not the focus of this contribution and will
hence not be discussed in detail.

In order to enable the use of the identified properties (see
Sect. 2.2) in a UI submodel, we created a UI-Frament-
Properties catalog. Since we expect certain aspects of this
catalog also to be useful in other contexts, we extracted
those aspects to separate catalogs. Thus, we created a
Tasks catalog specifying some task types that are used in
the Supported User Task Type property (see Sect. 2.2.1)
and a Domains catalog specifying some industrial do-
mains that are used in the View Domain property. Both
additional catalogs may, e. g., also be useful in the do-
main of task planning and modeling. All catalogs can be
reviewed online: https://agtele.eats.et.tu-dresden.
de/uimdf.

5. CASE STUDY

In a first case study we want to demonstrate that UI
fragments of process components can be used to create
complex representations according to the plant structure

and varying use cases that cause different fragments to
be selected. In cooperation with the company DAS En-
vironmental Experts GmbH (https://www.das-ee.com),
we have carried out a component-based UI design for an
off-gas abatement system of the company. Hereby, the task
of an abatement unit is to clean a process gas so that it
can be released into the atmosphere. The aim of of the
case study was to design screens for a monitoring system,
which would be used mainly at locations where multiple
abatement units are used. The screens are based on a site
plan (see Fig. 5a), in which various block representations
of the units are to be inserted. Among others, the units
provide UI fragments for nominal operations (see Fig. 5b),
for maintenance planning (see Fig. 5c), and for assessing
the consumption of electrical energy (see Fig. 5d). For the
commissioning and decommissioning of a plant, the site
plan should also show the connection of the units to their
respective peripherals. Taking into account that there are
not always 1:1 relationships between peripheral compo-
nents and an abatement unit, rather complex mimics have
to be created. Fig. 5e shows a case in which several units
are connected to one valve of the gas supply train. If the
gas supply is to be interrupted, for example to replace
a unit, this may not be possible until all units on this
segment have been switched off. By use of the view domain
property, the same task can be carried out for different
subsystems. For the fault diagnosis of an individual unit,
however, different supply systems (water, nat. gas, el.
power) must be taken into account at the same time (see
Fig. 5f). First, the three UI fragment versions b, c and d
can be assigned to the AAS of the abatement unit and
described by means of some properties from Sect. 2.2 (see
Tb. 1). The overview pictures 5e and 5f created based on
the generic site plan 5a as well as the empty site plan
itself can also be understood as UI fragments, too, and
thus, described in a superordinate AAS (see Tb. 2). The
selected UI fragment properties use references (symbol
→) to the aforementioned separated catalogs extensively.
Those references are realized using strings with resolv-
able identifiers as values in the submodel. Due to the
definition of the property in the catalog, the identifiers
can be validated so that the intended reference target
is checked. The submodel editor provides support to the
modeler by proposing possible values. Hence, the men-
tioned requirements (cf. Sect. 2) for the modeling tools
and the property specification are met. In this initial step
of a broader case study, the applicability of the identified
properties was demonstrated. However, the demonstration
of an automatic selection of the UI fragments, the detailed
demonstration of the UI submodel modeling, and the UI
solution requirements modeling remain for future works.

Table 1. Prop. Statements Fragments 5b, 5c,
5d. Symbols definition: ¬ Supported User Task
Type;  Represented Entities; ® View Do-
main; ¯ Applied Design Guideline; → refer-

ence to external object/definition

Prop. Statements 5b Statements 5c Statements 5d

¬ → supervision → monitoring → supervision
® ∅ ∅ → electrical energy
¯ [DAS UI Design Guideline Identifier]

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10535



(a) Site plan

A35-566

Keine
Verbindung

A35-566

Wartung 
durch:

DAS Service

A35-566

0slmBG:
0slmO2:

Standby

A35-566

W 023: HNPS 
Fluss zu 
gering

A35-566

AL 023: 
Vakuumpum

pe inaktiv

A35-566

20slmBG:
40slmO2:

Burner active

(b) Block State

A35-566

Wartung in:  
14 Tagen

A35-566

Wartung in:  
14 Tagen

97%

A35-566

Wartung in:  
4 Tagen

A35-566

Wartung in:  
4 Tagen

71%

A35-566

     Maintenance 
required!

A35-566

     Maintenance 
required!

14%

(c) Block Health

A35-566A35-566

478  m³ 

Frischwasser

Letzter Reset

15.08.2018

A35-566

478  m³ 

Frischwasser

Letzter Reset

15.08.2018

A35-566A35-566
11  m³ BG

Letzter Reset

09.04.2018

22  m³ O2

A35-566
11  m³ BG

Letzter Reset

09.04.2018

22  m³ O2

A35-566A35-566

68  kWh 

Power Consum pti on

Last Reset

2018/11/1

A35-566

68  kWh 

Power Consum pti on

Last Reset

2018/11/1

(d) Block Power

VBGO1

Axx-xxx A35-566

AL 023: 
Peripherial 

Error

A35-345

Status:
Active

A27-662

10slmBG:
20slmO2:

Status:
Active

(e) Gas Supply Train

VW4

ST2

VBGO1
A35-345   A35-566

20 slmBG:
0 psiH2O:

Status: Inactive

2kWPower:

(f) Unit Periphery

Fig. 5. Site plan and different UI fragments

Table 2. Prop. Statements Fragments 5a, 5e,
5f. Symbol definition, see Tb. 1.

Prop. Statements 5a Statements 5e Statements 5f

¬ → navigation
(in the plant)

→ commissioning → fault analysis

 → floor
→ DAS
Abatement
Type

→ A27-662
→ A35-566
→VBG01

→ A35-566
→ VW4
→VBG01
→ST2

® ∅ → gas supply →gas supply
→water supply
→el. power

¯ ∅ [DAS UI Design Guideline Identifier]
[DIN EN ISO 10628 Identifier] . . .

6. CONCLUSIONS

In this contribution, we have presented a first version of a
UI submodel specification for the I4.0 Component. Using
this model, several UI fragments can be provided for each
component and described by a list of formally specified
properties. In the future, the properties introduced in this
article can be used to identify and select an appropriate
variant using an automatic tool for inserting the fragment
into a UI solution. In order to be able to use the properties
within the generic UI submodel in an unambiguous way,
we have created several property catalogs. The definition
and description of UI fragments has already been tested in
a first case study for an industrial application. Thus, the
applicability of our approach has been demonstrated. The
metamodel of the UI submodel, the catalogs and related
tools have been combined to the UI Meta Description
Framework (UIMDF) which we intend to publish in the
repositories of our institute (https://gitlab.com/tud-
ifa) in the future.

Yet more research and development remains to be done:
We are not expecting additional effort for UI fragment

developers when integrating the use of fragment properties
into existing UI design workflows since the UI properties
can simply be seen as a formalization of the UI design
constraints which, in a proper UI design process, have to be
defined anyway. However, creating and maintaining multi-
ple UI fragments that may be needed in PnP scenarios for a
single component can be a resource-intensive process. Due
to the large number of available properties, the problem of
variant explosions quickly arises. Here, in addition to the
introduced feature of abstracting UI fragment descriptions
(cf. Sect. 4.1), further approaches have to be investigated,
for example in the field of model-based user interface
development[9] (MBUID). In this area, approaches al-
ready exist that allow the adaptation of a UI fragment
implementation to the current context of use through
parameterization[21]. For this purpose, properties must
also be specified describing the intended context of use of
a UI fragment. Unfortunately, there are very few publica-
tions that present formally specified context properties[28].
Therefore, in future works, appropriate properties have to
be specified and additional catalogs have to be created that
comprise properties for the description of the context of
use. In addition, the description of the requirements of the
UI solution and the realization of an automatic selection
algorithm are to be discussed. Because of the complex data
types that can be used in property statements, the com-
parison of property statement and requirement becomes a
non-trivial problem. Furthermore, the generation process
of the UI solution has to be considered, which may lead
to the specification of further UI fragment properties (e. g.
for parameterizing the UI fragment). Finally, we want to
investigate and refine the already identified properties in
further case studies.

ACKNOWLEDGEMENTS

We would like to thank the company DAS Environmental
Experts GmbH for the courtesy of sharing their insights
and Maksym Lebedyk for his work on the case study.

REFERENCES

[1] (2001). Fließschemata Für Verfahrenstechnische An-
lagen Allgemeine Regeln (ISO 10628:1997) Deutsche
Fassung EN ISO 10628:2000. DIN EN ISO 10628.
Beuth Verlag GmbH, Berlin.

[2] (2019). Property - wiki.eclass.eu. URL http://wiki.
eclass.eu/wiki/Property.

[3] 4.0, P.I. (2019). Verwaltungsschale in der Praxis.
Technical report, Plattform Industrie 4.0, VDI/VDE-
GMA.

[4] AG Referenzarchitekturen, Standards und Normung
(2016). Struktur der Verwaltungsschale.

[5] Akiki, P.A., Bandara, A.K., and Yu, Y. (2016).
Engineering Adaptive Model-Driven User Interfaces.
IEEE Transactions on Software Engineering, 42(12),
1118–1147.

[6] Bedenbender, H., Bentkus, A., Epple, U., et al.
(2017). Industrie 4.0 Plug-and-Produce for Adaptable
Factories: Example Use Case Definition, Models, and
Implementation. Technical report.

[7] Bevan, N. (2001). International standards for HCI
and usability. International Journal of Human-
Computer Studies, 55(4), 533–552.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10536



[8] Butz, A. and Krüger, A. (2017). Mensch-
Maschine-Interaktion. Walter de Gruyter GmbH,
Berlin/Boston, 2 edition.

[9] Calvary, G., Coutaz, J., Thevenin, D., et al. (2003). A
Unifying Reference Framework for multi-target user
interfaces. Interacting with Computers, 15(3), 289–
308.

[10] Denis, C. and Karsenty, L. (2004). Inter-Usability
of Multi-Device System - A Conceptual Framework.
In Multiple User Interfaces: Cross-Platform Applica-
tions and Context-Aware Interfaces. J. Wiley, Hobo-
ken, NJ.

[11] Deutsches Institut für Normen (2016). Referenzar-
chitekturmodell Industrie 4.0 (RAMI4.0). DIN SPEC
91345. Beuth, Berlin.

[12] Diaper, D. and Stanton, N.A. (2004). Wishing on a
sTAr: The Future of Task Analsysis. In The Handbook
of Task Analysis for Human-Computer Interaction,
603–619. Lawrence Erlbaum Associates, Inc., Mah-
wah, New Jersey.

[13] DIN-NAErg (2011). Ergonomie - Genereller Ansatz,
Prinzipien und Konzepte (ISO 26800:2011); Deutsche
Fassung EN ISO 26800:2011. DIN EN ISO 26800.
Beuth Verlag GmbH, Berlin.

[14] DIN-NAErg and DIN-NIA (2011). Ergonomie Der
Mensch-System-Interaktion - Teil 210: Prozess Zur
Gestaltung Gebrauchstauglicher Interaktiver Systeme.
DIN EN ISO 9241-210. Beuth, Berlin.

[15] DIN-NAErg and DIN-NIA (2017). Ergonomie
der Mensch-System-Interaktion – Teil 11: Gebrauch-
stauglichkeit: Begriffe und Konzepte (ISO 9241-
11.2:2016); Deutsche und Englische Fassung prEN
ISO 9241-11:2016. 9241-11. Beuth Verlag GmbH,
Berlin.

[16] DIN/VDE-DKE (2016). Feldgeräteintegration (FDI)
– Teil 2: FDIClient (IEC 62769-2:2015); Englische
Fassung EN 62769-2:2015. DIN EN 62769-2. Beuth
Verlag GmbH, Berlin.

[17] ecl@ss e.V. (2019). The eCl@ss-Standard. URL
https://www.eclass.eu/standard.html.

[18] ETIM International (2019). ETMI International.
URL http://community.etim-international.
com.

[19] Fallside, D.C. and Walmsley, P. (eds.) (2004). XML
Schema Part 0: Primer Second Edition. W3C Rec-
ommendation. W3C.

[20] Faulkner, S., Eicholz, A., Leithead, T., Danilo, A.,
and Sangwhan, M. (eds.) (2017). HTML 5.2. W3C
Recommendation. W3C.

[21] Freund, M., Martin, C., and Braune, A. (2016). A
Library System to Support Model-Based User In-
terface Development in Industrial Automation. In
M. Kurosu (ed.), Human-Computer Interaction. The-
ory, Design, Development and Practice. HCII 2016.,
volume 9731 of Lecture Notes in Computer Science,
476–487. Springer, Cham.

[22] Gorecky, D., Schmitt, M., Loskyll, M., and Zuhlke, D.
(2014). Human-machine-interaction in the industry
4.0 era. In 2014 12th IEEE International Conference
on Industrial Informatics (INDIN), 289–294. IEEE,
Porto Alegre RS, Brazil.

[23] Gruber, T.R. (1995). Toward principles for the design
of ontologies used for knowledge sharing? Interna-

tional Journal of Human-Computer Studies, 43(5),
907–928.

[24] Guarino, N., Oberle, D., and Staab, S. (2009). What
Is an Ontology? In Handbook on Ontologies, 1–17.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[25] Hildebrandt, C., Scholz, A., Fay, A., et al. (2017). Se-
mantische Allianz 4.0: Semantische Inhalte für Indus-
trie 4.0. In Automation 2017, volume VDI Berichte
2293, 262. VDI Verlag GmbH, Düsseldorf.

[26] International Electrotechnical Commission (2019).
IEC 61360 - Common Data Dictionary (CDD -
V2.0014.0016). URL https://cdd.iec.ch/cdd/
iec61360/iec61360.nsf.

[27] Limbourg, Q., Vanderdonckt, J., Michotte, B., et al.
(2004). Usixml: A user interface description language
supporting multiple levels of independence. Engineer-
ing Advanced Web Applications, 325–338.

[28] Loitsch, C., Weber, G., Kaklanis, N., et al. (2017).
A knowledge-based approach to user interface adap-
tation from preferences and for special needs. User
Modeling and User-Adapted Interaction, 27(3-5), 445–
491.

[29] NAMUR-AF1-AK NA 35 (2019). PLT-Planung und
-Abwicklung in der Prozessindustrie. Number NA 35
in NAMUR Arbeitsblatt. NAMUR, Leverkusen.

[30] Paternò, F. (2004). ConcurTaskTrees: An Engi-
neered Notation for Task Models. In D. Diaper and
N.A. Stanton (eds.), The Handbook of Task Analysis
for Human-Computer Interaction, 483–501. Lawrence
Erlbaum Associates, Inc., Mahwah, New Jersey.

[31] Paternò, F., Santoro, C., and Spano, L.D. (2009).
MARIA: A Universal, Declarative, Multiple
Abstraction-Level Language for Service-Oriented
Applications in Ubiquitous Environments. ACM
Transactions on Computer-Human Interaction,
16(4), 1–30.

[32] Plattform Industrie 4.0 (2018). Verwaltungsschale im
Detail - Part 1 - The exchange of information between
partners in the value chain.

[33] Schmidt, M., Löwen, U., Kalhoff, J., et al. (2016).
WFF - Wandlungsfähige Fabrik - Langfassung.

[34] Steinberg, D., Budinsky, F., Paternostro, M., and
Merks, E. (2009). EMF: Eclipse Modeling Framework
2.0. Addison-Wesley Professional, 2nd edition.

[35] Trenkle, A. and Furmans, K. (2016). Der Men-
sch als Teil von Industrie 4.0: Interaktionsmecha-
nismen bei autonomen Materialflusssystemen. In
B. Vogel-Heuser, T. Bauernhansl, and M. ten Hompel
(eds.), Handbuch Industrie 4.0 Bd. 3: Logistik, 45–59.
Springer, Berlin / Heidelberg, 2 edition.

[36] VDI/VDE-GMA (2014). Prozessführung mit Bild-
schirmen: Grundlagen. VDI/VDE 3699-2. Beuth Ver-
lag GmbH, Berlin.

[37] VDI/VDE-GMA (2018). Automatisierungstech-
nisches Engineering modularer Anlagen in der
Prozessindustrie - Modellierung von Bedienbildern.
Number 2658-2 in VDI/VDE/NAMUR-Richtlinien.
Beuth Verlag GmbH, Berlin.

[38] Wikipedia (2019). Windows Presentation Founda-
tion.

[39] Zühlke, D. (2012). Nutzergerechte Entwicklung von
Mensch-Maschine-Systemen. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10537


