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Abstract: This paper proposes a systematic identification process for the hybrid dynamical
system (HDS) estimating not only the coefficients but also the structure of the model.
Beneficially speaking, the proposed system identification is used for the HDS system that the
model structure, the number of modes, and the explanatory variables of the model are unknown.
In the proposed method, a quantitative index to evaluate the number of modes is deployed and
the optimal number of modes is determined from the measurement. The variable selection
method is also introduced to determine the explanatory variables in each mode in a systematic
manner. Two of piece-wise linear models which are prepared for the proposed system to identify
and the validity of the proposed method is then demonstrated. Finally, the result of the proposed
in comparison with the conventional system identification method for HDS is discussed.
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1. INTRODUCTION

The system identification is well known as an important
issue on the controller design in modern system control
theory. Especially, the need for the system identification
algorithm for complex nonlinear systems is increasing.
There are several approaches to identify the nonlinear
system. The first approach is based on the first principle
if the backgrounding physical phenomena of the system is
known. The second approach which is getting popular is
the use of machine learning technique. The neural network
which considerably improved with the development of con-
volution network is one of the most promising techniques
to imitate the input-output relation of the original system.
The third approach is the approximation of the original
complex behavior by using several more simple submodels.
This kind of system is known as the continuous/discrete
hybrid dynamical system (HDS) which consists of several
simple continuous dynamical models combined with the
discrete switching event.

In the past year, the identification of hybrid dynamical
systems (HDS) has been broadly discussed in many dif-
ferent contexts. One of the applications of the system
identification for the HDS is to represent the complexity
of human behavior in Choi and Farrell (2000), Kim et al.
(2005), Sekizawa et al. (2007), Akita et al. (2008), Okuda
et al. (2009), Okuda et al. (2012).While modern machine
learning-based control methods improve the performance
and robustness, they add-up complexity and it is not
possible to understand the underlying physical phenom-
ena of the system. On the other hand, it is confirmed

in these studies that the HDS identification technique
helps the understanding of human behavior thanks to
its simple structures and describability. Researchers have
investigated the properties of various model classes to iden-
tify HDS model properly in Ferrari-Trecate et al. (2003),
Bemporad et al. (2003), Roll et al. (2004). One of the
well-known class of HDS for the system identification is
the Piece-Wise Auto-Regressive system with eXogenous
inputs (PWARX). PWARX models are a generalization of
the classical ARX models, in the sense that the regressor
space is partitioned into a finite number of polyhedral
regions, wherein each region the input-output relation is
defined through an ARX model. PWARX model represents
a broad class of hybrid systems, they form a subclass of
piecewise affine (PWA) models, Sontag (1981), which is
under mild condition equivalent to other hybrid modeling
formalisms, such as mixed logic dynamics (MLD) systems
Bemporad (1999) and linear complementarity (LC) mod-
els, A. J v. d. Schaft and J.M. Schumacher (1996); W.
Heemels et al., (2000), and Hofbaur and Williams (2004).
However, the main limitation of these identification algo-
rithms is the requisition of a prior knowledge of the model
structure. The model structure must be known or decided
before starting the system identification process, in other
words. System identification technique is used sometimes if
the first principle modeling is not available since the prior
knowledge is not enough to describe the model. The system
identification approach can be more attractive when the
above drawbacks are overcame. In HDS, there are two
features to determine the structure of the model. The
first one is the number of modes or sub-models, which
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Fig. 1. Procedure of Systems Identification

is the most significant factor to identify the accurate HDS
model. Another feature is the designing of the explana-
tory variables. However, it is known that the model can
provide better performance if the model includes more
number of explanatory variables for the learning data,
despite its reduction of the advantages in simplifying the
model complexity to understand the physical phenomena
of the model and also in the model accuracy, for the
‘non-learning data’ from the over-fitting problem. In this
research, a new framework for the system identification of
hybrids dynamical systems focusing on the estimation of
the model structure is presented by extending the previous
HDS identification method based on the clustering Ferrari-
Trecate et al. (2003). In this paper, one of the class of HDS,
PieceWise AutoRegression eXogenous (PWARX) model is
examined. Its identification process starts with estimating
the feature vector from the raw data. All measurements
are partitioned into several submodels (modes) based on
the distribution of the computed feature vector. The main
difficulty in the automatic partitioning process is solved
by adopting the unsupervised clustering technique, which
consists of the ’weighted K-means’ algorithm with Davies
Bouldin Criterion (DBC). These techniques allow auto-
matic classification of the submodels that share similar
dynamics but are defined in different regions, which will
be shown in Example 2. After the mode classification is
done, the model structure in each mode, i.e. the selection
of the explanatory variables, is estimated by comparing
the model structure with Akaike Information Criterion
(AIC) to overcome the overfitting problem and estimate
the actual model structure. Once the model structure
and the mode assignment for all measurements have been
estimated, multivariate linear regression can be used to
estimate the parameter of PWARX model in each mode.
The proposed algorithm is tested for the mathematical
example of a PWARX model which has different variable
structures in each mode.

2. PROBLEM FORMULATION

For given a discrete-time nonlinear dynamic systems with
input Φk ∈ Rn, output y(k) ∈ R, A Piece-Wise Affine
(PWA) model establishes a relationship between observa-
tions Φ(k) and the predicted output y(k) in the form

y(k) = f(Φk) + εk (1)

in which εk ∈ R is Gaussian distributed error term with
mean µ and variance σ2, Φk∈ Rn is the regression vector,
and f : Rn → R is a PWA function of the following form:

f(Φk) =


θ1TΦ1(k) if Φ(k) ∈ R1

θ2TΦ2(k) if Φ(k) ∈ R2

...
...

θsTΦj(k) if Φ(k) ∈ Rs

(2)

With ϕ = φ1, φ2, φ3, ..., φk denoted as the set of the
entire input variables, and Φj(k) ∈ {ϕ} represented the
regressor vectors of mode j (j ∈ {1,2,...s}), where {ϕ} is the
vector which is the concatenation of the elements of the
set ϕ. {Ri}si=1 gives a complete partition of Φ(k) domain
R ⊆ Rn. Each region Ri is described by:

Ri =
{
ϕk ∈ Rn : Hi(Φj) �[i] 0

}
where Hi is a matrix that defines the partition {Ri}si=1.
The symbol �[i] denotes a vector whose elements can be
the symbols ≤ or <.
For easier understanding, we reinterpreted an example of
f(xk) as follow:

f(xk) =


θ11φ1 + θ13φ3 + ...+ θ1kφk if Hi(Φ1) ∈ R1

θ22φ1 + θ23φ3 + ...+ θ2kφk if Hi(Φ2) ∈ R2

...

θs1φ1 + θs4φ4 + ...+ θskφk if Hi(Φk) ∈ Rs

(3)

where the blank spaces indicate the explanatory variables
that are not used in the origin model. The identification
problem can be stated as follow:

Problem 1. Assume that the data set S = {(Φ(k), y(k)),
k = 1, ..., N} is generated from the PWARX model (3).
Automatically estimate the partition Ri, variables Φj(k)
and parameter vectors {θi}si=1 that characterizing the
PWARX model (3).

3. IDENTIFICATION PROCEDURE

In order to solve Problem 1., we proposed a framework
depicted in Fig. 1, composing of five main stages. Firstly,
feature vectors are estimated from the generated data.
Secondly, based on the estimated feature vectors, an auto-
matic identification of the structure of the target PWARX
is proceeded, including evaluating the optimum number of
submodels s then partition data into s different segments
(modes) using clustering technique. Then, for each sub-
models the influential variable is selected by the Variable
Selection method. Finally, the parameters of each selected
variable is being estimated by weighted- Least Square
method. In furtherance of illustrating such framework, we
will generate the following example:
Example 1.
Let the data be generated as PWARX linear systems with
3 variables, where:

f(xk) =


[ 1 0 0.5]Φ1(k) if Hi(Φ1) ∈ R1

[ 0 0.5 0.7]Φ2(k) if Hi(Φ2) ∈ R2

[ 1 1 −1.1]Φ3(k) if Hi(Φ3) ∈ R3

(4)

for which N = 500 of the input sample x(k) ∈ Rp sampled
from a uniform distribution, with µ = 1 and variance
σ2 = 0.1. The zero parameter terms corresponding to the
variables that does not contribute any effect in the original
model. The illustration data (y, φ1, φ2) is depicted in Fig.
2.
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Fig. 2. Generated measurements of targeting model in
φ1 − φ2 space.

Fig. 3. Plot of estimated feature vectors Ex.1

3.1 Estimate feature vector

In the first stage, we initiate a small local data set (LDs)
from the generated data. With the assumption that a PWA
map is locally linear, a small subsets of points x(k) that
are close to each other are likely to dwell in the same
region R̄i. For each datapoint (x(j), y(j) : j = 1, ..., N)
we build a LDs Cj collecting (x(j), y(j)) and the c − 1
distinct datapoint (x̃,ỹ) that satisfy:

||x(j)− x̃||2 6 ||x(j)− x̂||2 ∀(x̂, ŷ) ∈ S \Cj , (5)

where ||.|| is the euclidean norm. The vector of coefficient
θLDsj estimated from the data in Cj is computed by the
following equation:

θLDsj = (φTj φj)
−1
φTj yCj

, φj =

[
x1 x2 ... xc
1 1 ... 1

]
(6)

where xi are the vector of regressors belonging to Cj and
yCj

is the vector of the output sample in Cj . We also
calculate the mean value:

mj =
1

c

∑
(x,y)∈Cj

x, j = 1, ..., N (7)

Now, we consider the feature vector :

ζj = [(θLDsj )T ,mT
j ] ∀j = 1, ..., N. (8)

Fig. 3 shows a part of feature values distribution for
Example 1.

3.2 Estimate number of modes

The clustering technique is applied to make the segmen-
tation of the feature vectors into s classes, and criterion is
required to determine number of modes. Within this work,
Davies-Bouldin Criterion (DBC) is used to inspect the
optimum number of the cluster to output the optimized
number of submodels quantitatively .

DBC is constructed on the idea that the inter-cluster
separation as well as intra-cluster homogeneity and com-
pactness, should be high, Davies and Bouldin (1979) In

Fig. 4. DBC index for number of cluster Ex.1

Borber Outliners

Mode 3

Mode 1
Mode 2

Fig. 5. Plot of clustered feature vector Ex.1

Mode 3

Border Outliners

Mode 1

Mode 2

Fig. 6. Clusters of target PWARX system for Ex.1 in
φ1 − φ2 space.

this step the density and the distance of the sample points
are calculated, which contain the information of the den-
sity distribution leading to the optimum clusters. The
appropriate number of cluster number of cluster centers
is obtained through calculating the Davies-Bouldin value
of every clustering result and choose the one which has the
minimum Davies-Bouldin value.

s = argmin
1,2,...,N

VDB =
1

N

N∑
i=1

Pi (9)

where s is the optimal number of clusters and Pi is defined
as:

Pi = max(i 6=j)Pij , (10)

where Pij is the similarity measure between clusters Ri
and Rj , and is defined as:

Pij =
Si + Sj
Dij

, (11)

Si =

(
1

|Ri|
∑
x∈Ri

||x− µi||p
)1/p

, p > 0 (12)

where |Ri| is the number of vectors in cluster Ri and µi is
the center of cluster Ri, and:

Dij =

(
N∑
i=l

||vil − vjl||t
)1/t

, t > 1 (13)

where vi and vj are the centroids of the clusters Ri and
Rj respectively. According to DBC Theory, the minimum
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Fig. 7. AIC for mode 1 variables Fig. 8. AIC for mode 2 variables Fig. 9. AIC for mode 3 variables

value of DBC index refers to the optimum number of
cluster. Fig. 4 shows the Davies Bouldin values for different
number of cluster of the exampled PWARX system. For
Example 1. soptimum = 3 is obtained successfully.

3.3 Clustering feature vectors

The feature vectors are classified into s subsets after the
decision of optimum s. Normally, any clustering algorithm
can be used. However, within this paper, Ferrari-Trecate
et al. (2003) weighted K-means method is used. In the
weighted K-means method, the following cost function
considered:

J({Ri}si=1, {µ}si=1) =

s∑
i=1

∑
ζj∈Ri

wj ||ζj − µi||2 (14)

where µi are the centers of the cluster Ri, and with wj is
the weighting factor defined by:

wj =
1√

(2π)2n+1det(C)
(15)

with C is the covariance matrix constructed from empirical
covariance matrix and scatter matrix ?. The goal of
weighted K-means is to find the subset Ri and center µi
that minimize J .

The result of clustering algorithm implemented into Ex-
ample 1. is visualized in Fig. 5, 6.

3.4 Variable Selection

Variable selection is considered as a powerful method to
eliminate unnecessary variables out of the final model. For
example, during the motion of autonomous vehicle, it has
to keep on sensoring surrounding objects to measure in-
formation such as: relative position, velocity, acceleration,
steering angle, lane changing intention, and so on. The
number of information which can be measured will be
increasing in the case of the driving situation with many
surrounding cars. It is very wasteful to measure all these
variables as some of them do not contribute for the pre-
diction of surrounding cars. Furthermore, this reduction
of unnecessary information is beneficial when the obtained
model is analyzed to understand the principle underlying
model. In this research, the variable selection is adopted
to realize the reduction of unnecessary information. In
each region Ri, 2k − 1 models corresponding to all the
possible combinations of φ(k) are tested based on Akaike
Information Criteria:

AIC = N ∗ log

(
1

N

N∑
i=1

(yi − fj(φij))2
)

+ 2(nj + 1) +N ∗ (log(2π) + 1) (16)

where:
N : Number of data,
k : Number of candidates of input variables,
j : j ∈

{
1, 2, ..., 2k − 1

}
(All possible combinations),

nj : Number of input variables in combination j,
φij : Selected input vector of the i− th data,

yi : Output of the i− th data.

According to Akaike’s theory, the most appropriate model
can be obtained as the model that giving the smallest AIC
value.

For the Example 1., the result for variable selection are
shown in Figs. 7, 8, 9, and the obtained optimal PWARX
model structure is:

f(xk) =


θ11φ1 + θ13φ3 if Hi(Φ1) ∈ R1 (mode 1)

θ22φ2 + θ23φ3 if Hi(Φ2) ∈ R2 mode 2)

θ31φ1 + θ32φ2 + θ33φ3 if Hi(Φ3) ∈ R3 (mode 3)

(17)

3.5 Estimating parameter in each submodels

Now, the parameter estimation of each submodels in each
is achieved by using the weighted-Least Square Method
(weighted-LS), which minimizes the cost function:∑

φ(j),y(j)∈Rj

(y(j)− θkΦj(k))Twj(y(j)− θkΦj(k)) (18)

It can be seen in the formula (15) that weighted factor
wj is proportional to inverse of the square root of the
determinant of the covariance matrix C. This weight helps
to eliminate the effect of the outliner data points near the
border (showed in Fig. 5) in the parameter estimation step.
For each mode j = 1, 2, ...s the parameter is estimated
using the following weighted-Least Square formula:

θs = [(Φj(k))TWj(Φj(k))]−1Φj(k)TWj y(k). (19)

where Wj is the diagonal matrix of the weighted factor wj .

As the result of all processes we proposed, the following
PWARX models are successfully identified for the Exam-
ple 1:

θ1T = [ 1.0109 0 0.5001]

θ2T = [ 0 0.4999 0.7045] (20)

θ3T = [ 1.0202 1.0011 -1.0997]
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Fig. 10. Generated measurements of PWARX Ex.2

Fig. 11. DBC values for number of clusters Ex.2

4. EVALUATION OF SYSTEMS IDENTIFICATION

In this section, the proposed method is demonstrated
with another example that is made more complicated.
Example 2. The target model of identification is set as
follows:

f(xk) =
φ1 + 0.4 φ2 − 0.01φ3 + φ6 if Hi(Φ1) ∈ R1

φ1 + 0.4 φ2 + φ6 if Hi(Φ2) ∈ R2

− 1.2 φ3 + 7 φ4 + 3 φ6 if Hi(Φ3) ∈ R3

To generate the testing measurement, N = 500 of the input
sample x(k) ∈ Rn are sampled from an uniform distribu-
tion, with µ = 1 and variance σ2 = 0.1. The blank terms
corresponding to the variables that does not contribute
any effect in the original model. The result of proposed
identification procedure implemented to Example 2 are
visualized in Figs.(10),(11),(12),(13). And the variable se-
lection method and parameter estimation applied to the
target model for the three mode of target PWARX systems
is depicted in the following result Eq.(21). The white
boxes represent for explanatory variables eliminated by
AIC Model Selection.

θ1T = [1.0099 0.3991 -0.0066 � � 2.0127]

θ2T = [0.9999 0.4000 � � � 1.9999] (21)

θ3T = [ � � -1.1922 -6.9775 � 2.9780]

The results show in Figs.(10),(11),(12),(13) confirmed that
the proposed framework has successfully identified the
correct number of modes for the targeting PWARX sys-
tems. When comparing with the parameter obtained by
Ferrari-Trecate et al. (2003) technique, it is noticed that
the estimation of parameters without AIC, is not able to
produce the reliable model that contained the zero terms,
resulting in a set of vague parameters:

Example 1. Parameter Estimation without AIC:

θ1T = [ 1.0185 −0.0004 0.4951]

Mode 1

Mode 3

Mode 2

Border Outliners

Fig. 12. Plot of clustered feature vectors for Ex.2

Mode 3

Mode 1

Mode2

Border Outliners

Fig. 13. Clusters of target PWARX systems Ex.2

θ2T = [ 0.0031 0.5001 0.6999]

θ3T = [ 1.0085 0.9984 -1.1066]

Example 2. Parameter Estimation without AIC:

θ1T = [ 1.0186 0.4634 -0.0187 0.0133 0.0192 2.0523]

θ2T = [ 1.0488 0.4208 -0.0261 0.0058 0.0192 2.0642]

θ3T = [-0.0123 0.1155 -1.0127 -7.3775 -0.0044 3.1280]

In Example 1., it is noticed that conventional method
could not estimate the actual model structure for the
target PWARX systems. Even though the parameter φ11 =
−0.0004 and φ21 = 0.0031 seems meaningless since the
coefficients are very small, there is no reason to ignore
those explanatory variables. Of course the variable se-
lection can be done by setting appropriate threshold to
eliminate the variables. For example, the appropriate vari-
ables can be selected by setting the threshold, |θsj | < 0.02.
However, the result of Example 2., without AIC shows
that it is not possible to set the appropriate threshold ob-
viously. The parameter φ13 = −0.0187 which is meaningful
term and have to be included in identified model while
the parameter φ23 = −0.0261 that does not include any
information of the systems and should be eliminated in
the resulting model. In contrast, as the result shown in
Eq.(20) and Eq.(21), the proposed system identification
process could obtain the actual model structure success-
fully by applying the variable selection. Consequently, it
is confirmed that the variable selection method must be
included if the original model structure is not given. Gen-
erally speaking, the system identification technique is used
when the original model structure can not be estimated
from the first principle modeling. This means the model
selection have to be applied normally in the process of
HDS identification as proposed method.

Furthermore, in considering the system that containing
number of variables in hybrid systems, a compact model
representation with model selection is effective to avoid
the over-fitting problem and to reduce the computational
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burden in the application of the model. For example, in
the case of the driving behavior analysis introduced in the
section 1, the vehicle has to keep on surveilling its sur-
rounding objects or vehicles by analyzing their data, such
as relative velocity, acceleration, lane changing intention,
traffic signal, and so on. The number of variables multi-
plied with the number of vehicles gives a large number
of data to be analyzed. Therefore, it will become more
efficient if the insignificant variables to be unloaded from
the recognition and signal processing.

Another big contribution of this paper is an automatic
decision of the number of modes in HDS. Prior work by
Ferrari-Trecate et al. (2003), Bemporad et al. (2004) have
demonstrated the effectiveness by adopting the clustering
method in identifying PWARX model. However, these
studies can not be applied when the number of modes is
not given. Although, this assumption is hold for the sys-
tem identification or parameter estimation for the known
artificial system, the systematic approach to determine
the appropriate number of modes must be exploited for
more complex system such as human behavior. Another
approach to estimate the number of modes is using an
unsupervised clustering, such as hierarchical clustering
Okuda et al. (2012). This approach helps to know the
relationship of each modes for understanding the physical
meaning as model interpretation, however, the systematic
estimation of optimal sub-models segmentation is not con-
sidered, intuitively speaking the accuracy of such approach
cannot be verified in standard method, but rather expe-
rience of the author. The proposed method is expected
to provide more reliable and robust mode segmentation
without the prior knowledge on the decision of the nume-
ber of modes. In this research, the automated sub-models
identification by examining Dabvies-Bouldin Criterion has
shown a good result for both examples as it has shown the
precise number of modes for both simple and complex ex-
amples. We proposed the Davies Bouldin Criterion for the
balanced trade-off between the computational time and
precision. Specifically, for the same performance in sorting
the correct number of clusters, within our knowledge,
DBC usually gives the fastest result with satisfying pre-
cision, compared with the other method. Moreover, DBC
functioning similarly to an adjusted density over distance
inspecting index, it is expected that the increasing number
of data helps DBC inspecting better density corresponding
with the correct number of cluster. However, since it will
be a trade-off with the computing time, we recommend the
DBC index for the implementation of the system contain
the number of data point less than 10,000.

5. CONCLUSION

In this paper, a systematic framework to identify hybrid
system that contains unknown model structure, number
of modes, and explanatory variable, is presented. In the
proposed method, the quantitative index DBC had been
integrated to automatically decide the correct number of
models. Also the Variable Selection method is employed
to determine the explanatory variables in each mode in
systematic manner. Our results suggested that Variable
Selection is a valuable addition for the system identifi-
cation, due to its ability to explicitly eliminate trivial
factors from the system. The future work would be the

implementation of the proposed framework to analyze and
model driver behavior from real-world data as introduced
in Section 1.
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