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Abstract: State of charge (SOC) estimation for lithium-ion battery (LIB) is always a vital issue
for battery management system (BMS) of LIBs. Due to the complex nonlinear characteristics
of LIBs, data-driven model and estimation methods have been proposed. Among them, back
propagation neural network (BPNN) is one of the widely used machine learning (ML) method.
To enhance the performance of BPNN of LIBs, a fractional-order BPNN (FO BPNN) based
on fractional-order gradient method is designed for SOC estimation of LIB in this paper.
Moreover, temperature acting as key factor is also taken into consideration. Hence, the charging
or discharging current, voltage, and temperature are applied as the inputs of the proposed FO
BPNN, and SOC is obtained from the network. By Dynamic Stress Test (DST) experiments
under five different temperatures of four 18650 LIBs, it proves that the proposed FO BPNN is
able to estimate SOC of LIBs accurately in a data-driven way.

Keywords: Fractional-order gradient method, back propagation neural network, state of charge
estimation, lithium-ion battery, dynamic stress test.

1. INTRODUCTION

Lithium-ion Batteries (LIBs) are always the vital research
objects due to the increasing energy consumption in mod-
ern applications, especially electric vehicles (EVs), how-
ever, LIBs are fragile and ageing is always a concern.
Hence, state of charge (SOC) was proposed as a useful per-
formance index to illustrate current capacity information
of LIBs, and kinds of estimation methods have been de-
signed for SOC, such as the well-known ampere-hour (Ah)
method, and the open circuit voltage (OCV) measurement
(Chaoui and Gualous, 2016; Wei et al., 2017). On the one
side, monitoring and management of LIBs are faced with
adaptive or online estimation requirements for battery
management system (BMS) in EVs, and machine learning
(ML) technologies just satisfy the dynamic and robust re-
quirements (Zahid et al., 2017). Hence, data-driven models
and estimation methods are developed based on ML (Li
et al., 2019b). As a main investigated aspect of ML, several
types of neural networks (NNs) were applied to SOC
estimation, like back propagation neural network (BPNN)
with backtracking search algorithm (BSA) (Hannan et al.,
2018), and load-classifying NN. A specific NN, extreme
learning machine (ELM), is also widely used to determine
not only SOC of LIBs (Densmore and Hanif, 2016; Chin
and Gao, 2018), but also state of health (SOH) (Pan
et al., 2018) and remaining usage life (RUL) (Yang et al.,
2018). These ML algorithms for SOC estimation always
⋆ This work is supported by Nature Science Foundation of China
(NSFC) Grant No. 61873035.

considers several variables as inputs, like current, tem-
perature, power loss, and battery thermal factor through
measurement or infrared images (Zahid et al., 2018), and
take SOC as the only output. However, it is obvious that
the structure of these ML frameworks are not too flexible,
which may not satisfy the requirements of an online es-
timator or adaptive parameter networks for LIBs. Hence,
an enhanced NN for SOC estimation should be found.
On the other side, among all the SOC estimation re-
search of LIBs, fractional calculus has been applied to
present constant phase element (CPE) and Warburg el-
ement (Zhang et al., 2019; Nasser-Eddine et al., 2019),
which can reflect the mid-frequency reactions and low-
frequency diffusion dynamics, according to the electro-
chemical impedance spectrum (EIS) of LIB (Guha and
Patra, 2018). Moreover, fractional-order (FO) estimators
have been proposed, and one of main aspects are the series
of fractional-order Kalman filters (FO-KFs), such as ex-
tended KF (EKF) (Mawonou et al., 2019), adaptive EKF
(AEKF)(Zhu et al., 2018), and dual KF (Li et al., 2019a).
Among these advanced fractional-order methods of SOC
estimation, fractional-order NNs are still not employed for
LIBs. Hence, this paper combines fractional calculus and
NNs to build an improved and more flexible NN for SOC
estimation.
Based on the above introduction, this paper provides
a BPNN model improved by fractional-order gradient
method for estimating SOC of LIBs. With fractional-
order gradient method, the proposed BPNN can hold
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higher accuracy and robustness against disturbance of
measurement process, which is suitable for real-time SOC
estimation. The rest of this paper is divided into four parts:
basic knowledge including the introduction of BPNN and
fractional-order gradient method in section 2; the proposed
fractional-order BPNN for estimating SOC of LIBs in
section 3; the experiment results are provided to verify
the proposed fractional-order BPNN in section 4; finally,
some conclusions made in section 5.

2. BASIC KNOWLEDGE

2.1 State of Charge

SOC illustrates the remaining amount of available charge
Q(t) in a LIB, and can be expressed as the remaining
percentage of a reference capacity Qref as follows

SOC =
Q(t)

Qref
=

Q(t0)

Qref︸ ︷︷ ︸
SOC0

+

∫ t

t0
I(τ)dτ

Qref︸ ︷︷ ︸
∆SOC(t)

= SOC0 +∆SOC(t). (1)

where Q(t0) is the initial capacity, and I(τ) is the charging
or discharging current. In practice, the relaxation period
is too long thus cannot obtain SOC0 when LIB works
in dynamic applications. Hence, how to measure real-
time SOC is a key point of a adaptive BMS to prevent
overcharge or overdischarge.

2.2 Back Propagation Neural Network

NN algorithm generally consists of the applied model, the
optimal principle, and the strategy. BPNN has the multi-
layers structure as shown in Fig. 1, and the back propaga-
tion is the strategy based on the gradient method (Rumel-
hart et al., 1988). From Fig. 1, the network contains the in-
put layer with m neurons, hidden layers (h1, h2, ..., hl) with
np(p = 1, 2, ..., l) neurons, and output layer with q neurons,
separately. Suppose the trained data for this networks is
(xi,yi), i = 1, 2, ..., N , where xi = (xi1, xi2, ..., xim)T and
yi = (yi1, yi2, ..., yiq)

T are the input and the corresponding
ideal output. To simplify expression, vectors xi and yi are
presented as x and y. Let Wp and bp be the weights and
bias matrix connected the (p− 1)th hidden layer with the
pth hidden layer, and g(·) and f(·) be the activation func-
tions for the hidden and output layer. Then the forward
propagation process can be presented as

ap(x) = Wphp−1(x) + bp,
hp(x) = g(ap(x)), p = 1, 2, ..., l

(2)

where ap(x) = (ap(x)1, ap(x)2, ..., ap(x)np)
T is the input,

and hp(x) = (hp(x)1, hp(x)2, ..., hp(x)np
)T is the output

of the pth hidden layer, separately. The optimal principle,
also called loss function, is usually chosen as the conven-
tional square error function

L(f(x), y) =
1

2

N∑
i=1

(yi − f(xi))
2
. (3)

x1

xk

xm

W1

...
...

...
...

...
...

W2 W3

h1(x) h2(x)

f(x)

L(y, f(x))

b1 b2 b3

...

Fig. 1. Typical structure of BPNN with L hidden layers

For the back propagation of the neural network shown in
Fig. 1, the gradient calculation starts from the output layer
f(x), and can be divided into the propagation of layer
gradients, and the updates of weights matrix Wp and bias
vectors bp. The gradients of the pth hidden layer for the
kth, k = 1, 2, ..., N input sample are presented as

∂L(f(x), y)

∂hk
p(x)

= Wk
p+1

∂L(f(x), y)

∂akp+1(x)

∂L(f(x), y)

∂akp(x)
=

∂L(f(x), y)

∂hk
p(x)

· g′(akp(x))

= Wk
p+1

∂L(f(x), y)

∂akp+1(x)
· g′(akp(x))

(4)

where ∂L(f(x), y)/∂hk
p(x) and ∂L(f(x), y)/∂akp(x) are the

gradients of the output hk
p(x) and the input akp(x) of

the pth hidden layer, separately. Since the propagation
starts from the output layer, we suppose that the gra-
dients ∂L(f(x), y)/∂hk

t (x) and ∂L(f(x), y)/∂akt (x) of the
tth, (t = p + 1,p + 2, ..., l, l + 1) layer are already known.
Then the updates of the weights matrix and bias vectors
are presented as

W k+1
p = W k

p + η · ∂L(f(x), y)
∂W k

p

bk+1
p = bkp + η · ∂L(f(x), y)

∂bkp

(5)

where η is the learning rate of the weights matrix and bias
vectors. Combined with (2), (5) can be presented as

W k+1
p = W k

p + η · ∂L(f(x), y)
∂akp(x)

· hk
p−1(x)

bk+1
p = bkp + η · ∂L(f(x), y)

∂akp(x)

(6)

2.3 Fractional Order Gradient Method

Based on the BPNN introduced in section 2.2, the
fractional-order gradient method can be obtained. The
Caputo definition of the fractional-order derivative is em-
ployed in this paper as (Zhang et al., 2019)
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t0D
α
t f(t) =

1

Γ(n− α)

t∫
t0

f (n)(τ)

(t− τ)
α−n+1 dτ . (7)

where t0D
α
t represents the Caputo type derivative opera-

tor, n− 1 < α < n, n ∈ N+, Γ(α) =
∫∞
0

xα−1e−xdx is the
Gamma function, t0 is the initial time. (7) can be rewritten
as the following form (Sheng et al., 2019)

t0D
α
t f(t) =

∞∑
i=n

f (i)(t0)

Γ(i+ 1− α)
(t− t0)

i−α
. (8)

In this way, the corresponding fractional-order gradient
method for the updates of weights matrix and bias vectors
can be deduced from (5) as

Wk+1
p = Wk

p + η ·
∂αL(f(x), y)

∂(Wk
p )α

= Wk
p + η ·

∂L(f(x), y)

∂akp(x)
·
∂αakp(x)

∂(Wk
p )α

bk+1
p = bkp + η ·

∂αL(f(x), y)

∂(bkp)
α = bkp + η ·

∂L(f(x), y)

∂akp(x)
·
∂αakp(x)

∂(bkp)
α

(9)

From (9), the integer-order partial derivatives in (5) are
replaced by the fractional-order partial derivatives. It is
proved that the chain rule in (9) for fractional-order
partial derivatives is valid when the loss function is the
square error function in (3) (Sheng et al., 2019), while
it needs to be noted that this chain rule is not always
correct for all functions (Tarasov, 2016). In this way, the
update equations of the propagation of layer gradients
are still employed the integer-order ones in (4). Hence,
the propagation between layers are remained integer-order
ones, and the updates of weights matrix and bias are
designed as fractional-order ones.

3. PROPOSED FRACTIONAL ORDER BPNN FOR
LIBS

Based on the introduced fractional-order gradient method,
a fractional-order BPNN is designed for estimating SOC of
LIBs in this part. A simplified BPNN structure is chosen as
only one hidden layer, so that the fractional-order BPNN
includes an input layer, a hidden layer, and an output
layer. The activation functions for the hidden layer and
output layer are chosen as the log-sigmoid function

S(net) =
1

1 + e(−net)
. (10)

where net means the inputs of the hidden layer or the
output layer. The first order derivative of the log-sigmoid
function is S′(net) = S(net)(1 − S(net)). Hence, we can
assume the input and output of the hidden layer are

ak1(xi) = W k
1 xi + bk1 ,

hk
1(xi) = S1(a

k
1(xi))

(11)

Similarly, the input and output of the output layer are

ak2(xi) = W k
2 h1(xi) + bk2 ,

hk
2(xi) = f(xi) = S2(a

k
2(xi))

(12)

To make expression concise, S1(a1(xi)) and S2(a2(xi)) are
presented as S1 and S2. According to Section 2.2 and 2.3,
the updating equations with fractional-order gradients of
weights matrix can be derived as

W k+1
2 = W k

2 + η

N∑
i=1

(yi − S2)δ2 ·
∂αak2(xi)

∂(W k
2 )

α

W k+1
1 = W k

1 + η

N∑
i=1

(yi − S2)δ2W
k
2 δ1 ·

∂αak1(xi)

∂(W k
1 )

α

(13)

where δ2 = S2(1− S2), δ1 = S1(1− S1). Take i = 1 in (8),
then ∂αak

p(xi)

∂(Wk
p )α

, p = 1, 2 can be approximated as

∂αak2(xi)

∂(W k
2 )

α = hk
1(xi) ·

1

Γ(2− α)

(
W k

2 −W 0
2

)1−α

∂αak1(xi)

∂(W k
1 )

α = xi ·
1

Γ(2− α)

(
W k

1 −W 0
1

)1−α
(14)

where W 0
2 and W 0

1 are the initial values of W k
2 and W k

1 .
Take (14) into (13), we can obtain the discrete realization
of the weights updating equations in FO BPNN as

Wk+1
2 = Wk

2 +
η

Γ(2− α)

N∑
i=1

(yi − S2)δ2 · hk
1(xi)

(
Wk

2 −W 0
2

)1−α

Wk+1
1 = Wk

1 +
η

Γ(2− α)

N∑
i=1

(yi − S2)δ2W
k
2 δ1 · xi

(
Wk

1 −W 0
1

)1−α

(15)

The updating equations for the bias vectors are very
similar to (15), so it would not be presented here. After
designing the structure and iteration process of the FO
BPNN, the inputs for LIBs need to be considered. Fig. 2
and Fig. 3 are the available capacity of four 18650 LIBs
in five different temperatures, and the voltage and SOC
curves of one 18650 LIB under dynamic stress test (DST),
respectively. The rated capacity of the four 18650 LIBs
is 2Ah, and the rated voltage is 3.7V. From Fig. 2 and
Fig. 3, it is obvious that, not only the available capacity
but also the real-time voltages and SOC values are varied
in different temperatures. Hence, temperature needs to
be considered in the FO BPNN for SOC estimation.
Firstly, we have chosen three variables as the inputs of the
FO BPNN, that is, the charging or discharging current,
the voltage, and the temperature of LIB. Then, SOC
is considered as the desirable output of the FO BPNN.
Finally, the complete iteration process of the proposed FO
BPNN for LIB can be concluded as the following steps:
(1) Step 1: Initialization of parameters of the FO BPNN,

such as the initial values of weights matrix W 0
p , p =

1, 2, bias vectors b0p, p = 1, 2, learning rate η, and
fractional order α.

(2) Step 2: Collecting the experimental data from DST
as the current I, the voltage V , the temperature T ,
and the real SOC value. Then, the collected data is
divided into training, validation, testing data.

(3) Step 3: Calculate the inputs akp(xi), p = 1, 2 and
outputs hk

p(xi), p = 1, 2 of the hidden layer and the
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Fig. 2. The available capacity of four 18650 LIBs (rated
capacity = 2Ah) in five temperatures, that is, 15◦C,
25◦C, 30◦C, 35◦C, and 40◦C

output layer according to (11) and (12). Calculate the
output square error ek = 1

2

∑N
i=1 (yi − hk

2(xi))
2.

(4) Step 4: Back propagation from the output layer, and
calculating the integer-order partial derivatives

∂L(f(x), y)

∂hk
2(x)

=

N∑
i=1

(yi − S2),

∂L(f(x), y)

∂ak2(x)
=

N∑
i=1

(yi − S2)δ2,

∂L(f(x), y)

∂hk
1(x)

=

N∑
i=1

(yi − S2)δ2W
k
2 ,

∂L(f(x), y)

∂ak1(x)
=

N∑
i=1

(yi − S2)δ2W
k
2 δ1.

(16)

Then, updating the weights matrix W 0
p , p = 1, 2

and bias vectors b0p, p = 1, 2 according to (13).
(5) Step 5: Validation check, and verify the output square

error ek. If passing the validation check and ek satis-
fies the required value, go to Step 6; if not, go to Step
3.

(6) Step 6: Employing the testing data into the trained
FO BPNN to analyze the effectiveness of the proposed
FO BPNN.

It needs to be noted that the fractional order α of the
fractional-order gradient method is currently set up as 0.9,
while the influence of fractional order on the stability and
performance of networks is another worthy investigated
direction, we would conduct further research.

4. EXPERIMENT AND ANALYSIS

4.1 Experiment Setup

In this part, experiments are conducted to verify the
proposed FO BPNN, results with analysis are provided
in the following section. The four 18650 LIBs in Fig. 2
are considered as the tested objects and numbered as
“Bat1, Bat2, Bat3, Bat4”, and DST is conducted on the
BTS-4 series battery tester produced by Shenzhen Neware
Company to collect the data of current I, voltage V ,
and temperatures T . The employed 18650 LIB has 2Ah
nominal capacity and 3.7V nominal voltage. All the four
18650 batteries were fully charged by constant-voltage
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Fig. 3. The voltage and SOC curves of one 18650 LIB
under DST in five temperatures, that is, 15◦C, 25◦C,
30◦C, 35◦C, and 40◦C
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Fig. 4. The curves of current, voltage and SOC of Bat1 in
a typical DST period under 25◦C

constant-current method before DST. A typical DST lasts
360s, and the curves of charging or discharging current,
voltage, and SOC are shown in Fig. 4. It needs to be noted
that the real SOC values are calculated by ampere-hour
integral method on the BTS-4 series battery tester.
Considering the influence of temperatures on SOC estima-
tion, “Bat1-Bat4” are conducted the same DST process
under 15◦C, 25◦C, 30◦C, 35◦C, and 40◦C. Fig. 5 shows
all the recorded temperatures curves of the four batteries
“Bat1-Bat4”. It can be observed that four batteries were
tested under five temperatures, so that 20 groups of raw
data were collected. From Fig. 3, same battery in the
five different temperatures may present various behaviors,
especially in 15◦C and 25◦C. As shown in Fig. 5, since
the sampling time of BTS-4 series battery tester is 1s, the
voltages of LIBs would not change so fast and every group
of raw data is over 30000s. Hence, the 20 groups of raw
data were smoothed by a low pass filter to avoid over-
fitting of the FO BPNN, then the final preprocessed data
is reduced to about 6000s. After the preprocessing of the
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Fig. 5. The tempratures curves of the four batteries “Bat1,
Bat2, Bat3, Bat4” during the DST process under
15◦C, 25◦C, 30◦C, 35◦C, and 40◦C

20 groups of raw data, FO BPNN was trained based on
these data and the steps in Section 3.

4.2 Results and Analysis

Figure 6 shows the voltage and SOC curves of the four
18650 batteries under 25◦C, and it shows that the diversity
of various batteries are relatively small but also taken into
consideration. The FO BPNN is constructed in MATLAB,
which has the same feedforward process with the integer-
order BPNN, but the iteration equations of the weights
matrix were revised according to (13). The training func-
tion was designed as fractional-order gradient methods
with adaptive learning rate, to accelerate the convergence
process and reduce the iteration epoch.
Fig. 7 and Fig. 8 are the results of the FO BPNN to
estimate SOC of four 18650 LIBs. The hidden layer has
8 neurons, and the required performance error and the
validation checks are set as 0.005 and 6. After the pre-
processing by the filter, the input data including current
I, voltage V , and temperature T have 89731 points, which
are separated into 70% training data, 15% validation data,
and 15% testing data. Fig. 7 is the performance error,
which reached 0.0068819 at epoch 136 and was stopped
by the mean square error check. The training result of the
integer-order BPNN (IO BPNN) is also presented in Fig. 7
as a comparison to FO BPNN. It is obvious that the FO
BPNN has faster training speed and smaller error than IO
BPNN, which can only reach 0.00827.
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Fig. 6. The voltage and SOC curves of the four batteries
“Bat1, Bat2, Bat3, Bat4” during the DST process
under 25◦C
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Fig. 7. The performance error curve of the proposed FO
BPNN for SOC estimation of LIB, (a) FO BPNN, (b)
IO BPNN

To further illustrate the performance of FO BPNN, the
regression result is also provided in Fig. 8, which includes
the regression results of the training, validation, and
testing data, respectively. It can be obtained that the
regression coefficient of the testing data can be R =
0.98905, which illustrates that the proposed FO BPNN
can effectively estimate SOC for LIBs. Moreover, the
regression coefficients of both FO BPNN and IO BPNN are
listed in table 1. By comparison, the regression coefficients
of FO BPNN are smaller than those of IO BPNN as shown
in table 1. The regression coefficient of all data in FO
BPNN can reach 0.98942, which is relatively higher than
that of IO BPNN, which is 0.98796.

Table 1. The regression coefficients of both FO
BPNN and IO BPNN

Type Training Validation Testing All
FO BPNN 0.98949 0.98947 0.98905 0.98942
IO BPNN 0.98802 0.98742 0.98821 0.98796
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Fig. 8. The regression results of the proposed FO BPNN
for SOC estimation of LIB

5. CONCLUSION

Based on the fractional-order gradient method, this paper
presents a fractional-order BPNN for SOC estimation of
LIBs. While the structure and the integer-order updates
of layer gradients of integer-order BPNN remains, the
updating equations of weights matrix and bias vectors
are designed based on the fractional-order gradients. Since
temperature acts as an important role in SOC estimation
of LIBs, the proposed FO BPNN employs current, voltage,
and temperature as the inputs of the network. A detail
iterative process with six steps of the proposed FO BPNN
is provided in Section 3. DST experiments under five differ-
ent temperatures are conducted to verify the proposed FO
BPNN. Further research on the comparison of fractional-
order NNs to integer-order NNs are very necessary, such
as fractional-order recurrent NN and convolutional NN.
Moreover, the selection of fractional order, the influence
of learning rate and other parameters on the FO BPNN
are worthy of investigation.
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