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Abstract: This contribution presents an individualized multistage model predictive control (MS-MPC)
algorithm for blood glucose (BG) stabilization and improved postprandial BG control for people with
type 1 diabetes (T1D) with consistent meal patterns. The multistage formulation utilizes different meal
patterns as disturbance realizations entering the glucose-insulin system, then assesses the best possible
control input among all of the probable scenarios. The disturbance realizations, in the form of glucose
rate of appearance traces, are estimated by using meal records (time and carbohydrate amount) as
the input into an individualized oral model. Meal signatures are then clustered with the k-medoids
algorithm to obtain meal patterns. Two approaches, a hybrid closed-loop (HCL) and fully closed-
loop (FCL) MS-MPC were tested and compared with their respective control treatments (hybrid and
fully automated MPC, respectively) using the complete in silico adult cohort of the FDA-accepted
UVA/Padova metabolic simulator. Results confirm an improvement in both postprandial and overall
percent time in 70-180 mg/dL 85.2± 15.5 v. 89.6± 12.2 and 94.1± 6.3 v. 95.7± 5.0, respectively,
using the HCL approach, and 37.8± 15.7 v. 63.4± 16.6 and 65.8± 12.7 v. 82.2± 9.2, using the FCL
approach.P
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1. INTRODUCTION

In health, the pancreas regulates the production of insulin,
which allows for glucose to clear from plasma, and glucagon,
which stimulates the liver to release glucose into the blood. In
T1D, this precise feedback process is dysregulated. The pan-
creas does not produce insulin, leading to high blood glucose
(BG), also known as hyperglycemia. To prevent this, exogenous
insulin must be administered for life to maintain plasma glucose
levels within a safe range.

Treatment guidelines suggest that people with T1D calculate
an insulin dose at meal times based on carbohydrate counting
(CC) and their insulin therapy parameters American Diabetes
Association (2016); Tascini et al. (2018). Furthermore, to min-
imize the effect of ingested carbohydrates on glucose levels,
insulin should be ideally administered 15-20 minutes before
food Slattery et al. (2018). Results related to how accurate
people with T1D are at CC vary from study to study, but there
is a consensus that errors in CC are common in real-life. Deeb
et al. reported that children and adolescents are only able to
make accurate carbohydrate estimations for 67% of meals Deeb
et al. (2017). Another study showed that adults with T1D were
only able to estimate the carbohydrate content of foods within
a 5 gram range of the true amount 44% of the time Meade
and Rushton (2016). A survey by Lancaster et al. reported that

adolescents with T1D consider CC as a barrier to achieving
glycemic control Lancaster et al. (2010)

Postprandial glucose management remains a challenge for arti-
ficial pancreas systems (APS). In a hybrid closed-loop (HCL)
approach, inaccurate CC and parameters such as carbohydrate
ratio (CR) and insulin-to-carbohydrate correction factor (ICF)
have a meaningful impact on glucose control since insulin
underdose/overdose may arise Bally et al. (2017); Kovatchev
et al. (2017). Although promising results regarding fully closed-
loop (FCL) systems have been reported, balancing the con-
troller’s aggressiveness to mitigate meal-related glucose excur-
sions without increasing the risk of late hypoglycemia remains
an open challenge Dassau et al. (2013); Turksoy et al. (2016);
Bally et al. (2017); Colmegna et al. (2018); Sánchez-Peña et al.
(2018).

Meal anticipation could further improve APS postprandial con-
trol for both HCL and FCL systems. For example, Hughes et.
al. approached the issue of the delay between subcutaneous BG
measurements and the effect of insulin action, by anticipating
meals using a random meal profile Hughes et al. (2011). In
silico results from this paper showed that the HCL approach
that used meal anticipation and insulin boluses for announced
carbohydrates resulted in an attenuated postprandial BG excur-
sion when compared to open-loop control with meal boluses.
The action of the controller was regulated by the probability
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of the user skipping a meal causing the controller to be more
aggressive if there was less of a chance that the user chose not
to eat during one of the three meal windows (breakfast, lunch,
and dinner).

In Cameron et al. (2012), a methodology to detect and reject
meal disturbances is presented using a multiple hypothesis ap-
proach. This control framework uses multiple models to predict
BG values depending on the detected scenario. Each model has
different assumed inputs and current measurements are used as
a way of assessing which model’s input disturbances describe
the observed measurements most accurately. Prior probabilities
of the disturbance timing and magnitude are calculated based
on observation data of people’s eating habits. This information
allows for meals to be anticipated and detected more readily.
The authors showed 45% and 18% reduction in the 2 hour
prediction error (BG) when compared to an algorithm without
meal detection and with meal detection, respectively.

This work presents the following contributions:

(1) A method for creating individualized meal disturbance
profiles that can be used within the context of a MS-MPC
controller to anticipate the occurrence of meals.

(2) In silico results that illustrate how the use of anticipa-
tory disturbance profiles can mitigate postprandial hyper-
glycemia and achieve better glycemic outcomes overall
for people with T1D that exhibit consistent eating behav-
ior.

2. METHODS

2.1 Physiological model

In this work, we use the double triangular subcutaneous oral
glucose minimal model (dSOGMM), which is the original
SOGMM as presented by Patek et al. (2016), but with the
additions of triangular meal and insulin sub-systems. These
nonlinear dynamics can be represented as follows:

Ġ(t) =−Sg[G(t)−Gb]−SIX(t)G(t)+Ra(t) (1)
Ẋ(t) =−p2X(t)+ p2[I(t)− Ib] (2)

Q̇1(t) =−(km1 + kmd)Q1(t)+m(t) (3)
Q̇2(t) =−km2Q2(t)+ kmdQ1(t) (4)
İsc1(t) =−(k1 + kd)Isc1(t)+u(t) (5)
İsc2(t) =−k2Isc1(t)+ kdIsc1(t) (6)

İ(t) =−nI(t)+ IRa(t) (7)

with

IRa(t) =
k1Isc1(t)+ k2Isc2(t)

VI ·BW
(8)

Ra(t) =
km1Q1(t)+ km2Q2(t)

Vg ·BW
(9)

where G is the plasma glucose concentration (mg/dL), X is the
proportion of insulin in the remote compartment (mU/L), Q1
and Q2 are the glucose masses in the stomach and gut (mg),
Isc1 and Isc2 are the amounts of nonmonomeric and monomeric
insulin in the subcutaneous space (mU), I is the amount of
plasma insulin (mU/L), m is the input rate of mixed-meal car-
bohydrate absorption (mg/min), and u is the exogenous insulin
input (mU/min). Model parameters are defined in Table 1, in-
dicating which ones are fixed to population-level values, and

Table 1. Model parameters.

Symbol Meaning Value [Units]
Sg Fractional glucose effectiveness Estimated [min−1]
Gb Basal glucose 120 [mg/dL]
ub Mean insulin basal rate Subject-specific [mU/min]
Ib Basal insulin ub/(n ·Vi ·BW ) [mU/L]
Vg Distribution volume of glucose 1.7 [dL/kg]
SI Insulin sensitivity Estimated [min−1 per mU/L]
p2 Rate constant 0.02 [min−1]

km1 Rate constant 0.02 [min−1]

km2 Rate constant 0.01 [min−1]

kmd Rate constant Estimated [min−1]

k1 Rate constant 0.02 [min−1]

k2 Rate constant 0.02 [min−1]

kd Rate constant Estimated [min−1]

n Rate constant 0.178 [min−1]
VI Distribution volume of insulin Estimated [ L · kg−1]
BW Body weight Subject-specific [kg]
f Fraction of intestinal absorption 0.9

which ones are estimated from collected data. Concerning the
latter, the model is individualized following a similar procedure
as detailed in Garcia-Tirado et al. (2018).

2.2 Subject-specific Meal Disturbance Profiles

Meal disturbance profiles are generated based on the recorded
meal activity of a given individual. To create 24-hour behavioral
Ra signals, Ra,ant , the meal records for a given day are used to
generate a single trace that represents the rate of appearance
of the meals recorded by the patient. The glucose rate of
appearance over time defined in equation (9) is calculated using
the timing of meals and the carbohydrate content recorded by
the patient as an input, m, to equation (3). These daily signals
are grouped using the k-medoids clustering algorithm Kaufman
and Rousseeuw (2009). The value of k for each individual is
chosen based on what number of clusters, between 1 and 7,
produces the highest silhouette score Rousseeuw (1987). A
profile trace is then found by taking the average of the grouped
disturbance signals in a particular cluster at each point in time
during the day. The probability of a particular cluster, pi, is
found based on the cluster membership using the following
formula,

pi =
ni

∑
k
j=1 n j

(10)

where ni is the number of daily signals in cluster i and similarly
n j is the number of signals in cluster j. Figure 1 shows an
example of a what the meal profiles may look like for a
particular individual. It can be seen here that on the days
considered to generate these profiles the subject regularly had 3
large meals at roughly around 9 a.m., 1 p.m., and 7 p.m. Each
of the 5 profiles for this subject has an associated probability of
occurrence ranging from 12.7 to 29.1%.

2.3 MS-MPC for the AP System

MS-MPC was introduced by Lucia et al. (2013) as a robust
formulation of the MPC problem to deal with uncertain model
predictions. In the case of an APS, MS-MPC has already been
proven successful in mitigating exercise-related hypoglycemia
Garcia-Tirado et al. (2019a,b). Here, we propose to use the
same framework, but to inform the controller about likely future
meal disturbances. To this end, Equation (1) is modified as
follows:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16527



Fig. 1. Example of meal disturbance profiles for a particular
subject.

Ġ(t) =−Sg[G(t)−Gb]−SIX(t)G(t)+Ra(t)+ρRa,ant(t)
(11)

where the additive term Ra,ant is a meal signature built upon
the subject’s eating behavior, and ρ is an activation coefficient
to avoid the potential double counting effect of Ra and Ra,ant ,
as it will be shown later. In this regard, we formulate every
meal occurrence as a part of a scenario tree that appears in
the upcoming horizon. The scenario tree considered in this
work assumes robust horizon Nr = 1, meaning that the un-
certainty only branches at the beginning. In order to embed
model (2)-(11) into the MPC design, it is first linearized at
(uop,Gop)=(ūb,120), and later discretized with a sampling pe-
riod of 5 minutes. Thus, the following realization is obtained:
xi

k+1 = Axi
k +BIui

k +Bddi
k (12)

yi
k =Cxi

k = xi
k(1) (13)

where xi
k = δ [G,X ,Q1,Q2, Isc1, Isc2, I] ∈ R7 is the model state

vector, A,BI ,Bd ,C are the matrices of the discrete-time linear
system (12)-(13) with corresponding dimensions, ui

k,y
i
k ∈ R

are the insulin and glucose deviations from steady-state, and
di

k = Ri
a,ant ∈ R is the corresponding disturbance realization of

the uncertainty at stage k, with Ri
a,ant being the i-th realization

of the anticipatory meal signature for a given subject.

Bearing the above in mind, we formulate the following
MS-MPC problem that is solved at each step k:

min
ũi

k,η̃
i
k

φ
ms (14a)

s.t. xi
k+ j+1|k = Axi

k+ j|k +BIui
k+ j|k +Bddi

k+ j|k, (14b)

yi
k+ j =Cxi

k+ j, (14c)

umin ≤ ui
k+ j|k ≤ umax, (14d)

∆umin ≤ ∆ui
k+ j|k ≤ ∆umax, (14e)

ymin− yi
k+ j|k ≤ η

i
k+ j|k, (14f)

η
i
k+ j|k ≥ 0, (14g)

ui
k = ul

k, with i 6= l (14h)

∀ j ∈ NNp−1
0 ,∀i, l ∈ NNen

1 , where ũi
k = [ uk,uk+1 . . .uk+Nc−1 ]

i is
the control policy, and η̃ i

k =
[

ηk,ηk+1 . . .ηk+Np−1
]i is a policy

of slack variables (related to the soft constraints) optimized
at the i-th MPC through the control and prediction horizons
Nc and Np, respectively, considering a specific number Nen of
disturbance realizations. In (14), (14d) and (14e) ensure that
the control input and the difference ∆ui

k+ j|k = ui
k+ j|k−ui

k+ j−1|k

lie in the intervals [umin,umax] and [∆umin,∆umax], respectively;
and (14f) to (14g) are soft constraints on the output. The cost
function is defined as:

φ
ms =

1
2

Nen

∑
i=1

pi·[
Np−1

∑
j=0

(yi
k+ j|k− ri

k+ j|k)
T Qz(yi

k+ j|k− ri
k+ j|k)

+κ(η i
k+ j|k)

T (η i
k+ j|k)+

Nc−1

∑
j=0

λ (∆ui
k+ j|k)

T (∆ui
k+ j|k)

] (15)

where λ = 350/ub and κ = 100 are weights to prevent an ag-
gressive change in the control action and to avoid hypoglycemic
levels, respectively, and Qz, the weight on the difference be-
tween model prediction y and the evolution of the controller’s
reference r, is defined as:

Qz(IOB) =

{Q0 if IOB < 0
m · IOB+Q0 if IOB ∈ [0,TDI/α]
Q0/β if IOB > TDI/α

(16)

where m = α · (1 − β ) · Q0/(β · TDI), IOB is the amount
of insulin on board, TDI is the subject-specific total daily
insulin, Q0 = 10 is the value of Qz at basal insulin on board
(IOB), and α = 20 and β = 1000 are tuning parameters. In
this way, the controller is de-tuned at high IOB values to
prevent controller-induced insulin overdosing. This behavior
is particularly desired in a HCL approach where an insulin
bolus is manually administered at meal times to fully account
for the meal content. To enhance the safety of the algorithm,
the reference, r, is defined as the following asymmetric time-
varying exponential signal Boiroux et al. (2018); Garcia-Tirado
et al. (2019b):

rk+ j+1|k =

{
(yk− ysp) · e−(tk+ j+1−tk)/τr , yk ≥ ysp
0, yk < ysp

(17)

where τr = 10, ysp = 120 mg/dL is the BG target, and tk is the
discrete time. In this way, we enforce fast (from hypoglycemia)
and smooth (from hyperglycemia) returns to the desired glucose
concentration. Finally, in order to avoid the double counting
effect of meals in a HCL approach, we designed an activation
coefficient for Ra,ant , namely ρ . This coefficient will not empha-
size the anticipatory pattern when a meal is occurring. To this
end, the coefficient is built as a function Q1 and Q2 as follows:
ρ(Q1,Q2) = e−γ(Q1+Q2) (18)
where γ = β2 · ln(100)/TDC, TDC is the subject-specific total
daily carbohydrate, and β2 = 20 is a parameter to regulate the
decay constant of ρ .

3. IN SILICO STUDIES

3.1 Experimental Design

We performed two closed-loop experiments using all 100 adults
in the UVA/Padova simulator Visentin et al. (2018) with a meal
behavior extracted from a representative real subject. In the first
experiment, the in silico subjects administered a bolus at meal
times using their subject-specific carbohydrate to insulin ratio
(HCL). In the second experiment, the subjects did not announce
meals to the controller and no meal boluses were delivered
(FCL). The MS-MPC controller was compared to a regular
Model Predictive Control (rMPC) that was not informed by the
meal disturbance profiles.
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Table 2. Glucose metric results from the HCL experiment.

Overall Postprandial
rMPC MS-MPC p-value rMPC MS-MPC p-value

Mean BG (mg/dL) 127.2 ±(6.7) 121.8 ±(6.1) < 0.01 148.5 ±(15.0) 140.4 ±(13.9) < 0.01
BG Standard Deviation (mg/dL) 25.7 ±(8.6) 24.3 ±(8.3) < 0.01 25.6 ±(7.8) 25.6 ±(8.1) 0.94
Time <54 mg/dL (%) 0.0±(0.0) 0.0±(0.0) 0.57 0.0±(0.0) 0.0±(0.0) -
Time <70 mg/dL (%) 0.3±(0.5) 0.4±(0.6) < 0.01 0.1±(0.1) 0.1±(0.1) 0.02
Time 70-140 mg/dL (%) 75.9±(9.9) 81.3±(9.4) < 0.01 44.2±(19.1) 56.6±(19.4) < 0.01
Time 70-180 mg/dL (%) 94.1±(6.3) 95.7±(5.0) < 0.01 85.2±(15.5) 89.6±(12.2) < 0.01
Time >180 mg/dL (%) 5.6±(6.0) 3.9±(4.6) < 0.01 14.7±(15.5) 10.3±(12.2) < 0.01
Time >250 mg/dL (%) 0.2±(0.6) 0.1±(0.4) 0.04 0.5±(1.6) 0.4±(1.1) 0.04

Table 3. Glucose metric results from the FCL experiment.

Overall Postprandial
rMPC MS-MPC p-value rMPC MS-MPC p-value

Mean BG (mg/dL) 165.8 ±(19.4) 140.7±(11.2) < 0.01 202.1±(24.9) 170.6±(18.4) < 0.01
BG Standard Deviation (mg/dL) 50.3±(12.9) 41.3±(10.2) < 0.01 46.8±(12.6) 41.7±(10.3) < 0.01
Time <54 mg/dL (%) 0.0±(0.0) 0.0±(0.0) - 0.0±(0.0) 0.0±(0.0) -
Time <70 mg/dL (%) 0.0±(0.0) 0.3±(0.4) < 0.01 0.0±(0.0) 0.1±(0.1) < 0.01
Time 70-140 mg/dL (%) 43.9±(10.7) 60.8±(8.7) < 0.01 11.1±(4.7) 27.4±(10.0) < 0.01
Time 70-180 mg/dL (%) 65.8±(12.7) 82.2±(9.2) < 0.01 37.8±(15.7) 63.4±(16.6) < 0.01
Time >180 mg/dL (%) 34.2±(12.7) 17.5±(9.1) < 0.01 62.2±(15.7) 36.5±(16.6) < 0.01
Time >250 mg/dL (%) 8.8±(8.7) 2.7±(3.4) < 0.01 17.7±(15.2) 6.3±(7.6) < 0.01

In both experiments, the meal record for the representative real
subject was split into training (75%) and testing data (25%),
i.e., 55 days for training and 18 days for testing, randomly
selected for every test subject. Meal disturbance profiles and
probabilities were generated using the meal record from the
training data and individualized oral glucose model described
in Section 2.

The patient records from the testing days defined the meal
regimen that was used in the simulation experiment. The meal
amounts for the test meals were scaled based on the in silico
subject’s body weight. For the HCL experiment, meal boluses
were calculated based on the estimated carbohydrate amounts,
subject to estimation error, of a given meal and the in silico sub-
ject’s personalized carbohydrate ratio. Carbohydrate estimation
error was uniformly distributed and ranged ±25% of the true
value, and hypoglycemia treatments of 15 grams of carbohy-
drates were administered every 15 minutes when BG was below
70 mg/dL. The carbohydrate estimation error and timing was
the same for meals used as the input for the simulation for both
control and experimental controllers.

To compare the performance of the MS-MPC (HCL and FCL)
with the rMPC, glucose metrics defined in Danne et al. (2017)
were considered for all of the testing data as well as the 3 hour
period after each meal (postprandial period). Additionally, the
mean number of hypoglycemic events where BG was < 70
mg/dL and peak BG following meals were computed. Statis-
tical significance was determined from the paired t-test.

3.2 Results

HCL Overall For all of the data, there were significant
differences in the rMPC and the MS-MPC in terms of all of
the metrics considered except for percent time spent below 54
mg/dL. The effectiveness of the MS-MPC is largely shown in
the 5.4% increase in the percent time spent greater than 70 and
less than 140 and the reduction in mean BG from 127.2±6.7 to
121.8±6.1 mg/dL. There was a modest (1.6%) increase in the
percentage of time where BG was greater than 70, but less than

180 mg/dL. There was also a reduction in the percentage of time
where BG was greater than 180 from 5.6% to 3.9%. There was
a significant increase in the number of hypoglycemic events
between the two controllers, with the rMPC averaging 0.07 per
day whereas the MS-MPC had a mean of 0.45 hypoglycemic
events per day. The overall results from the HCL experiment
are shown in Table 2.

HCL Postprandial The effect of the meal anticipation is more
clearly seen when BG in the 3 hour window following the meals
is considered. During the postprandial period all the metrics,
except for percent time spent below 54 and the standard devi-
ation of the BG values were significantly different between the
rMPC and the MS-MPC. On average postprandial BG was 8.1
mg/dL less when the MS-MPC was used. There was also an
increase in percent time spent in the 70 to 140 mg/dL range
from 44.2% to 56.6%. Additionally, there was a 4.4% increase
in time spent between 70 and 180 mg/dL and a decrease of
4.4% in the percentage of time where BG was greater than
180 mg/dL. We also considered the peak BG value in the 3
hours following the meal and observed that the MS-MPC had
a lower peak, 217.3, than the rMPC which had a peak BG
value of 222.1 mg/dL. The postprandial results from the HCL
experiment are fully displayed in Table 2.

FCL Overall When meals were not announced in the FCL
experiment there was a more noticeable difference in the per-
formance of the rMPC and MS-MPC overall. During this ex-
periment, all metrics considered were significant except for
percent time when BG was less than 54 mg/dL. Mean BG was
25.1 mg/dL lower when the meal disturbance profiles were
used (140.7± 11.2 vs. 165.8± 19.4 mg/dL). The MS-MPC
also demonstrated an improved percentage of time spent in the
70 to 140 and 70 to 180 mg/dL ranges. This can largely be
attributed to the 16.7% reduction in the amount of time when
BG was greater than 180 mg/dL. On average a subject using the
MS-MPC would experience 0.33 hypoglycemic events per day
versus none if they were to use the rMPC. The overall results
from the FCL experiment are shown in Table 3.
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Fig. 2. Box-plots of the overall (left) and postprandial (right) percentages of time in the range 70-180 mg/dL achieved with each
control strategy for all in silico subjects. Bottom and top edges of the boxes are the 25th and 75th percentiles, respectively, the
vertical lines correspond to 99.3% coverage, and the dots indicate the outliers.

Fig. 3. Top subplot shows one-day-long glucose traces for one subject during experimental conditions. Green: HCL with meal
anticipation; red: HCL without meal anticipation; cyan: FCL with meal anticipation; and blue: FCL without meal anticipation.
Bottom subplot shows the insulin delivery for each of the control strategies. Magenta dashed line represents the subject-
specific basal rate profile, and arrows, insulin boluses delivered at meal times under HCL.

FCL Postprandial In the postprandial period, the differences
between the two controllers is even more pronounced. In the 3
hours following the meals all metrics, except for percent time
spent less than 54 mg/dL, were significant. The MS-MPC had
a mean postprandial BG of 170.6± 18.4 compared to 202.1±
24.9 mg/dL when the rMPC was used. Here, there was also a
5.1 mg/dL reduction in the mean standard deviation of the BG
values that the in silico subjects experienced. When the percent
time spent in the 70 to 140 mg/dL range was considered, the
MS-MPC had a percent time in range of 27.4% whereas the
subjects were only in this range 11.1% when the rMPC was
used. There was also a 25.6% increase in the percentage of
time where BG was greater than 70 and less than 180 mg/dL.
This can be attributed to the similar (25.7%) decrease in the
amount of time that subjects’ BG was above 180 mg/dL. When
the subjects used the MS-MPC they had a reduction of peak

postprandial BG from 329.6 to 292.6 mg/dL. The results from
the postprandial glucose excursion in the FCL experiment are
presented in Table 3.

Box-plots comparing the percentage of time in the 70-180
mg/dL ranged obtained with each of the analyzed strategies (i.e.
FCL and HCL) with and without anticipation, is depicted in
Figure 2. Figure 3 shows an example of BG values and insulin
delivery for a representative virtual subject. It can be seen here
that BG is controlled the best when MS-MPC is used with meal
announcements and the worst when no meal announcements
were made to the rMPC controller.

4. CONCLUSION & FUTURE WORK

The MS-MPC strategy outlined in this work was able improve
glycemic control compared to our standard MPC strategy with
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and without meal announcements. Though this approach did
lead to a slight, but statistically significant, increase in the
percent time where BG values were less than 70 mg/dL and
produced more hypoglycemic events on a daily basis that re-
quired treatment. The HCL with and without meal profiles out-
performed the FCL system with the meal profiles, but requires
the user to input carbohydrate amounts at each meal which
is burdensome and could results in consequences related to
inaccurate carbohydrate counting.

In future work, we intend on expanding the number of scenarios
that this strategy is tested under to include a broader range of
eating behaviors and variations in insulin sensitivity. Addition-
ally, we will evaluate how exercise should be considered and
what safeguards need to be put into place to ensure user safety.
Furthermore, we will develop a more sophisticated strategy to
determine the probabilities of each profile that uses current
information of dynamically shift the likelihood of a particular
disturbance.
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