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Abstract: In part I of the paper the problem of distributing potential games over undirected
graphs was formulated. A restricted information potential game was designed using state-based
formulation. Here, learning Nash equilibria for this game is studied. An algorithm is developed
with mainly two phases, an estimation phase and a learning phase. The setting allows for
available learning methods of the full information game to be directly incorporated in the
learning phase. The result matches the outcome (i.e. converges to the same equilibria) of the
full information game. In addition, the design takes into account considerations of convergence
time, and synchrony of actions update. The developed distributed game and learning algorithm
are used to solve a platoon matching problem for heavy duty vehicles. This serves two objectives.
First, it provides a motivation for the presented gaming results. Second, the problem addressed
can facilitate platoon matching where it provides a basis for an on-the-go strategy.
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1. INTRODUCTION

Learning equilibria earned significant attention in litera-
ture of game theory Fudenberg and Levine (1998), Young
(2005). In engineering applications one can identify several
classes of learning algorithms. For example classes based
on information include, full information where agents know
structural form of their own utilities, and are able to
observe all others’ actions; oracle-based information where
agents can evaluate their own utility values for all possible
actions; and pay-off based where agents can observe their
actions and payoffs. The learning algorithm presented in
this paper can be seen as part of communication-based
information class where agents exchange information with
local neighbours.

Several learning algorithms have been developed for po-
tential games Lã et al. (2016). Standard algorithms in-
clude best and better reply dynamics Nisan et al. (2008).
Fictitious play is an example of an algorithm based on
full information, and joint strategy fictitious play is an
example of an oracle-based information algorithm Marden
et al. (2009). The issue of convergence to specific equilibria,
such as maximizers of potential functions, has been han-
dled by algorithms like log-linear dynamics and its deriva-
tives Marden and Shamma (2012). The learning algorithm
developed here allows for full information algorithms for
potential games to be directly applied to the distributed
potential games. The algorithm is composed of two phases.
An estimation phase where the game converges to its
full information counterpart, and a learning phase where

equilibrium convergence properties of the full information
game can migrate to the restricted information one.

Consecutively, the distributed potential game will be used
to solve a platoon matching problem for heavy duty trucks.
Truck platooning has acquired significant attention in
recent years due to demonstrated potential for fuel sav-
ings Browand et al. (2004), Tsugawa et al. (2016) Bishop
et al. (2017). In addition, platooning can have other bene-
ficial aspects on traffic, safety, drivers and on the environ-
ment Davila et al. (2013), Alam et al. (2015).

One of the main challenges of platooning is the match-
ing problem, i.e. how to decide when, where and with
whom to platoon. Several strategies have been used to
solve this problem, and one could distinguish two main
solution classes: centralized and game theoretic. Central-
ized solutions rely on formulating the problem as a cen-
tralized optimization problem with a goal of minimiz-
ing/maximizing global objective functions. In game the-
oretic solutions agents are modeled as competing agents
seeking to optimize individual profit functions. Several
approaches have been proposed in literature for the cen-
tralized methods. The main challenges such approaches
would face are related to the size of the problem, com-
patibility of goals and information sharing. A platooning
problem involves a large number of agents with a larger
number of solution variables, e.g. time and road plans
parameters, driver parameters (rest times, work loads,
restrictions, salaries), and vehicles parameters (mass, size,
braking and communication capabilities), which can yield
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a centralized solution intractable. Another challenge for
centralized platoon matching is related to incentives. Goals
for agents belonging to different fleets or operators can be
difficult to consolidated in a common one. Similarly, in
that context, those agents might not be willing to share
the necessary information for a global solution, or this in-
formation cannot be shared for a different reasons such as
lake of communication. Different centralized solutions for
platoon matching have been proposed in literature Larsson
et al. (2015), Liang et al. (2016), van de Hoef et al. (2018).

The game theoretic approach for platoon matching has
received lesser attention. Two results are cited here.
In Farokhi and Johansson (2013) a platoon matching prob-
lem of a group of trucks with the same origin and destina-
tion was modeled as a non-cooperative game. Platooning
decisions were made by varying departure times where
each agent tries to minimize its travel cost. In Johansson
et al. (2018) a problem was addressed where the vehicles
do not necessarily have the same destination. Instead,
they may have different plans (with the same origin) on
a road network defined by a graph with tree topology.
A strategic potential game was developed where agents
strategies (actions) are their departure times, and their
utility functions are defined as the difference between sav-
ings from platooning, and the cost of deviations from the
preferred departure times. The development here presents
a way to generalize those results to a setting that can
handle general networks where trucks don’t share the same
origin. This could mean that complete strategy sharing is
not possible, and hence the utilization of the previously
developed restricted information game.

The paper is organized as follows, The distributed poten-
tial game developed in part I is reviewed in Section 2. The
learning algorithm for this game is developed in Section 3,
and the the platoon matching application is presented in
Section 4. Conclusions are provided in Section 5.

2. THE DISTRIBUTED POTENTIAL GAME

In part I of the paper the problem of distributing potential
games over communication graphs was defined as follows.

Consider a strategic form potential game Lã et al. (2016)

g = 〈N , (Si)i∈N (ui)i∈N 〉 (1)

with potential function φ : S → R, and suppose that each
agent i ∈ N can access the strategies of only a subset Ni

of the agents according to a connection graph G under the
following assumptions.

Assumption 1. G is an undirected graph. If agent i sees
agent j according to G then agent i has access to the full
strategy profile as seen by agent j. It is not assumed that
agent i has access to Nj .

Assumption 2. For all i ∈ N , j ∈ Ni passes on to i all the
values it receives for si from the other agents in Nj .

By distributing the potential game g on the graph G, it is
meant to

• find new utility functions and Φ(S, ·) with codomain
R, satisfying Assumptions 1 and 2, and utilizing if
possible the full information utility functions and
the potential function φ, such that in some sense

(determine what) the game is a potential game with
potential function Φ; and

• determine the Nash equilibria for the new game.

The distributed potential game on G is defined as follows.

Let e = (e1, · · · , en) ∈ (Rn)n ((Rn)n := R
n × · · · × R

n)
define the estimation profile, where ei = (ei1, · · · , e

i
n) is

agent’s i estimate of the joint strategy profile s.

Assumption 3. For j ∈ Ni, eij = sj , i.e. agent i only
estimates the strategies of the agents it cannot see.

g distributed over G is given by a state-based game 1

G = 〈N ,X ,A, (vi)i∈N , f〉

where

• the state of the game is defined as x = (s, e), the state
space is given by X = S × (Rn)n, and the individual
state is xi := (si, e

i);
• each agent’s actions is a set ai = (ŝi, ê

i
j |j∈N\Ni

) where
ŝi indicates some change in the agent i strategy si,
and êij indicates some change in the agent’s estima-

tion strategy eij ;
• the joint action profile is defined as a = (ŝ, ê) where
by Assumption 3, êij = ŝj , for all j ∈ Ni, i ∈ N ; and

• the state transition function is defined as f = (fs, fe)
where the ensuing state x̃ = (s̃, ẽ) is given by

s̃ = fs(s, ŝ), ẽ = fe(e, ê)

with ẽij = s̃j, for all j ∈ Ni.

By choosing utility functions

vi(x, a) =
∑

k∈Ni

ui(s̃j |j∈Nk
, ẽkj |j∈N\Nk

)

− α
∑

k∈Ni

∑

l∈Nk

p
(

s̃i − ẽkl
)

− α
∑

k∈Ni

∑

j∈N\Ni

p
(

ẽij − ẽkj
)

(2)

where α > 0 and p : R → [0,∞), it was shown in
Proposition 8 of part I that G is a potential game 2 with
potential function

Φ(x, a) =
∑

i∈N

φ
(

s̃j |j∈Ni
, ẽij |j∈N\Ni

)

−
α

2

∑

i∈N

∑

k∈Ni

∑

j∈N\(Nk∪Ni)

p
(

ẽij − ẽkj
)

− α
∑

i∈N

∑

k∈Ni

∑

j∈Nk\(Nk∩Ni)

p
(

ẽij − s̃j
)

where α > 0, and p : R → [0,∞).

3. LEARNING

In this section learning algorithms for the Nash equilibria
of the state-based potential game G are studied with the
following objectives considered.

(1) The equilibrium learned should coincide with one of
the underlying strategic game (the full information
game) equilibria.

(2) A learning algorithm should be applicable for both
continuous and discrete action spaces.

1 Refer to Appendix A for definition of state-based games.
2 Definition of state-based potential game can be found in Appendix
A.
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(3) The algorithm should work whether players update
their strategies one by one or in groups at a time.

(4) The time increase from a similar algorithm applied to
the underlying strategic game should be linear in the
number of the new variables (the estimates).

Remark 1. Under some conditions of differentiability of
Φ(·), and convexity of the action sets Ai(x) one can design
a gradient-based algorithm, like the one used in Li and
Marden (2013), that satisfies objectives 3 and 4.

3.1 State transition

Consider the following state transition function f =
(fs, fe) given by

s̃ = fs(s, ŝ) = s+ ŝ

ẽ = fe(e, ê) =

{

ẽij = s̃j , j ∈ Ni

ẽij =
1

|Ni−1|

∑

k∈Ni\{i}
ekj , j ∈ N\Ni

(3)

The next result shows that when there is no strategies
update, i.e. ŝ = 0, ẽij asymptotically converges to sj , for

all j ∈ N\Ni.

Define the s parametrized function

Es(e
′) =−

α

2

∑

i∈N

∑

k∈Ni

∑

j∈N\(Nk∪Ni)

1

|Ni − 1|
p
(

eij − ekj
)

− α
∑

i∈N

∑

k∈Ni

∑

j∈Nk\(Nk∩Ni)

1

|Ni − 1|
p
(

eij − sj
)

(4)
with

e′ := [e′1 · · · e′n′ ]⊤, e′o(j) =
[

eij, i ∈ N\Nj

]⊤
, j ∈ N ′.

where N ′ ⊂ N is the set of agents whose strategies are not
seen by all agents, n′ = |N ′|, and o : j ∈ N ′ → 1, · · · , n′

is a ordering of N ′. Note that the size of vector e′i equals
n̄o−1(i). The function (4) can be written as

Es(e
′) =

∑

j∈N ′

Esj (e
′)

where Esj (e
′) is composed of the j components of Es(e

′).

Proposition 2. Consider the state based potential game
with state transition function (3). If ŝ = 0 and G is
connected then ẽij asymptotically converges to sj , ∀j ∈
N\Ni, under synchronous or asynchronous transition.

The proof is omitted for space limitations, and will be
provided elsewhere.

3.2 Learning algorithm

Consider the following learning algorithm: for each i ∈ N

1. Update the search space (Si) using the strategies of the
agents seen by i.

2. (Estimation) Update agent i estimates (eij |j∈N\Ni
) us-

ing the state transition (3).
3. (Learning) If updates reach required tolerance (ǫi > 0),

i.e.
‖eij |j∈N\Ni

(t+ 1)− eij |j∈N\Ni
(t)‖ ≤ ǫi, (5)

and persists for a minimum number of iterations k̄i,
apply an algorithm to update agent i strategy (si) based
on current strategies vector (sl|l∈Ni

, eij |j∈N\Ni
).

following leg

junction

Fig. 1. Platoon matching problem

4. Repeat until a certain convergence measure, or maxi-
mum number of learning cycles is reached.

Proposition 3. If the search space is compact, for all i ∈ N
there exists ci > 0 such that for all s ∈ S, |ui(s) −
ui(s

′)| ≤ ci|s−s′|, and the update in step 3 of the learning
algorithm is carried out only if |ui(t+ 1)− ui(t)| ≥ 2ciǫi,
then this algorithm inherits the equilibrium convergence
properties of the corresponding full information one.

The proof is omitted for space limitations, and will be
provided elsewhere.

4. PLATOONING APPLICATION

Consider n trucks approaching a road junction from the
same or different directions Figure 1, and assume that
those trucks share part of their planned journeys with
at least common following leg (road segment) after the
junction. The trucks are assumed to have different pre-
ferred departure times from that junction, but are able to
deviate from these times in order to platoon. Hence the
departure time can be considered as the strategy of the
trucks. If trucks platoon this would mean a saving in their
utility functions. On the other hand, a deviation from their
preferred departure times would translate into a cost.

4.1 Strategic potential game for platoon matching

In Johansson et al. (2018) the authors formulated a po-
tential game for a situation where trucks are starting their
journeys from a common point in a road network (e.g.
parking lot). This corresponds to the trucks being at the
same time at the junction in Figure 1. Similar to the
previous assumptions, the trucks have preferred departure
times which can be modified to achieve platooning. In
that work the authors deduced utility functions where
the trucks share parts of their journeys including but not
limited to the following road segment.

Assuming here that the trucks share only the following leg,
the utility function, from Johansson et al. (2018), for the
previous situation can be given as

ui(s) = kp
|Pi| − 1

|Pi|
d− kt|si − ti|

where kp, kt > 0 are some constants, Pi = {j : sj =
si, j ∈ N} is the set of trucks with the same departure
time as i’s, d is the length of the outgoing road segment,
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following leg

Fig. 2. On-the-go platoon matching

si ∈ Si is i’s departure time, and ti is i’s preferred
departure time. From Theorem 1 in Johansson et al. (2018)
the strategic game 〈N , (Si)i∈N , (ui)i∈N 〉 modeling the
platoon matching problem in this situation is an exact
potential game with potential function

φ(s) = kpd
∑

l∈{1,··· ,|P|}

(

|Po(l)| − 1
)

−
∑

i∈N

kt|si − ti|

where P is the set of distinct Pi’s, and o : Z → N . This
function is equal to the sum of utilities, i.e.

φ(s) =
∑

i∈N

ui(s).

Example 1. Consider 5 vehicles with preferred departure
times t = [600, 700, 800, 900, 1000], road segment of 100
km, kt = 1.5 $/hr, kp = 5 $/100km. This example presents
the result of applying better reply dynamics. The search
in t is done in a cycle from the current strategy. The
strategy is updated only if the utility at the updated value
is greater that its current value. Learning is executed in a
synchronous manner one agent at a time starting from
1, and cycling through. Figure 3 shows the strategies,
utilities, and the sum of utilities (potential function).

4.2 On-the-go platoon matching

The algorithm presented in Johansson et al. (2018) for
platoon matching requires the following.

• All trucks need to start from the same point.
• Trucks need to share their complete journey plans
with all other trucks.

This limits the applicability of the algorithms on actual
road networks where trucks can start from different places,
the times of arrival and departure at junctions are affected
by external factors such as traffic, and where exchange of
itineraries can be limited due to privacy or communication
restrictions. Instead consider the following approach.

On-the-go platooning. When trucks are approaching a
junction, were platooning is possible, they apply a gam-
ing algorithm for platoon matching, while moving, based
on savings/costs of platooning on the following leg only
Figure 2. If trucks can communicate strategies with all
others then the algorithm in Johansson et al. (2018) can
be directly applied. If trucks cannot share strategies with
all, due to privacy restrictions or lack of communication,
then a restricted information version of the potential game
in Section 4.1 is applied. This method can be carried out
at any junction.

This would have the advantage of handling platooning on
large networks by solving several local matching problems
and so, would offer the advantages of simplicity and repli-
cability. However, a comprehensive algorithm is needed to
coordinated the different instances of these local problems.

This algorithm will be provided in a different work. Next,
an example of the local problem is solved.

4.3 Distributed potential game for platooning

Consider trucks approaching a junction as in Figure 2.
If they share their strategies according to a bidirectional
connected graph, the full information game in Section 4.1
can be directly distributed over that graph utilizing the
development in part I.

Example 2. Consider the 5 vehicles in Example 1 with
the same parameters. Assume that the vehicles exchange
strategies according to an undirected graph with a cyclic
Laplacian

L =











2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2











.

Assume the agents initialize their strategies and those of
the unseen agents as their preferred departure times. It is
assumed here that the search space for all agents is the
vector t. Note that the agents can fill the missing values in
the vector t after one iteration. The search in t is done in
a cycle from the current strategy value as in Example 1.
Assume that the tolerance in step 3 of the learning
algorithm of Section 3 is ǫ = [5 4 3 2 1]. This example
presents the results of applying the algorithm using better
reply dynamics for the update in step 3. Figures 4-8 shows
the agents strategy vectors, Figure 9 shows the individual
utilities, and Figure 10 shows the sum of utilities (potential
function). The agents that reach required tolerance are
indicated at the iterations. Note that the initial utility
values are not shown as the initializations of the unseen
strategies are rather optimistic.

5. CONCLUSION

The paper addressed learning for the distributed poten-
tial game formulated in part I of the paper. A learning
algorithm with prescribed properties was developed. The
algorithm is composed of two phases of estimation and
learning, and allows for available algorithms of learning
Nash equilibria for strategic potential games to be directly
incorporated. The results were used to develop an on-the-
go method for platoon matching of heavy duty vehicles. A
learning example was presented.

Appendix A

Consider a set of N agents of a strategic form game (1),
and a state space X (here, X encompasses the set of
strategies and their estimates). Define state dependent
actions sets Ai(x) for i ∈ N and x ∈ X . The joint action
profile is a ∈ A(x) where A(x) := A1(x)×· · ·×An(x). The
agents utilities are defined by functions vi : X × A(x) →
R. This game is denoted by 〈N ,X ,A, (vi)i∈N , f〉 where
A := ∪x∈XA(x), and f : X × A → X is a deterministic
function which defines the state transition (evolution) as
influenced in part by the actions. At learning time t ≥ 0,
each agent’s action is selected such that ai(t) ∈ Ai(x(t)),
i.e. it depends on the current state. The current state x(t),
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Fig. 3. Full information game
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Fig. 4. Restricted information - Strategies vector 1
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Fig. 6. Restricted information - Strategies vector 3

and the joint action a(t) ∈ A(x(t)) determine the ensuing
state x(t + 1) = f(x(t), a(t)), and the current utilities
vi(x(t), a(t)).
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Definition 4. For the state-based game 〈N ,X ,A, (vi)i∈N ,
f〉 an action profile 0 ∈ A(x) is called a null action if
x = f(x,0).
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Fig. 10. Restricted information game - Potential function

The definition (corresponding to the Definition of strategic
potential games Lã et al. (2016)) of (exact) potential state-
based games was given in Li and Marden (2013) as follows.

Definition 5. A (deterministic) state-based game 〈N ,X ,A,
(vi)i∈N , f〉 with null action 0 is called a (determinis-
tic) state-based potential game if there exists a function
Φ : X × A → R such that for every x ∈ X , i ∈ N ,
a−i ∈ A−i(x)

3 ,

vi(x, ai, a−i)− vi(x, a
′
i, a−i) = Φ(x, ai, a−i)−Φ(x, a′i, a−i),

for all ai, a
′
i ∈ Ai(x), and for every a ∈ A(x) the potential

function satisfies

Φ(x, a) = Φ(x̃,0)

where x̃ = f(x, a) denotes the ensuing state.

Two definitions of Nash equilibria for state-based games
was given in part I as follows.

Definition 6. A state action pair (x∗, a∗) is a stationary
state Nash equilibrium for the game G if

• (∀i ∈ N )(∀ai ∈ Ai(x
∗)) vi(x

∗, a∗) ≥ vi(x
∗, ai, a

∗
−i)

• x∗ = f(x∗, a∗)

This is a restatement of Definition 3 in Li and Marden
(2013).

Let ai = (ai1, · · · , aini
), where ni = 1 + n̄i, n̄i = |N\Ni|,

and ai−j = ai\{aij}. Also, let xi = (xi1, · · · , xini
), where

xi−j = xi\{xij}.

Definition 7. A state action pair (x∗, a∗) is a stationary
state Nash equilibrium for the game G if

• (∀ai ∈ Ai(x
∗)) vi(x

∗, a∗) ≥ vi(x
∗, aij , a

∗
i−j , a

∗
−i), for

all i ∈ N , j ∈ (1, · · · , ni)
• x∗ = f(x∗, a∗)

Properties of these definitions were discussed in part I of
the paper.
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