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Abstract: Three-phase induction motors admit a complex-valued space state representation.
In this paper, this complex description is used to design a torque controller and a rotor flux
observer based on sliding modes. The advantage of using the complex representation is an order
reduction of the system and a simplification of the analysis. The obtained results are illustrated
by means of numerical simulations.
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1. INTRODUCTION

1.1 Motivation

The representation of physical systems using complex-
valued dynamical models was proposed for induction ma-
chines (Novotny and Wouterse (1976)) and for three-phase
electrical systems (Harnefors (2007)), in general. Recent
papers have proposed the complex-valued modelling for
representing electrical systems, with the advantage of re-
ducing the order of the systems and facilitate the con-
trol design. These papers include both electrical machines
(Dòria-Cerezo et al. (2013), Baesmat and Bodson (2019)
and Bodson (2019)) and power converters (Dòria-Cerezo
and Bodson (2016) and Dòria-Cerezo et al. (2019)), but
all of them are limited to linear systems.

The induction motor is a three-phase electrical machine
widely used in the industry as servo applications due to
its relatively low cost, less maintenance, and robustness.
Three-phase voltage and currents (abc) can be represented,
without loss of generalization, into the so-called αβ frame-
work that allows to reduce the order and to simplify the
dynamics of the electrical equations. The control of induc-
tion motors is, inherently, a nonlinear phenomena because
the electromechanical conversion. Usually, this nonlinear
characteristic is overcome using the rotor flux oriented con-
trol (Leonhard (2001)), known as Field Oriented Control
(FOC), which proposes a reference framework that allows,
after regulating the rotor flux, a linear behaviour.

Sliding modes have been largely applied to induction
motors, from control (Utkin et al. (1999)) to observation;
see some recent works in (Wang et al. (2018)), (Morawiec
and Lewicki (2019) or (Holakooie et al. (2019)). However,
the use of sliding modes for complex-valued dynamical
systems has not been reported so far.

? The work was partially supported by the Government of Spain
through the Agencia Estatal de Investigación Project DPI2017-
85404-P and by the Generalitat de Catalunya through the Project
2017 SGR 872.

1.2 Contributions

This paper presents a complex-valued sliding mode control-
based algorithm that encompasses both torque control
and a rotor flux observer. The main advantage of using
the complex-based approach is order reduction; from two
(αβ) components, to one complex value that simplifies the
synthesis and the analysis of the control algorithm and
observer algorithms.

From a practical point of view, and differently from
other papers based on FOC, the adopted induction motor
control algorithm comes from the αβ coordinates. This
choice allows disregarding the rotor flux regulation as
a secondary control objective offering other alternatives
than FOC, such as field weakening or minimising the losses
in the stator windings.

Notation. j =
√
−1 is used, instead of i, to avoid

confusion with electrical currents used in the application
examples; Cn denotes the complex nth-dimensional space;
Re(z) and Im(z) denote the real and imaginary parts,
respectively, of z ∈ C; z∗ denotes the conjugate of z ∈ C;
|z| and δz denote the magnitude and phase, respectively,
of z ∈ C; sign(z) denotes the sign function of a complex
value z ∈ C \ {0}, which is computed as in (Bachman and
Narici (1966)):

sign(z) =
z

|z|
.

2. COMPLEX-VALUED MODEL OF AN INDUCTION
MOTOR

Consider a three-phase electrical variable (voltage or cur-
rent) given by x(t) = (xa(t), xb(t), xc(t)). The transforma-
tion of three-phase electrical variables (x(t)) to complex-
valued variables (z(t)) is defined by

z(t) = c
(

1, e−j
2π
3 , ej

2π
3

)(xa(t)
xb(t)
xc(t)

)
, (1)
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where different values of c correspond to different choices.
In this paper we adopt the power preserving choice, i.e.,
c = 1.

2.1 Complex vector representation

A complex vector representation of the inductor motor
is widely developed in Chapter 2 of (Novotny and Lipo
(1996)). The dynamics of the inductor motor after apply-
ing the complex transformation (1) is governed by:

Ls
dis
dt

+M
d

dt

(
ire

jnpθ
)

= −Rsis + us (2a)

M
d

dt

(
ise
−jnpθ

)
+ Lr

dir
dt

= −Rrir (2b)

J
dω

dt
= −bω + τe − τL (2c)

where is, ir ∈ C are the stator and rotor currents; ω, θ ∈ R
are the mechanical speed and the rotor position, respec-
tively; us ∈ C is the stator voltage, which is used as a
control input; Ls, Lr,M ∈ R+ are the stator, rotor and
mutual inductances; Rs, Rr ∈ R+ are the stator and rotor
resistances modelling the inductor losses; J ∈ R+ is the
rotor inertia, b ∈ R+ is the damping coefficient; np ∈ N is
the number of pole pairs; τL ∈ R is the load torque, and
τe ∈ R is the electromagnetic torque

τe = npM Im
(
is
(
ire

jnpθ
)∗)

. (3)

2.2 Rotor flux model

Similarly to (Chiasson (2005)), and defining the rotor flux
linkage as

ψr = Mis + Lrire
jnpθ,

where ψr ∈ C, (2a)-(2b) can be written as

µLs
dis
dt

+
M

Lr

dψr
dt

= −Rsis + us (4a)

dψr
dt

=
RrM

Lr
is −

(
Rr
Lr
− jnpω

)
ψr, (4b)

where µ = 1 − M2

LsLr
is known as the leakage factor, and

the electromagnetic torque results in

τe = κIm (isψ
∗
r ) , (5)

with κ = np
M
Lr

. Equations (4a)-(4b) can be written in a
more compact way as

dis
dt

= −γis + β (η − jnpω)ψr +
1

µLs
us (6a)

dψr
dt

= − (η − jnpω)ψr + ηMis, (6b)

where γ = Rs
µLs

+ RrM
2

µLsL2
r
, β = M

µLsLr
and η = Rr

Lr
is known

as the rotor time constant.

The main advantage of model (6) with respect to the one in
(2) is that the explicit dependency on the angular position,
θ, is removed.

3. CONTROL DESIGN

The control objective in electrical motors is to set one
mechanical variable (position, speed or torque) to its
desired value. In this paper, a control torque strategy for
tracking the electromechanical torque is proposed, and the
position/speed control is left to outer loops.

3.1 Complex switching function

Inspired in (5), the following sliding manifold is proposed:

σ = κisψ
∗
r − αd = 0, (7)

where αd ∈ C is a constant value such that its imaginary
part is the desired torque, namely Im(αd) = τde ,

αd = Re(αd) + jτde , (8)

while the real part of αd will be used for secondary
purposes, see details in Section 3.5. Notice, finally, that the
simplest choice σ = κIm (isψ

∗
r )− τde as switching function

is not holomorphic.

3.2 Complex sliding mode controller

The equivalent control, ueq, is defined as the control input
guaranteeing σ̇ = 0. Differentiating (7) with respect to
time yields

σ̇ = κ

(
ψ∗r

dis
dt

+ is
dψ∗r
dt

)
.

Taking into account (6) and after some algebra one obtains

1

µLs
ψ∗rueq = −ηM |is|2 − β (η − jnpω) |ψr|2

+ (γ + η + jnpω) isψ
∗
r . (9)

Consider the Lyapunov function candidate

V =
1

2
σ∗σ. (10)

Using the definition of equivalent control in (9), the time
derivative of (10) can be written as:

V̇ = Re

(
σ∗

κ

µLs
ψ∗r (us − ueq)

)
(11)

Then, with the switching control policy 1

us = −2Vdc
σψr
|σψr|

= −2Vdcsign(σψr), (12)

where Vdc ∈ R, (11) results in:

V̇ = −Re

(
σ∗

κ

µLs
ψ∗r

(
2Vdc

σψr
|σψr|

+ ueq

))
= − κ

µLs
Re

(
σ∗ψ∗r

(
2Vdc

σψr
|σψr|

+ ueq

))
= − κ

µLs
Re (|σ||ψr|2Vdc + ueqσ

∗ψ∗r )

= − κ

µLs
|σ||ψr|Re

(
2Vdc + ueq

σ∗ψ∗r
|σ||ψr|

)
= − κ

µLs
|σ||ψr|Re

(
2Vdc + |ueq|ej(δeq−δσ−δψr )

)
= − κ

µLs
|σ||ψr| (2Vdc + |ueq| cos(δeq − δσ − δψr )) ,

(13)

and sliding motion occurs on σ = 0 whenever

2Vdc > |ueq| (14)

and |ψr| 6= 0.

1 The selection of 2Vdc as the control gain is because the complex
transformation in (1) with c = 1 projects the three-phase values
with amplitude Vdc on a circumference of radius 2Vdc in the complex
plane.
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3.3 Finite time convergence

The switched control strategy in (12) ensures that the
sliding manifold (7) is reached in finite time. In order to
support this statement, let us assume that

κ

µLs
|ψr| ≥ ε1

2Vdc − |ueq| > ε2,

with ε1, ε2 ∈ R+. Then, V̇ in (13) can be bounded as
follows:

V̇ ≤ −ε1ε2|σ|; (15)

moreover, setting

ξ =
√

2ε1ε2 > 0

(15) results in

V̇ ≤ −ξV 1
2 .

It follows that V (t) = 0 for t ≥ T , with

T =
2

ξ

√
V (0),

so σ = 0 is reached in finite time.

3.4 Ideal sliding dynamics

The ideal sliding dynamics occurs when σ̇ = σ = 0. This
allows to replace (6a) by (7). In turn, as from (7) one has
that

ej(δis−δψr ) =
1

κ|is||ψr|
αd,

the ideal sliding dynamics, here given by (6b), can be
written as

d|ψr|
dt

+j|ψr|
dδψr
dt

= − (η − jnpω) |ψr|+αd
ηM

κ

1

|ψr|
, (16)

which does not depend on the stator current dynamics.
Then, the real part of the complex dynamics (16) boils
down to:

d|ψr|
dt

= −η|ψr|+ Re(αd)
ηM

κ

1

|ψr|
.

This dynamics is asymptotically stable 2 , which reveals
that the rotor flux stabilises at the equilibrium value

|ψ?r |2 =
M

κ
Re(αd) =

Lr
np

Re(αd), (17)

where Re(αd) > 0.

The imaginary part of the ideal sliding dynamics (16)
provides the rotating frequency of the rotor flux, ωs. Using
(17) into the imaginary components of (16) one gets

ωs :=
dδψr
dt

= η
Im(α)

Re(α)
+ npω.

Then, from σ = 0 in (7) and assuming that the rotor flux
reaches its steady state,

κ|i?s|ejδis |ψ?r |e−jδψr = αd,

this yielding

δis = δψr + δαd

|i?s| =
|αd|
κ|ψ?r |

.

2 This can straightforwardly proved by using V (x) = 1
2
(x− x?)2 as

a Lyapunov function candidate.

Finally, using (17) the equilibrium of the modulus of the
stator currents is

|i?s|2 =
|α2
d|

κMRe(αd)
. (18)

3.5 Design of Re(αd)

The design of the sliding manifold (8) allows to set different
values for the real part of αd in (8).

On the one hand, and similarly to FOC, from (17) the
rotor flux control can be achieved by setting

Re(αd) =
np
Lr
|ψdr |2. (19)

Additionally, a further analysis of the stator currents
steady state reveals that Re(αd) can be used to minimise
the stator currents amplitude and, consequently, to in-
crease the motor efficiency by reducing the losses by the
Joule’s effect. It follows from (18) that

|i?s|2 =
Re(αd)

2 + Im(αd)
2

κMRe(αd)
,

and the value that minimises |i?s|2 can be obtained from

∂|i?s|2

∂Re(αd)
=

Re(αd)
2 − Im(αd)

2

κMRe(αd)2
= 0,

which implies that

Re(αd) = Im(αd), (20)

the minimum current being

|i?min
s |2 =

2

κM
Im(α).

Then the selection of (20) ensures the minimum losses in
the stator resistances.

Finally, other options can be explored, such as enlarging
the sliding motion region given in (14) by reducing the
equivalent control absolute value from (9). This approach
would be similar to the well-known field weakening strat-
egy.

4. OBSERVER DESIGN

The observation of the rotor flux is necessary in any control
scheme of induction motors. Using the complex vector
representation it is possible to design an algorithm capable
of estimating the rotor flux.

Assuming that all the parameters are known and that the
mechanical speed is measurable the observer equations are,
similarly to (Drakunov and Utkin (1995)),

dîs
dt

= −γis + β (η − jnpω) ψ̂r +
1

µLs
us − ν (21a)

dψ̂r
dt

= − (η − jnpω) ψ̂r + ηMis + lν, (21b)

where

ν = ρ
îs − is
|̂is − is|

= ρ sign(̂is − is), (22)

l ∈ C and ρ ∈ R. Let us define

ĩs = îs − is
ψ̃r = ψ̂r − ψr.
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From (6a) and (21a), the dynamics of ĩs results in

dĩs
dt

= β (η − jnpω) ψ̃r − ρ sign(̃is).

Then, considering Vo = 1
2 ĩ
∗
s ĩs as a Lyapunov function

candidate, its time derivative is given by:

V̇o = Re
(
ĩ∗s

˙̃is

)
= Re

(
ĩ∗s

(
β (η − jnpω) ψ̃r − ρ

ĩs

|̃is|

))
= Re

(
β (η − jnpω) ĩ∗sψ̃r − ρ|̃is|

)
= −|̃is|Re

(
ρ− β (η − jnpω) ψ̃r

ĩ∗s
|̃is|

)
= −|̃is|Re

(
ρ− β|ψr| (η − jnpω) ej(δψ̃s−δĩs ) )

Then, if

ρ > β|ψ̃r|
√
η2 + n2pω

2 ≥ εo
with εo ∈ R, one gets

V̇o ≤ −εo |̃is|
and ĩs converges to zero in finite time.

During sliding motion it is ĩs = ˙̃is = 0; hence,

0 = β (η − jnpω) ψ̃r − νeq (23)

dψ̃r
dt

= − (η − jnpω) ψ̃r + lνeq, (24)

and replacing (23) in (24) yields

dψ̃r
dt

= − (η − jnpω) (1− lβ)ψ̃r. (25)

which is stable since

−η(1− Re(l)β) + Im(l)βnpω < 0.

Therefore, if the the motor does not change the direction
of rotation, the selection

Re(l) <
1

β

sign (Im(l)) = −sign(ω)

ensures that the reduced order complex motion (25) is
stable.

5. NUMERICAL SIMULATIONS

5.1 Hysteresis implementation

Similarly to the standard sliding mode control approach,
ideal complex sliding modes require infinite switching fre-
quency, but this feature is unavailable in practical appli-
cations. For the numerical implementation an hysteresis
approach strategy is proposed to approximate the complex
sign functions in (12) and (21).

The hysteresis approximation for the complex sign func-
tion is defined as a ball of radius εh in the complex plane
representation of σ where the output state is remembered.
Out of this area, the complex function is evaluated. The
hysteresis for the complex function (12) is implemented as
shown in Algorithm 1, where p refers to each iteration.

A ball of radius εho is analogously implemented for (22).

Algorithm 1 Algorithm for a complex hysteresis

Input: σp, up−1, εh, k
Output: up
1: if (|σp| < εh) then
2: up = up−1
3: else
4: up = −k σp

|σp|
5: end if
6: return up

5.2 Simulation results

Numerical simulation have been run to test the control law
in (7) and (12) and the observer proposed in (21)-(22), see
the complete control scheme in Figure 1.

(2),(3)

(21),(22)

(7),(12)

ω

is

us(8)
(19) or (20)

Ref. Gen.

τde

Controller Ind. Motor

Observer

αd

ψ̂r

Complex-valued sliding mode controller/observer

Fig. 1. Overall control scheme.

The used induction motor was a three pole-pairs machine
with the following parameters: Ls = Lr = 109.3mH,
M = 100mH, Rs = 2.7Ω, Rr = 0.5Ω, J = 0.001kg·m2,
b = 0.001N·m·s., and Vdc = 400V.

The desired torque is obtained from an outer PI controller
that has been added to regulate the mechanical speed to a
desired value, ωd. The PI controller gains were kp = 0.05
and ki = 7.5, the observer gains were l = −(0.5 + j0.1)
and ρ = 105, and the hysteresis radii were εh = 0.1 and
εho = 0.05. Finally, αd has been computed as proposed in
(20), so a minimum stator current is ensured.

The simulated test consists in starting at ω(0) = 0
regulating the mechanical speed at ωd = 100rad/s. At
t = 0.25s, a disturbance external torque τL = 0.15N·m
is connected.

Figures 2 and 3 show the obtained dynamics. The required
torque provided by the PI controller is perfectly tracked by
the complex-valued sliding controller (see the second plot
in Figure 2), so the mechanical speed is also regulated.
Figure 3 shows the complex-valued switching function.
The hysteresis area defined by a ball of radius εh is
obtained when the switching function is plotted in the
complex plane.

The observer behaviour is shown in Figures 4 and 5. The
obtained results show that the observation of the rotor-
flux is achieved thanks to the sliding motion induced on
the absolute error observation of the stator currents, ĩs,
see the second plot in Figure 4. Similarly to Figure 3, the
hysteresis approximation defined by a ball of radius εho is
observed in Figure 5 as well.

6. CONCLUSION

Complex-valued sliding modes have been proposed for the
control and observation of an induction motor. This ap-
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Fig. 2. Simulation results: Speed/torque control. From top
to bottom: mechanical speed (blue) and its desired
value (black) ω, ωd; electromechanical torque (blue)
and its desired value (black), τe, τ

d
e ; real and imag-

inary parts of the stator current (blue, red) and its
absolute value (in black), is, |is|; real and imaginary
parts of the rotor flux (blue,red) and its absolute value
(in black), ψr, |ψr|.

Fig. 3. Simulation results: Speed/torque control. From top
to bottom: absolute value of the switching function,
|σ|; real and imaginary parts of the switching function
(in blue and red, respectively); complex plane plot of
the switching function, σ.
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Fig. 4. Simulation results: Rotor-flux observation. From
top to bottom: real and imaginary parts of the stator
current (blue) and its observed values (red), îs, is;
absolute error observation |̃is|; real and imaginary
parts of the rotor flux (blue) and its observed values

(in red), ψ̂r, ψr; real and imaginary components of

the observation error, ψ̃r.

Fig. 5. Simulation results: Rotor-flux observation. From
top to bottom: absolute value of the switching func-
tion, |σo|; real and imaginary parts of the switching
function (in blue and red, respectively); complex plane
plot of the switching function, σo.
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proach, which is considerably different than the standard
sliding modes, allows to tackle the control problem in the
original αβ coordinates without the use of additional refer-
ence frames. Although both the sliding manifold and the
remaining sliding dynamics turn to be highly nonlinear,
the complex description simplifies the analysis.

REFERENCES

Bachman, G. and Narici, L. (1966). Functional Analysis.
Academic Press, INC, NY.

Baesmat, H.J. and Bodson, M. (2019). Pole placement
control for doubly-fed induction generators using com-
pact representations in complex variables. IEEE Trans.
on Energy Conversion, 34(2), 750–760.

Bodson, M. (2019). Speed control for doubly fed induction
motors with and without current feedback. IEEE Trans.
on Control Systems Technology (Early Access).

Chiasson, J. (2005). Modeling and High Performance
Control of Electric Machines. Wiley, New York.
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