
On the vanishing and exploding gradient
problem in Gated Recurrent Units

Alexander Rehmer, Andreas Kroll

Department of Measurement and Control, Institute for System
Analytics and Control, Faculty of Mechanical Engineering, University

of Kassel, Germany, (e-mail: {alexander.rehmer,
andreas.kroll}@mrt.uni-kassel.de)

Abstract: Recurrent Neural Networks are applied in areas such as speech recognition,
natural language and video processing, and the identification of nonlinear state space models.
Conventional Recurrent Neural Networks, e.g. the Elman Network, are hard to train. A more
recently developed class of recurrent neural networks, so-called Gated Units, outperform their
counterparts on virtually every task. This paper aims to provide additional insights into the
differences between RNNs and Gated Units in order to explain the superior perfomance of
gated recurrent units. It is argued, that Gated Units are easier to optimize not because they
solve the vanishing gradient problem, but because they circumvent the emergence of large local
gradients.

Keywords: Nonlinear system identification, Recurrent Neural Networks, Gated Recurrent
Units.

1. INTRODUCTION

Gated Units, such as the Long Short-Term Memory
(LSTM) and the Gated Recurrent Unit (GRU) were
originally developed to overcome the vanishing gradient
problem, which occurs in the Elman Recurrent Neural
Network (RNN) (Pascanu et al., 2012). They have since
outperformed RNNs on a number of tasks, such as natural
language, speech and video processing (Jordan et al., 2019)
and recently also on a nonlinear system identification task
(Rehmer and Kroll, 2019). However, it will be shown, that
the gradient also vanishes in Gated Units, other still un-
accounted for mechanisms have to be responsible for their
success. Pascanu et al. (2012) show, that small changes in
the parameters θ of the RNN can lead to drastic changes
in the dynamic behavior of the system, when crossing
certain critical bifurcation points. This in turn results in
a huge change in the evolution of the hidden state x̂k,
which leads to a locally large, or exploding, gradient of
the loss function. In this paper the GRU will be examined
and compared to the RNN with the purpose to provide an
alternative explanation to why GRUs outperform RNNs.
First, it will be shown, that the gradient of the GRU is
in fact smaller than that of the RNN, at least for the pa-
rameterizations considered in this paper, although GRUs
were originally designed to solve the vanishing gradient
problem. Secondly, it will be shown, that GRUs are not
only capable to represent highly nonlinear dynamics, but
are also able to represent approximately linear dynamics
via a number of different parameterizations. Since a linear
model is always a good first guess, the easy accessibility
of different parameterizations that produce linear dynam-

? Sponsor and financial support acknowledgment goes here. Paper
titles should be written in uppercase and lowercase letters, not all
uppercase.

ics makes the GRU less sensitive to its initial choice of
parameters and thus simplifies the optimization problem.
In the end GRU and RNNs will be compared on a simple
academic example and on a real nonlinear identification
task.

2. RECURRENT NEURAL NETWORKS

In this section the Simple Recurrent Neural Network
(RNN), also known as Elman Network, and the Gated
Recurrent Unit (GRU) will be introduced.

2.1 Simple Recurrent Neural Network

The RNN as depicted in figure 1 is a straightforward
realization of a nonlinear state space model (Nelles, 2001).
It consists of one hidden recurrent layer with nonlinear
activation function fh, which aims to approximate the
state equation, as well as one hidden feedforward layer fg
and one linear output layer, which together aim to approx-
imate the output equation. For simplicity of notation, the
linear output layer is omitted in the following equations
and figures:

x̂k+1 = fh (W xx̂k +W uuk + bh) ,

ŷk = fg (W yx̂k + bg) ,
(1)

with x̂k ∈ Rn×1, ŷk ∈ Rm×1, uk ∈ Rl×1, W x ∈ Rn×n,
W u ∈ Rn×l, bh ∈ Rn×1, W y ∈ Rm×n, bg ∈ Rm×1 and
fh : Rn×1 → Rn×1, fg : Rm×1 → Rm×1. Usually tanh(·) is
employed as nonlinear activation function. When training
an RNN, the recurrent model is unfolded over the whole
training sequence of length N , and the gradient of the
loss function L with respect to the model parameters θ is
calculated. As a consequence of the feedback, the gradient
of the error

ek =
(
ŷk − ytarget

k

)
(2)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1265

u ŷ

W x

W yfh fg
W u

Fig. 1. Representation of the Elman Network: Layers of
neurons are represented as rectangles, connections
between layers represent fully connected layers.

at time step k with respect to the model parameters
θ = {W x,W u,W y, bh, bg} depends on the previous state
x̂k−1, which depends again on the model parameters:

∂ek
∂θ

=
∂ek
∂ŷk

∂ŷk
∂x̂k

[
∂x̂k
∂θ

+
∂x̂k
∂x̂k−1

∂x̂k−1
∂θ

]
(3)

For example, the gradient of the hidden state x̂k with
respect to W x is

∂x̂k

∂W x
=

N∑
τ=1

x̂k−τf
′(k−τ+1)
h

(·)
∏
β

f
′(k−β)
h

(·)W (k−β)
x

β = τ − 2, τ − 3, . . .∀β ≥ 0.

(4)

High indices in brackets indicate the particular time step.
The product term in (4), which also appears when com-
puting the gradient with respect to the other parameters,
decreases exponentially with τ , if |f ′h · ρ (W)| < 1, where
ρ (W x) is the spectral radius ofW x. Essentially, backprop-
agating an error one time step involves a multiplication of
the state with a derivative that is possibly smaller than
one and a matrix whose spectral radius is possibly smaller
than one. Hence, the gradient vanishes after a certain
amount of time steps. In the Machine Learning community
it is argued that the vanishing gradient prevents learning
of so-called long-term dependencies in acceptable time
(Hochreiter and Schmidhuber, 1997; Goodfellow et al.,
2016), i.e. when huge time lags exist between input uk
and output ŷk. Gated recurrent units, like LSTM and
GRU were developed to solve this problem and have since
then outperformed classical RNNs on virtually any task.
However, it can be shown that the gradient also vanishes
in gated recurrent units. Additionally, the vanishing of the
gradient over time is a desirable property. In most systems,
the influence of a previous state xk−τ on the current state
x̂k decreases over time. Unless one wants to design a
marginally stable or unstable system, e.g. when performing
tasks like unbounded counting, or when dealing with large
dead times, the vanishing gradient has no negative effect
on the optimization procedure.

2.2 The Gated Recurrent Unit

Gated Recurrent Unit (GRU) (Cho et al., 2014) is be-
sides LSTM the most often applied architecture of gated
recurrent units. The general concept of gated recurrent
units is to manipulate the state x̂k through the addition
or multiplication of the activations of so called gates, see
figure 2. Gates are almost exclusively one-layered neural
networks with nonlinear sigmoid activation functions. The
state equation of the GRU is

x̂k+1 = f z � x̂k + (1− f z)� f c (x̃k) (5)

with x̃k = f r�x̂k. The operator � denotes the Hadamard
product. The activations of the so-called gate reset gate f r,
update gate f z and the output gate f c are given by

x̂k

f r f z f c

x̂k+1

W r W z W c

1-

uk

x̃k

Fig. 2. The Gated Recurrent Unit (GRU). Gates are
depicted as rectangles with their respective activation
functions.

f r = σ (W r · [x̂k,uk] + br) ,

f z = σ (W z · [x̂k,uk] + bz) ,

f c = tanh (W c · [x̃k,uk] + bc) ,

(6)

where W r,W z,W c ∈ Rn×n+l, br, bz, bc ∈ Rn×1 and
f r,f z,f c : Rn×1 → Rn×1. σ (·) denotes the logistic
function.In order to map the states estimated by the GRU
to the output, the GRU has to be equipped either with an
output layer, as the RNN, or with an output gate, as the
LSTM.

3. GRADIENT OF THE STATE EQUATIONS

In this section, the gradients of the state equations of RNN
(1) and GRU (5) w.r.t. their parameters will be compared
to each other. In the cases examined the gradient of the
GRU is, somewhat surprisingly, at most as large as that
of the RNN, but usually smaller.
In order to allow for an easily interpretable visualization,
the analysis will be restricted to one dimensional and
autonomous systems. Also, the GRU will be simplified by
eliminating the reset gate f r from (6), such that x̃k = x̂k.
Taking the gradient of the RNN’s state equation in (1)
w.r.t. wx yields

∂x̂k+1

∂wx
= (x̂k + wx

∂x̂k
∂wx

) · tanh′ (wxx̂k + bx) . (7)

The gradient of the GRUs state equation (5) with respect
to wz is

∂x̂k+1

∂wz
= (1− tanh (x̂k;θc))σ

′ (x̂k;θz)

(
x̂k + wz

∂x̂k
∂wz

)
+ (1− σ (x̂k;θz)) tanh′ (x̂k;θc)

∂x̂k
∂wz

,

(8)

and with respect to wc

∂x̂k+1

∂wc
= σ′ (x̂k;θz)

∂x̂k
∂wc

(x̂k − tanh (x̂k;θc))

+ σ (x̂k;θz)
∂x̂k
∂wc

+ (1− σ (x̂k;θz)) tanh′ (x̂k;θc)

(
x̂k + wc

∂x̂k
∂wc

)
.

(9)

For convenience of notation θz and θc denote the pa-
rameters of fz and fc respectively, i.e. θz = [wz, bz] and
θc = [wc, bc].
It is cumbersome to write down the gradients in (8) and
(9) for an arbitrary number of time steps, as done for the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1266

RNN in (4). However, it already becomes apparent from
(8) and (9), that each step of backpropagation involves
the multiplication of the previous state with the output of
a sigmoid function, either σ (·) or tanh (·), and with one
of its derivatives. The outputs of the sigmoid functions is
always smaller than one. The derivative of the tanh (·) is
smaller than one, if |W c|1 < 1 and the derivative of the
logistic function is smaller than one, if |W z|1 < 4. This
means, the gradient of the GRU is at least as likely to
vanish as the gradient of the RNN.
In order to examine the gradients further it is assumed,
that |wx| , |wz| , |wc| ≤ 1. The derivative of the logistic
function σ(·) is therefore bounded in the interval

[
0, 14
]

and the derivative of the tanh(·) bounded in the interval
[0, 1]. Under these assumptions the gradient of the RNN
is at most

∂x̂k+1

∂wx
≤ (x̂k + wx

∂x̂k
∂wx

). (10)

For the gradient of the GRU two extreme cases will be
examined and compared to (10).
If the update gate is fully closed, i.e. σ (x̂k;θz) = 0, (8)
and (9) become

∂x̂k+1

∂wz
= tanh′ (x̂k;θc)

∂x̂k
∂wz

≤ ∂x̂k
∂wz

∂x̂k+1

∂wc
= tanh′ (x̂k;θc) (x̂k + wc

∂x̂k
∂wc

)

≤ x̂k + wc
∂x̂k
∂wc

(11)

It follows, that if the update gate is fully closed, the
GRU becomes an ordinary RNN with the same properties
regarding its gradient.
If the update gate is fully open on the other hand, i.e.
σ (x̂k;θz) = 1, (8) and (9) become

∂x̂k+1

∂wz
= 0,

∂x̂k+1

∂wc
=
∂x̂k
∂wc

.

(12)

Essentially, the previous state x̂k is just passed over to the
new state x̂k+1 without any modification, so there is no
gradient w.r.t. the parameters but that from the previous
time-step.
One can examine the behavior of (8) and (9) in between
these extreme cases by replacing tanh′(·) = 1 − tanh2(·)
and σ′(·) = σ(·) (1− σ(·)). (8) and (9) then each are a cu-
bic polynomial in σ (x̂k, θz) and tanh (x̂k, θc). Their graphs
are plotted in figure 3 for wz = wc = 1, which produces
the largest gradient possible under the assumptions made.
Also we set ∂x̂k

∂wz
= ∂x̂k

∂wc
= 1 and x̂k = 1.

Figure 3 confirms, that the largest gradients occurs, when
the GRU’s update gate is fully closed, i.e. σ(x̂k, θz) = 0,
and the GRU hence becomes an RNN. For all other con-
figurations, the gradient is in fact smaller.
In contrast to the point made by the vanishing gradient
argument, that if the gradient vanishes after some time-
steps, optimization might take prohibitively long. We ar-
gue that a smaller gradient of the state equation w.r.t.
its parameters is beneficial when training recurrent neural
networks. If the gradient is large, as is the case with the
RNN, a small change in parameters will lead to a huge
change in the state trajectory. Since every time step, the
previous state is again fed to the recurrent network, these

0

1−1

0
1

0

1

2

fz fc

(a) ∂x̂k+1/∂wz

0

1−1

0
1

0

1

2

fz fc

(b) ∂x̂k+1/∂wc

Fig. 3. Gradients of the GRU w.r.t. wz and wc depend-
ing on the activation of fz = σ(x̂k, θz) and fc =

tanh(x̂k, θc) for wz = wc = ∂x̂k

∂wz
= ∂x̂k

∂wc
= x̂k = 1

changes accumulate quickly, resulting in vastly different
evolutions of the state. The effect on the loss function are
locally huge gradients, which make gradient-based opti-
mization very difficult. Compared to the RNN, the GRUs
gradient of the state equation is almost always smaller,
which means similar parameters produce similar trajec-
tories of the state, leading to a smoother loss function
without huge local gradients. This will be illustrated via
simple examples in section 5.

4. EFFECT OF DIFFERENT PARAMETERIZATIONS
ON THE STATE EQUATION

In addition to the smaller gradient of the GRU, the rather
special structure of its state equation also benefits gradient
based optimization, especially when identifying technical
systems.
In this section, the same assumptions and restrictions
apply as in the previous section, i.e. only one dimensional
and autonomous systems are investigated and the GRUs
reset gate f r is neglected.
Without reset gate, (5) is the sum of the identity func-
tion, weighted with a logistic function σ(·), and a tanh(·),
weighted by the residual 1 − σ(·). Fig. 4 visually decom-
poses (5) into its constituent parts.
This superposition of multiple functions enables the GRU
to approximate quite complex nonlinearities with compar-
atively few parameters.
For example, if bz → −∞, (5) converges to a tanh pa-
rameterized by wc and bc. For wz, bc → 0, wc → +∞ and
bz → −∞, (5) converges to the binary step function, while
for small negative bz it represents a kind of leaky binary
step, where the slope of the tails is b̃z, compare Figure 5:

−1 0 1
−1

0

1

x̂k

x̂
k
+
1

(a) fz · x̂k ()

−1 0 1

x̂k

(b) (1− fz)fc ()

−1 0 1

x̂k

(c) fz ·x̂k+(1−fz)·fc
()

Fig. 4. Graphical decomposition of the GRU’s state equa-
tion. x̂k (), fz (), fc (), (1− fz) ()

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1267

−1 0 1
−1

0

1

x̂k

x̂
k
+
1

(a) bz → −∞

−1 0 1

x̂k

(b) wz, wc → 0

−1 0 1

x̂k

(c) wz, bc → 0,
wc →∞,
bz → −∞

Fig. 5. Parameterizations for which GRU converges to-
wards a tanh, leaky binary step or binary step acti-
vation function.

−1 0 1
−1

0

1

x̂k

x̂
k
+
1

(a) wc, bz, bc → 0

−1 0 1

x̂k

(b) bz → +∞,
wz, bc → 0

−1 0 1

x̂k

(c) bz →∞,
wz, wc, bc → 0

Fig. 6. Parameterizations for which GRU converges to
variants of the ReLu activation function.

b̃z = σ (bz)

(5) also converges to the ReLu activation function for
wz → ±∞ and wc, bz, bc → ±0 and is also able to represent
a leaky ReLu with tail slope of w̃c:

w̃c = tanh (wc)

for small wc and the swish activation for small wz. These
configurations are depicted in Figure 6.
The fact that the GRUs state equation converges to some

of these functions when certain parameters become larger
has an important effect on the loss function: Assume one
tries to learn a state space equation in form of a tanh.
Although the RNN would be the right choice, because its
in the right model class, the optimization problem is rather
difficult. The only solution lies in a steep valley, which
means small deviations from that solution produce large
losses. It would take infinitely small steps (as soon as you
are in the valley, which one cannot know) to reach that
solution. The GRU on the other hand offers an infinite
amount of solutions for large bz, which corresponds to an
infinite plane with small slope in the parameter space.
One only has to move along that plane to approximate
the system increasingly better, which is easier than diving
into a steep valley.
Additionally, the GRU is able to approximate the identity
function and linear functions in general via a number of
different parameterizations.: For bz → +∞ (5) converges
to the identity function, since fz is approaching one. For
wz, wc → 0 the result is also a linear function, but its slope
is determined by b̃z and its axis intercept by b̃c, see Figure
6:

b̃c = tanh (bc)

The ability to converge to a linear model when approach-

−1 0 1
−1

0

1

x̂k

x̂
k
+
1

(a) bz → +∞

−1 0 1

x̂k

(b) wz, wc → 0

Fig. 7. Parameterizations for which GRU converges to
linear activation functions.

ing different limits in the parameter space is especially
important when identifying technical systems. Even for
highly nonlinear processes the one step prediction surface
becomes more and more linear with increasing sampling
rate (Nelles, 2001). Therefore even when estimating a
model for a nonlinear process, it is important that the
model has the capability to represent a linear dynamical
system. The fact that (5) represents a linear model for an
infinite number of parameter combinations and even when
approaching different limits, means, that there are huge
spaces in the parameter space, which already represent
a formidable solution. Representing the identity function
with a one dimensional Elman Network is only possible
by letting wx and bx approach zero, which corresponds to
only a single point in the parameter space.

5. ACADEMIC EXAMPLE

Based on the idea, that representing an approximately lin-
ear system is important even when identifying a nonlinear
system, the loss functions and their gradients produced by
the RNN and the GRU will be examined on the following
linear discrete-time autonomous system with one state:

xk+1 = −0.9 · xk (13)

The initial state is x0 = 1 and the system is simulated
for N = 100 time steps. The RNN is equipped with one
neuron in the recurrent layer without an output layer:

x̂k+1 = tanh (wxx̂k + bx) (14)

Since the GRU has two gates with respectively two param-
eters, the parameters of the update gate f z will be fixed to
the reasonable values wz = 1 and bz = 0 when examining
the loss function and gradient with respect to the output
gates parameters. Conversely the parameters of the output
gate f c are fixed to the values wz = 1 and bz = 0 when
examining the update gate.

x̂k+1 = [σ (wzx̂k + bz)� x̂k
+ [1− σ (wzx̂k + bz)] · tanh (wcx̂k + bc)]

(15)

Figures 8 and 9 show the resulting loss functions of the
GRU and the RNN as well as their respective gradients.

It is apparent, that the optimization problem posed
by the RNN is rather difficult to solve with gradient
based optimization techniques: The local optimum lies in
a narrow valley surrounded by large gradients. The loss
function of the GRU on the other hand does not possess
such a narrow value, compare figure 9a. The reason for
this is that the update gate fz dominates the behavior
of the model for x̂ > 0 (which is where training date is

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1268

−2
0 −2

0

2

0

5

10

wx

bx

(a) RNN loss function

−2
0

−2

0

2
0

2

4

wx

bx

(b) RNN gradient

Fig. 8. RNNs loss function and magnitude of the gradient
on the linear identification task

−2
0 −2

0

2

0

5

10

wc

bc

(a) GRU loss function for
wz = 1,bz = 0

−2
0

−2

0

2
0

1

2

wc

bc

(b) GRU gradient for wz =
1,bz = 0

−2
0 −2

0
0

5

10

wz

bz

(c) GRU loss function for
wc = 1,bc = 0

−2
0 −2

00

0.5

1

wz

bz

(d) GRU gradient for wc =
1,bc = 0

Fig. 9. GRUs loss function and magnitude of the gradient
on the linear identification task

available in this case study) by multiplying the output of
the output gate fc with 1 − fz and thereby diminishing
its influence. The effect is a smooth loss function without
large gradients.

6. CASE STUDY: ELECTRO-MECHANICAL
THROTTLE

To test, whether the properties of the GRU also proof
beneficial in real-life applications, it was compared to an
RNN on a real nonlinear dynamical system.

6.1 The test system

The system to be identified is an industrial electro-
mechanical throttle, as they are employed in combustion
engines, which is operated load-free in a laboratory test
stand as depicted in figure 10. The input signal u is the
duty cycle for the pulse width modulator (PWM). The
output signal y is the voltage of the sensor measuring the
angle of the throttle plate. The throttle is actuated by a
DC motor. Even though the setup is relatively simple, the
modeling task is rather difficult due to the characteristics

PWM L

ϕ

y

u R

DC motor

gear box

return springthrottle platepotentiometer

i

MA

Fig. 10. Technology schematic of the electro-mechanical
throttle.

of the system (Gringard and Kroll, 2016): a lower and an
upper hard stop, state-dependent friction, and a nonlinear
return spring.

6.2 Excitation Signals

One multisine signal and two Amplitude Modulated
Pseudo-Random Binary Sequences (APRBS 1 and APRBS
2) have been used to excite the system. The multisine sig-
nal has a length of ≈ 10 s or 103 instances, and the APRBS
signals have a length of ≈ 25 s or 2500 instances each. For
the multisine signal, an upper frequency of fu = 7.5 Hz
has been used. For the APRBS signals, the holding time
is TH = 0.1 s. See (Gringard and Kroll, 2016) for more
information on the test signal design.

6.3 Data preprocessing

APRBS 1 and its response signal were scaled to the
interval [−1, 1]; all other signals were scaled accordingly.
The data was then divided into training, validation and
test datasets in the following way:

• Training dataset: Consists of two batches. The first
batch comprises 80 % of all instances of the multisine
signal and the corresponding system response. The
second batch consists of 70 % of APRBS 1 and its
corresponding response signal.

• Validation dataset: Consists of two batches. The first
batch comprises the remaining 20 % of the multisine
signal and the corresponding system response. The
second batch consists of the remaining 30 % of APRBS
1 and the response signal.

• Test dataset: One batch. APRBS 2 and its correspond-
ing system response.

This division was chosen because the multisines response
signal almost exclusively covers the medium operating
range while the APRBS’ response signal also covers the
lower and upper hard stops.

6.4 Model Architectures

The different model architectures used for identification
are listed in TABLE 1. Each model architecture was ini-
tialized randomly 20 times and trained until convergence
in order to examine sensitivity to initial parameters. The
number of states dim(x) was varied from three to ten.
Model architectures with an equal number of states were

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1269

designed to have the same number of hidden neurons in
the output layer. Due to to its many gates a GRU will
have significantly more parameters than an RNN with an
equal number of states. This should be considered when
comparing both architectures.

Table 1: Network architectures

GRU

1st Layer
Gated Unit GRU
dim(x) 3 4 5 6 8 10

2nd Layer
fg(·) tanh
#(Neurons) 4 5 6 7 8 10

dim(θ) 66 103 149 201 321 481

RNN

1st Layer
fh(·) tanh
dim(x) 3 4 5 6 8 10

2nd Layer
fg(·) tanh
#(Neurons) 4 5 6 7

dim(θ) 36 55 78 105 151 205

6.5 Model Training

Each of the models in Table 1 was initialized randomly 20
times and trained for 800 epochs. Between each batch,
the models initial states were set to zero. Parameters
were estimated based on the training dataset using the
ADAM optimizer (Kingma and Ba, 2015) with its default
parameter configuration (α = 0.01, β1 = 0.9, β2 = 0.999).

6.6 Results

At the end of the optimization procedure, the model with
the parameter configuration, which performed best on the
validation dataset, was selected and evaluated on the test
dataset. The performance of the models is measured in
terms of their best fit rate (BFR):

BFR = 100% ·max

(
1− ‖yk − ŷk‖2‖yk − ȳ‖2

, 0

)
(16)

Figure 11 shows the BFR of the RNN and the GRU on the
test dataset. As expected, nonlinear optimization of the
GRU consistently yields high performing models, while the
performance of the RNNs fluctuates strongly. It should be
noted, that there are cases where the RNNs performance
matches or even exceeds the performance of the GRU
(e.g. for dim(x) = 10). This proves, that the RNN is in
general able to represent the test system, it seems just
very unlikely to arrive at such a parameterization during
the optimization process. Arguably because of the issues
discussed in Section 3.

7. CONCLUSIONS & OUTLOOK

It was shown, that the gradient of the GRU’s state
equation w.r.t. its parameters is at most as large as but
usually smaller than that of the RNN, provided the L1

norm of all weights is smaller or equal to one. This finding
contradicts the argument, that a vanishing gradient is
responsible for the RNNs poor performance on various
tasks. The first point made in this paper is, that the

Fig. 11. Boxplot of the BFR of RNN and GRU on the
test dataset. Each model was initialized 20 times and
trained for 800 epochs.

smaller gradient produced by the GRU helps gradient
based optimization, since small changes in the parameter
space correspond to small changes in the evolution of
the state, which in turn produces a smooth loss function
without large gradients. The second argument made is,
that the GRU’s state equation converges to different
functions, when certain parameters become larger. This
corresponds to producing large planes in the loss function
along which the solution improves steadily, rather than
narrow valleys, as they are produced by the RNN. The
analyses provided in this paper have yet to be generalized
to state space networks with arbitrary dimensions and the
whole parameter space.

REFERENCES

Cho, K. et al. (2014). Learning phrase representations
using rnn encoder-decoder for statistical machine trans-
lation. In Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP),
8, 1724–1734.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press.

Gringard, M. and Kroll, A. (2016). On the systematic
analysis of the impact of the parametrization of stan-
dard test signals. In IEEE Symposium Series of Com-
putational Intelligence 2016. IEEE, Athens, Greece.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8), 1735–1780.

Jordan, I.D., Sokol, P.A., and Park, I.M. (2019). Gated re-
current units viewed through the lens of continuous time
dynamical systems. arXiv preprint arXiv:1906.01005.

Kingma, D. and Ba, J. (2015). Adam: A method for
stochastic optimization. In 3rd International Conference
for Learning Representations (ICLR 2015).

Nelles, O. (2001). Nonlinear System Identification: From
Classical Approaches to Neural Networks and Fuzzy
Models. Springer, Berlin Heidelberg, Germany.

Pascanu, R., Mikolov, T., and Bengio, Y. (2012). Un-
derstanding the exploding gradient problem. CoRR,
abs/1211.5063.

Rehmer, A. and Kroll, A. (2019). On using gated recurrent
units for nonlinear system identification. In Preprints
of the 18th European Control Conference (ECC), 2504–
2509. IFAC, Naples, Italy.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1270

