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a modified IEEE 13 bus network, with added distributed energy resources including distributed
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1. INTRODUCTION AND STATE OF THE ART

Over the last decade, the power grid has undergone
transformation with the increased penetration of small-
scale distributed energy resources (DERs), primarily in
the distribution network. These include renewable energy
resources (RERs), distributed generation (DG), demand
response (DR), and storage devices. The large number of
DERs pose a challenge to grid operators, in which the state
of art is to employ centralized decision making. With such
a large number of DERs, these centralized decision mak-
ing tools, which typically include optimization problems
for resource dispatch, become intractable. To efficiently
integrate these DERs, it is necessary to develop models
and methods for optimizing power injections into the grid
which are able to deal with large scale systems. As the
DERs are situated throughout the distribution network,
detailed and accurate models of the electric networks are
needed, while still ensuring tractability within an op-
timization framework. A detailed representation of the
power grid is provided by load flow equations (Kersting,
2006).

Optimal Power Flow (OPF) denotes the method utilized
for optimizing power injections or flows within the net-
work, subject to constraints that correspond to the power
physics of the grid (Dommel and Tinney, 1968). Generally,
the OPF is challenging to solve since it is a non-convex
nonlinear problem. To address this, convex relaxations are
often employed to render the problem easier to solve. Of
these, the most popular power system models are the bus
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injection model (BIM) based on semidefinite programming
(SDP), and the branch flow model (BF) based on second
order cone programming (SOCP) (Farivar et al., 2011;
Lavaei and Low, 2012). It should be noted that the BF
model guarantees optimality for a limited set of networks,
namely networks with radial topology and balanced struc-
ture, with limits on how active the network can be (Farivar
and Low, 2014; Christakou et al., 2017). This is highly
problematic for distribution systems where lines are un-
balanced and consist of many single-phase loads.

To address these challenges and limitations, we first pro-
pose a new convex formulation of the OPF problem which
can be used for any general distribution grid (including
meshed and unbalanced topologies). The formulation is
based on the current injection (CI) method, and uses
McCormick Envelopes (MCE) (Mccormick, 1976) to con-
vexify bilinear constraints. We then reformulate the OPF
problem posed using the CI model, in the form of a
distributed algorithm based on the Proximal Atomic Co-
ordination method (PAC) Romvary (2018) so as to make
it computationally tractable.

In the current literature there are many works that apply
distributed optimization to power distribution networks.
In (Li et al., 2012) DR is studied in a radial distribution
network, by formulating it as an OPF minimizing energy
costs and power line losses, subject to the power flow
constraints, with the BF model, and operating constraints.
The results therein are derived based on assumptions
that include a balanced structure, radial topology and
network’s passivity (i.e. inverse power flow). In contrast,
our proposed approach removes all of these assumptions.
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In (Dall’Anese et al., 2013) and (Robbins and Dominguez-
Garcia, 2016) the authors model an unbalanced distribu-
tion network modifying the BF model and solving the
proposed OPF through the alternating direction method
of multipliers (ADMM) algorithm. In these papers, it is
assumed that the reciprocal unbalance of the phases are
small, which implies that the relative difference between
the angles of each phase are ignored.

The main contribution of the proposed paper can be
summarized as below:

• A new convex relaxation of the OPF problem based
on MCE, that can model distribution grids that may
be unbalanced, or have a meshed topology.
• The development of a distributed algorithm, based on

the PAC method, with clear articulation of conditions
for proof of convergence.

The organization of this paper is as follows. Section 2
introduces the mathematical notation, Section 3 describes
the proposed relaxed OPF problem. In Section 4 we
state the distributed algorithm and prove its convergence
properties. In Section 5 we show results of the proposed CI
model and distributed algorithm for the voltage regulation
problem on a modified IEEE 13 bus network, with DERs.
Some concluding remarks are provided in Section 6.

2. MATHEMATICAL NOTATION

We denote scalars as lowercase characters (µ or y), vectors
as lowercase boldfaced characters (e.g., µ or y), and ma-
trices as uppercase English characters (e.g., G). Functions
are represented as italicized lowercase characters (e.g., f).

For matrices G ∈ Rn×n, we let λmin (G), λ̂min (G) and
λmax (G) represents it smallest, smallest non-zero and
largest eigenvalue, respectively. Sets are then represented
as uppercase specialized characters (e.g., S or L). In addi-
tion, we denote n-dimensional vectors with all zero entries
by 0n and we utilize the overbar x and underbar x notation
to denote upper and lower limits for a variable x, phasors
are denoted as x.

We define [Y ] , {1, . . . , Y } for any Y ∈ N. For any
collection of [Y ]-subsets W = {Wj}j∈[K] s.t. Wj ⊆ [Y ],

we use the following cardinality convention:

• NW
j , |Wj| is the size of the jth subset;

• NW ,
∑

j∈[K]N
W
j is the sum of all such subset sizes.

In addition, we denote the elements of each subset Wj ={
w

[j]
k

}
k∈NW

j

, where the subscript k indicates that w
[j]
k is

the kth element of the subset Wj and the superscript [j]

signifies that w
[j]
k belongs to the jth subset.

We then succinctly represent vectors and matrices using
this notation:

• v = {vr}r∈[M ] represents the vector with elements vr;

• G = {gr,c}r∈[M ],c∈[Y ] ∈ RM×Y represents the matrix

with elements gr,c;

• vRi
, {vr}r∈Ri

represents a submatrix of v with

entries from rows Ri ⊆ [M ];

• GRi,Cj
, {gr,c}r∈Ri,c∈Cj

represents the submatrix of

G with entries from rows Ri ⊆ [M ] and columns
Cj ⊆ [Y ].

In addition, if we want to represent a submatrix or
subvector with all rows or all columns of G, we use
the subscript ‘−’. E.g., GRi,− , GRi,[Y ] represents the
submatrix of G with entries at specific rows Ri and all
columns.

3. THE RELAXED OPF PROBLEM

The distribution network is modelled as an undirected
graph G(N,E), with N set of nodes and E set of branches.
For a general 3-phase network, each variable is a vector
with 3 components, denoting the phases k ∈ K with
K = a, b, c). The impedance matrix Zr,s ∈ R3×3 for
a line between nodes r and s, represents the magnetic
coupling between phases k and k′, such that zk,k′ = Rk,k′+
jXk,k′∀k, k′ ∈ K. The OPF problem aims at minimizing
a performance index subject to constraints that describe
the physics of the power system. The performance index
can be, for example, to minimize line losses, cost for power
production, or deviation of voltage from nominal setpoints.

We model the current injections per phase at each node in
the network. A general formulation of a 3-phase CI-OPF
is given by:

min
(i,v,s)

f (i,v, s) (1)

v = Zi (2)

s = viH (3)

v ≤ v ≤ v (4)

s ≤ s ≤ s (5)

where i, v and s are vectors (∈ C) for nodal current
injection, voltages, and apparent power injection respec-
tively, Z is the network’s impedance matrix, and H de-
notes the Hermitian matrix. In this CI-OPF formulation,
equation (1) describes general objective function typical of
power systems minimizing a function of current voltages
or power, (2) is the definition of the nodal analysis method
for an AC system, (3) is the definition of apparent power,
and (4)-(5) are upper and lower bounds for voltage and
apparent power injected at each bus respectively.

As can be seen from (1)-(5), the source of non-convexity
is the bilinear term viH . To this end we use MCE (Mc-
cormick, 1976) as convex relaxation to our bilinear prob-
lem, which denotes the convex hull of a bilinear form
w = xy. We denote this as MCE(w, x, x, y, y) = {w =
xy : x ∈ [x, x], y ∈ [y, y]}, and formally define it as:

M(w, x, x, y, y) =


w ≥ xy + xy − xy
w ≥ xy + xy − xy
w ≤ xy + xy − xy
w ≤ xy + xy − xy

(6)

Using the relaxation described above, we can rewrite the
convex optimization problem as:

min
(i,v,s)

f (i,v, s) (7)

v = Zi (8)
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s ≥ viH + viH − viH (9)

s ≥ viH + vi
H − vi

H
(10)

s ≤ viH + vi
H − viH (11)

s ≤ viH + viH − vi
H

(12)

v ≤ v ≤ v (13)

i ≤ i ≤ i (14)

s ≤ s ≤ s (15)

where equation (14) describes suitable current limits in-
troduced to use the MCE.

We note that for brevity, the formulation of the optimiza-
tion problem has been condensed; the complete formula-
tion includes the separation of the complex variables, i,v, s
into real and imaginary components, where s = p + jq,
and p and q are the real and reactive powers respectively.

4. PROXIMAL ATOMIC COORDINATION
ALGORITHM

In this section, we summarize the results of Romvary
(2018) for the sake of completeness and comprehension.

We start by considering the following global standard
optimization (GSO):

min
y∈RY

f (y) ,
∑
k∈[B]

fk (y)

 (16)

Gy = 0M (17)

where:

• y ∈ RY represents the Y optimization variables;
• fk : RY → R represents an objective function

summand;
•
∑

k∈[B] fk (y) represents the total objective function;

• G =
[
gT1 ; · · · ; gTM

]
∈ RM×Y is a matrix s.t. null (G)

represents the feasibility region of the GSO and each
row gi ∈ RY represents the feasibility constraints 1 .

We can decompose the GSO into K different coupled sub-
optimization problems by using the following decomposi-
tion profile D = (L,C,S,O,T):

• L = {Lj}j∈[K] represents the partition of [Y ] with

Lj ⊆ [N ] being the components of y that each jth
atom “owns”;
• C = {Cj}j∈[K] represents the partition of [M ] with

Cj ⊆ [M ] representing the rows of G that each jth
atom “owns”;
• S = {Sj}j∈[K] represents the partition of [B] with

Sj ⊆ [B] representing the objective summands of f
that each jth atom “owns”;
• O = {Oj}j∈[K] has each Oj ⊆ [Y ] representing the

“copies” of variables of y that each jth atom needs

1 It should be pointed out that a general formulation of an opti-
mization problem also includes inequality constraints hy ≤ 0 that
represent the domain of optimization variables. The discussions here
can be easily extended to this case as well by suitably restricting the
variables’ feasible set.

to satisfy the scope of both GCj,− and fSj
(y) ,∑

k∈Sj
fk (y); 2

• T = {Tj}j∈[K] represents the atomic partitioning of

the GSO where each Tj = Lj ∪Oj ⊆ [Y ] .

Using D, we obtain the following atomized standard opti-
mization (ASO):

min
aj∈R

NT
j

{∑
j∈[K] f̃j (aj)

}
subj. to:

{
G̃jaj = 0NC

j
, for all j ∈ [K]

B
j,−a = 0NO

j
, for all j ∈ [K]

, (18)

with each atom’s variables (both owned and copied) being

represented by aj ∈ RN
T
j and:

• f̃j (aj) =
∑

k∈[NS
j ] fk

(
ΠTj

y
)

for all k ∈
[
NS

j

]
and

y ∈ RY , where ΠTj
∈ RY×Y is given by:

ΠTj
, diag

{
δ1∈Tj

, . . . , δY ∈Tj

}
,

with:

δn∈Tj
,

{
1, if n ∈ Tj
0, otherwise

.

• G̃j , GCj,Tj
∈ RN

C
j ×N

T
j represents the submatrix of

GCj,− obtained by removing all zero columns;

• B ∈ RNO×NT

represents the adjacency matrix of
the directed graph with nodes signifying the atomic

variables with edges
(
y
[i]
k , y

[j]
k

)
, where y

[i]
k with k ∈ Li

is defined to be the variable of y that is “owned” by

the jth atom and y
[j]
k with k ∈ Oj defined to be the

variable of y that is “copied” by the jth atom;

• B
j,− , BÕj,− ∈ RN

O
j ×N

T

represents the relevant

incoming edges of the directed graph with adjacency
matrix B of the variables “copied” by the jth atom,
with Õj = [|Oj|] +

∑
k∈[j−1]

|Ok|;

• B−,j , B−,T̃j
∈ RN

O×NT
j represents the relevant

out-going edges of the directed graph with adjacency
matrix B of the variables “owned” by the jth atom,
with T̃j = [|Tj|] +

∑
k∈[j−1]

|Tk|.

We notice how the ASO of (18) is an augmented version
of the GSO of (16), sharing the same optimal solutions.
Specifically, we relate the optimal ASO a∗ to optimal GSO

y∗ via y∗ = ΠLa∗, where each ΠL : RY → RNT

represents
the projection from a-space into y-space that consists of
all owned variables in each aj∗ being placed correctly in
the resultant y∗′ = ΠLa∗.

As we will see in the next section, we prefer to use the
ASO formulation to solve the underlying problem because
it allows us to compute the primal update in a distributed
fashion, i.e., by using the ASO we can iterate over all aj

concurrently. The cost of this parallelization, however, is
the addition of another constraint, termed coordination,
that needs to be satisfied for every atom j ∈ [K]:

B
j,−a = 0NO

j
.

2 By scope, we mean the dimensions of y over which either GCj,−y
or fSj

(y) vary their value. For example, the scope of GCj,− is
precisely the set of its columns which have at least one nonzero value.
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This coordination constraint can be interpreted as requir-
ing all atomic copied variables in a given jth atom (given
by Oj) to equal the value of their corresponding owned
variable in another non j-atom.

4.1 Algorithm Specifications

We begin by forming the atomic Lagrangian function for
(18):

L (a,µ,ν) =
∑
j∈[K]

[
f̂j (aj) + µTj G̃jaj + νTj B

j,−a
]

=
∑
j∈[K]

[
f̂j (aj) + µTj G̃jaj + νTB−,jaj

]
,
∑
j∈[K]

Lj (aj,µj,ν) . (19)

We can then apply the prox-linear approach of ((Chen and
Teboulle, 1994)) to (19) and obtain the proximal atomic
coordination (PAC) algorithm:

aj [τ + 1] = argmin

aj∈R
NT

j

{Lj (aj, µ̄j [τ ] , ν̄ [τ ])

+ 1
2ρ ‖aj − aj [τ ]‖22

}
, (20)

µj [τ + 1] = µj [τ ] + ργG̃jaj [τ + 1] , (21)

µ̄j [τ + 1] = µj [τ + 1] + ργG̃jaj [τ + 1] , (22)

Communicate {aj}j∈[K] within network, (23)

νj [τ + 1] = νj [τ ] + ργjBj,−a [τ + 1] , (24)

ν̄j [τ + 1] = νj [τ + 1] + ργ̂j[τ + 1]B
j,−a [τ + 1] , (25)

Communicate {ν̄j}j∈[K] within network, (26)

where we utilized the previously mentioned prox-linear
method to ensure parallel computation of each primal step.

4.2 Structural Assumptions

We next make the following assumptions on the structure
of the GSO and ASO formulations:

Assumption 4.1. Each f̂k ∈
{
f̃j

}
j∈[K]

is a closed, convex

and proper function with dom
(
f̂k

)
= RY .

Assumption 4.2. There exists a non-trivial optimal GSO

solution y∗ ∈ RN . The optimal ASO solution a∗ ∈ RNT

is
related to y∗ ∈ RN via: y∗ = ΠLa∗.

Assumption 4.3. Let the PAC parameters satisfy:

1 > ρ2γλmax

(
G̃T G̃ + BTB

)
4.3 Algorithm’s Convergence

Defining the following quantities:

G̃ = diag
{

G̃1, . . . , G̃K

}
V1 = G̃T G̃ + BTB,

Ṽ1 (γ) = γV1

Ṽ2 (ρ, γ) =
1

ρ2
INT − Ṽ1 (γ)

Using the above GSO and ASO optimization models, we
now state the main result of the paper:

Theorem 4.4. Let the PAC parameters satisfy ρ > 0 and
γ > 0. Further, let:

a [τ ] = [a1 [τ ] ; · · · ; aK [τ ]] ,

represent the PAC trajectory of (20)-(26) under zero-
initialization. Then if Assumptions 4.1, 4.2 and 4.3 holds,
then there exists an optimal ASO solution a∗ s.t.:

lim
τ→∞

{a [τ ]} = a∗,

with convergence rate satisfying, for all τ ∈ N:{
‖a [τ + 1]− a [τ ]‖V2(ρ,γ)

}
τ∈N

= o

(
1

τ

)
.

Proof We shall proceed in a similar fashion to the proofs
of Lemmas 2.1 and 2.2 in ((Chen and Teboulle, 1994)) .
From dual update equations of (21) and (24), we have:

µ[τ ] = ργG̃j

[
τ∑
s=0

a[s]

]
, (27)

ν[τ ] = ργB

[
τ∑
s=0

a[s]

]
. (28)

Using both (27) , (28) in conjunction with the necessary
condition for optimality of (20), we have:

0NT =
1

ρ
c
[τ+1]

f̂
+ ρV̂1 (γ)

τ∑
s=0

a[s]

+ Ṽ2 (ρ, γ) (a [τ + 1]− a [τ ]) (29)

where c
[τ+1]

f̂
∈ ∂f̂ (a [τ + 1]). Assumption 4.3 gives us:

1 > ρ2λmax

(
Ṽ1 (γ)

)
⇒ λmin

(
1

ρ2
INT − Ṽ1 (γ)

)
> 0

⇒ λmin

(
Ṽ2 (ρ, γ)

)
> 0,

from which we get that Ṽ2 (ρ, γ) is p.d.. Since Ṽ1 (γ) is
p.s.d when γj � 0 for each j ∈ [K], we can then define its

symmetric “square root” R ∈ RNT×NT

according to:

RR = Ṽ1 (γ) = G̃T G̃ + BTB 3 .

Connecting R to a∗ and the ASO-feasibility of (18), we
have:

a is ASO-feasible iff Ra = 0NT . (30)

Sufficiency of (30) follows directly while necessity of (30)
follows from:

Ra = 0NT ⇒ RRa = 0NT ⇒ G̃T G̃a = −BTBa

⇒
∥∥∥G̃a

∥∥∥2
2

= −‖Ba‖22 ⇒ G̃a = 0NC and Ba = 0NO

⇒ a is ASO-feasible.

Using (30), we see that the ASO of (18) is equivalent to the
following auxiliary standard optimization (XSO) problem:

min
ρRa=0Ñ

{
f̂ (a)

}
, (31)

whose necessary condition for optimality satisfies:

Rr∗ +
1

ρ
c∗
f̂

= 0NT , (32)

3 We note that such a root matrix exists for Ṽ1 (γ) since the latter
is square p.s.d. matrix. Specifically, if Ṽ1 (γ) = UΣUT is a suitable

eigenvalue decomposition, then R =

[
UΣ

1
2 UT

]
((Makhdoumi and

Ozdaglar, 2017))
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where r∗ is the optimal dual variable, a∗ is ASO-optimal,

and c∗
f̂
∈ ∂f̂ (a∗). Since (31) is equivalent to (18), we have

that the dual summands of the associated Lagrangians for
both are equal for all τ > 0 and, using (27) and (28), we
have:

(r [τ ])
T

(ρR) a [τ ] = (µ [τ ])
T

G̃a [τ ] + (ν [τ ])
T

Ba [τ ] =(
τ∑
s=0

a [s]

)T (
ρṼ1 (γ)

)
a [τ ] =

(
τ∑
s=0

a [s]

)T
(ρRR) a [τ ]

=

(
R

[
τ∑
s=0

a [s]

])T
(ρR) a [τ ] .

from which we conclude that r [τ ] , R (
∑τ
s=0 a [s]). Using

(32) and noting that:

(a∗ − a [τ + 1])
T

c∗
f̂

= (a∗ − a [τ + 1])
T

[− (ρR) r∗]

= ρ (r∗)
T

Ra [τ + 1] = ρ (r∗)
T

(r [τ + 1]− r [τ ]) ,

we can then exploit the monotonicity property of the

subdifferential operator ∂f̂ and use (29) to obtain:

0 ≤ (a [τ + 1]− a∗)
T

(
1

ρ
c
[τ+1]

f̂
− 1

ρ
c∗
f̂

)
+ (r∗)

T
(r [τ + 1]− r [τ ])

≤ (a [τ + 1]− a [τ ])
T

Ṽ2 (ρ,Γ) (a∗ − a [τ + 1])

+ (r [τ + 1]− r [τ ])
T

INT (r∗ − r [τ + 1]) . (33)

It can be shown that (33) is equivalent to:

0 ≤ ‖q [τ ]− q∗‖2W − ‖q [τ + 1]− q∗‖2W
− ‖q [τ ]− q [τ + 1]‖2W , (34)

where:

W =

[
Ṽ2 (ρ, γ) 0

0 INT

]
q [τ ] = [a [τ ] ; r [τ ]]

q∗ = [a∗; r∗] .

From (34), we then have, for any q [τ + 1] 6= q [τ ]:

‖q [τ ]− q∗‖2W ≥
‖q [τ + 1]− q∗‖2W + ‖q [τ ]− q [τ + 1]‖2W
> ‖q [τ + 1]− q∗‖2W . (35)

where we used that W is p.d. 4 From (35), we have that{
‖q [τ ]− q∗‖2W

}
τ>0

is monotonically decreasing. Since

this sequence has a lower bound of 0, we can thus conclude
that it converges to a fixed value:

‖q [τ ]− q∗‖2W →
τ→∞

ζ ∈ R+. (36)

From (36) we have that {q [τ ]}τ≥0 deterministically con-
verges to a vector q which is a distance ζ away from q∗.
Due to the nature of PAC, we can then conclude that q is a
fixed point of PAC and also satisfies the KKT Conditions

of the XSO (31). By Assumption 4.1, f̂ is convex and

dom
(
f̂
)

= RN . Utilizing this along with Assumption 4.2,

we can then conclude that Slater’s Condition is satisfied.
Hence, q is an optimal point of the XSO (31). Since our
choice of choice q∗ was initially arbitrary in the sense
that it only had to be an (not necessarily the) optimal

4 This follows since Ṽ2 (ρ, γ) is p.d..

solution of the XSO, we can then simply set q∗ = q
and therefore conclude that the PAC trajectory obtains
asymptotic convergence to an optimal XSO solution:

lim
τ→∞

{q [τ ]} = q∗ ⇒ lim
τ→∞

{a [τ ]} = a∗.

As for the rate, we can follow the approach of Lemma
2.2 of ((Deng et al., 2017)) and use the monotonicity of

∂f̂ and the first-order condition of optimality to get, if
∆a [τ + 1] , a [τ + 1]− a [τ ]:

0 ≤ (∆a [τ + 1])
T

(
1

ρ
c
[τ+1]

f̂
− 1

ρ
c
[τ ]

f̂

)
≤ −1

2
‖∆q [τ + 1]‖2W +

1

2
‖∆q [τ ]‖2W , (37)

where we used the identity for Z ∈ Rn×n and z1, z2 ∈ Rn:

2 (z1)
T

Z (z2) ≤ ‖z1‖2Z + ‖z2‖2Z .
From (37) we can thus conclude that ‖∆q [τ ]‖2W monoton-
ically non-increasing in τ , i.e.:

‖∆q [τ + 1]‖2W ≤ ‖∆q [τ ]‖2W .

Since lim
τ→∞

{q [τ ]} = q∗, we can conclude using (34)

that
∑∞
τ=1 ‖∆q [τ ]‖2W < 0. Hence, we use Lemma 1.1 of

((Deng et al., 2017)) to determine that PAC converges

with ‖∆q [τ + 1]‖2W = o
(
1
τ

)
. �

5. CASE STUDY APPLICATION

The proposed relaxed CI-OPF formulation is solved with
the proposed PAC algorithm, using a modified IEEE 13
bus network (see Figure 1a). To test the application of
the proposed methods to modern distribution grids, DERs
are introduced into the network. Demand response is
introduced at nodes 3, 6, and 11, for reduction in real
power load of up to 20%, 10%, and 30% respectively. A
dispatchable DG is introduced at node 9, with P =
100kW, P = 0kW and Q = 50kVAr, Q = −50kVAr. The
capacitor banks in the original IEEE network are modelled
as reactive power generators.

We consider the problem of voltage regulation for this
active distribution network. The objective function is as
follows:

f (i,v, s) =
∑
i∈N

∑
k∈K

[(vRik − v̂Rik)2 + (vIik − v̂Iik)2] (38)

where vRik and vIik are the real and imaginary part of
the voltage phasor vik, and v̂Rik and v̂Iik are the desired
setpoints treated as the reference value. In our case study
we take v̂Rik = 1 and v̂Iik = 0, ∀i ∈ N \ i = 1, k ∈ K. We
note that node 1 which is the point of common coupling
(PCC) to the transmission grid is treated as a slack node,
with vR1 = 1 and vI1 = 0, ∀k ∈ K.

We then use the PAC algorithm to solve the OPF problem
of (7)-(15), with the above objective function. All simula-
tions were performed using a 2.3 GHz Intel Core i7 with
MATLAB and the YALMIP interface (Löfberg, 2004). The
chosen PAC parameters are γ = 1.730 and ρ = 0.03035. In
Figure 1b-1c, we evaluate the algorithm’s performances as
measured by two different metrics. These are the distance

to global feasibility:
∥∥∥G̃a [τ ]

∥∥∥
2
; and the distance to coordi-

nation: ‖Ba [τ ]‖2. These metrics describe how feasible the
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(a) IEEE13 network topology (b) Convergence of feasibility metric (c) Convergence of consistency metric

Fig. 1. Results of PAC employed on CI-OPF model of IEEE 13 bus network

solution is (whether power flow equations are satisfied),
and how far the variable copies are from their true values
(which were introduced to distribute the problem). Results
show the algorithm converges to the optimal solution in
less than 800 iterations. The maximum and average time
required for each primal update for PAC is 0.0096s and
0.0023s, respectively.

6. CONCLUSIONS AND FUTURE WORK

In this paper we define a new model and method for solv-
ing the OPF problem for distribution grids with meshed
topology and unbalanced structure. First, we propose a
new MCE-based convex relaxation for the OPF problem
using current injections. Second, we state a distributed
optimization algorithm and its related decomposition pro-
file to solve the OPF in a fully distributed manner, with
provable convergence rate o(1/τ) (where τ is the number of
iterations) for convex problems. The developed approach
was tested on a modified IEEE 13 bus network, with added
DERs and lines to create a meshed topology. We show
convergence of the PAC algorithm to the optimal solution
in under 800 iterations. Future work will include the com-
parison of the proposed model with alternate power sys-
tems models. We will also focus on the development of new
methodologies to improve the MCE relaxation to obtain
a higher quality lower bound of the OPF solution, and
further tuning of the PAC parameters for faster conver-
gence result. Research will also revisit the PAC algorithm
to reduce number of iterations required for convergence,
focusing on the primal and dual updates.
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Löfberg, J. (2004). Yalmip : A toolbox for modeling and
optimization in matlab. In In Proceedings of the CACSD
Conference. Taipei, Taiwan.

Makhdoumi, A. and Ozdaglar, A. (2017). Convergence
rate of distributed admm over networks. IEEE Trans-
actions on Automatic Control, 62(10), 5082–5095. doi:
10.1109/TAC.2017.2677879.

Mccormick, G.P. (1976). Computability of global solutions
to factorable nonconvex programs: Part i — convex
underestimating problems. Mathematical Programming,
10(1), 147–175. doi:10.1007/bf01580665.

Robbins, B.A. and Dominguez-Garcia, A.D. (2016). Op-
timal reactive power dispatch for voltage regulation in
unbalanced distribution systems. IEEE Transactions on
Power Systems, 31(4), 2903–2913. doi:10.1109/tpwrs.
2015.2451519.

Romvary, J. (2018). A proximal atomic coordination algo-
rithm for distributed optimization in distribution grids.
Ph.D. thesis, Massachusetts Institute of Technology.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13475


