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Abstract: Control of complex systems with inherent randomness in process dynamics poses a
serious concern for control engineers, especially in situations where performance and constraint
satisfaction are highly demanded. In this paper, we propose a real time (RT) scenario based
stochastic parameterized NMPC (SS-pNMPC) scheme for control of semi-active (SA) system
for a half car vehicle. The method utilizes graphic processing unit (GPU) to generate several
RT scenarios of the random road profile for each parameterized input and through Monte-
Carlo (MC) simulations, the expected objective function along with a probabilistic constraint
violation certificate are numerically obtained. The optimal input is elicited by finding the input
either with minimum expected objective or with the lowest probabilistic constraint violation
certificate. The method was implemented on NVIDIA Jetson embedded boards and also, tested
in MATLAB/Simulink environment for different ISO road profiles and the simulation results
exhibits better performance of the proposed method in comparison to passive systems.

Keywords: Automotive control, GPGPU computing, Real-time Stochastic Non-linear Model
Predictive Control, Embedded control, Vertical Dynamics

1. INTRODUCTION

With increasing demands from automotive industry on
performance and safety of vehicles, over the last few years
Model Predictive Control (MPC) has gained immense at-
traction. However, the major hindrance for the method
from being pervasive is the need for high computational
time for solving the online optimization problem. Over
the last few decades with the development of advanced
and sophisticated embedded processors, the gap between
theory and practice for MPC controller has abridged. At
the same time the MPC methods, techniques and its vari-
ants have evolved substantially in large proportions. Thus,
it can be scarcely denied that with increased complexity
of methods, a need for increased computational resource
is inevitable to meet the real-time (RT) requirements for
fast sampled systems. Under this premise, the multicore
Graphic Processing Unit (GPU) displays a strong poten-
tial to implement several state of the art MPC methods.

There have been several research contributions on utiliza-
tion of GPUs for solving MPC problems. In Abughalieh
and Alawneh (2019), a detailed survey on various types of
parallel implementation of MPC methods are described.
In Sampathirao et al. (2017), a scenario based Stochastic

? This work was supported by the ITEA3 European project, 15016
EMPHYSIS (Embedded systems with physical models in the pro-
duction code software).

MPC (SMPC) method is proposed where the structure of
the system is exploited and the problem is solved using
proximal gradient method which is parallelized on GPU.
In Ohyama and Date (2017), a sampling based paral-
lelized nonlinear MPC (NMPC) scheme is proposed and
experimentally validated for control of inverted pendulum
system. In Williams et al. (2016), a path integral based
MPC method is proposed and experimentally validated for
a remote controlled (RC) car. In Rogers (2013), a guidance
law for guided projectiles is proposed, where the GPUs are
utilized to generate RT scenarios to predict the impact
point and probability of violating impact area constraints.
Concerning the control of semi-active suspensions system,
Savaresi et al. (2010) provides a comprehensive collection
of all classical and modern control methods such as Sky-
hook, SH-ADD, Hybrid MPC with preview, H∞ and LPV
methods etc. However, in the line of research of application
of SMPC for control of suspension systems, not many
research have been conducted in the past. To the best of
knowledge of the authors, in Guanetti and Borrelli (2017)
a cloud aided SMPC method is proposed for control of
active suspension system for a quarter car vehicle.

In this paper, we propose a GPU based scenario-stochastic
parameterized NMPC (SS-pNMPC) method for control of
semi-active system for half car vehicle to provide comfort
and safety for onboard passengers. The work presented in
this paper is an extension to the previous work Rathai
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et al. (2019b), where the novelty lies in the inclusion
of stochastic road model into control design. The key
contributions of the paper are :
a) Modeling flexibility - The proposed method requires
no a-priori assumptions such as linear time invariant (LTI)
dynamics, stationary property, Gaussian distribution of
noise etc. This feature is highly sought these days as
proposed in Guanetti and Borrelli (2017), the road model
stochastic information can be dynamically obtained from
cloud servers.
b) Validation/Verification on Embedded platforms
- The proposed method was tested on multiple GPU based
embedded boards to calculate the computation time and
also to assess the RT feasibilty of the method. The method
was tested on the NVIDIA Jetson embedded boards -
Nano, TX1, TX2 and Xavier.

This paper is organized as follows. Section 2 discusses the
vertical dynamics model for the vehicle, non-linear quasi
static model for the ER dampers and modeling of ISO road
profiles in detail. Section 3 discusses the stochastic NMPC
problem formulation. Section 4 describes the SS-pNMPC
method, pseudo-code and scenario generation techniques
in detail. Finally, the paper is concluded with Section 5 and
Section 6 with results, simulation, conclusions and future
works respectively.

2. HALF CAR MODEL WITH SEMI-ACTIVE
SUSPENSION SYSTEM

2.1 Half car mathematical model

The mathematical model of the vehicle is comprised of
a) Dynamical model of vertical motion of half car vehicle
extended with road model and b) Kinematics model for
longitudinal motion of the vehicle Savaresi et al. (2010).
Let the left and right corners of the vehicle be indexed
with i ∈ {l, r} respectively. The equations of the model is
expressed as follows

msz̈s = −(Fs,l + Fs,r)

Ixθ̈ = (llFs,l − lrFs,r)
mus,lz̈us,l = (−Fs,l + Ft,l)

mus,r z̈us,r = (−Fs,r + Ft,r)

żr,l = −αvxzr,l + ξl
żr,r = −αvxzr,r + ξr
v̇x = ax

(1)

where, zs, θ represents the heave/chassis position and
roll angle of the vehicle w.r.t. the centre of gravity
(COG) respectively. zus,i, zr,i, ξi ∀i ∈ {l, r} represents
the wheel/unsprung mass position, vertical road profile
of the vehicle and random disturbances respectively. vx
and ax denotes the longitudinal velocity and acceleration
of the vehicle. ms, mus,l, mus,r represents the chassis
mass, unsprung masses for the left and right corners. Ix
represents the moment of inertia along the roll axis. ll and
lr represents the length of the chassis from the left and
right corners with respect to COG. α represents the ISO
road profile parameter. Fs,i represents the chassis forces
and Ft,i represents the wheel forces ∀i ∈ {l, r} which are
expressed with

Fs,i = −ks,i(zs,i − zus,i) + ui
Ft,i = −kt,i(zus,i − zr,i)

(2)

where, ks,i and kt,i represents the stiffness coefficent of the
SA suspension system and wheel respectively. zr,i and zus,i
represents the vertical road displacement and unsprung
mass position ∀i ∈ {l, r}. ui represents the actuation force
obtained from the nonlinear SA damper model (see Section
2.2). zs,i represents the sprung mass displacement at each
corner which are obtained from the following equations

zs,l = zs + llsinθ

zs,r = zs − lrsinθ
(3)

2.2 Nonlinear quasi-static SA damper model

The SA damper force ui in (2) is expressed by utilizing
the Guo’s damper force model (Savaresi et al. (2010))
∀i ∈ {l, r} with

ui = k0zd,i + c0żd,i + fcφitanh(a1żd,i + a2zd,i) (4)

where k0, c0, fc, a1 and a2 represents the damper stiff-
ness coefficient, viscous damping coefficient, dynamic yield
force of the fluid, hysteresis coefficient due to velocity
and position respectively. φi, ∀i ∈ {l, r} represents the
duty cycle (PWM-DC) input signal which manipulates
the damper characteristics online by changing the input
voltage. zd,i = zs,i − zus,i and żd,i = żs,i − żus,i represents
the deflection position and velocity ∀i ∈ {l, r} between the
chassis and wheel respectively.

2.3 ISO road profile

The ISO road profile is primarily dependent upon two
factors which are a) Longitudinal velocity of the vehicle
and b) Road roughness coefficient, i.e. the road surface
(Tyan et al. (2009)). In accordance with the ISO-8608
standard (de Normalización (Ginebra)), the road profile
can be expressed as a time-varying first order auto regres-
sive process, which is expressed with

żr(t) = −αvx(t)zr(t) + ξ(t) (5)

where, zr(t) is the road profile as defined in (1) and
ξ(t) is the stochastic road disturbance drawn from a
normal distribution defined with ξ(t) ∼ N (0,Ψzr (t)),
where Ψzr (t) = 2αvx(t)σ2 represents the spectral density
of the Gaussian white noise and σ2 denotes the road
roughness variance. The parameters for different road
surfaces are listed in Table 1.

Table 1. ISO road roughness parameters

Road surface Road roughness (σ2) α (rad/s)

ISO A (Very Good) 4× 10−6 m 0.127
ISO B (Good) 16× 10−6 m 0.127

ISO C (Average) 64× 10−6 m 0.127
ISO D (Poor) 256× 10−6 m 0.127

ISO E (Very Poor) 1024× 10−6 m 0.127

Let X = [zs, θ, zus,l, zus,r, żs, θ̇, żus,l, żus,r, zr,l, zr,r, vx] de-
note the state vector, U = [φl, φr] denote the input vector
and Ξ = [ξl, ξr] denote the disturbance vector, then the
half car model (1) can be compactly expressed with

Ẋ(t) = f(X(t),U(t),Ξ(t), ax(t)) (6)

where X ∈ R11, U ∈ R2 and Ξ ∈ R2. The parameters are
obtained from the INOVE test platform at GIPSA lab,
Grenoble. The INOVE test platform discussed is a 1:5-
scaled baja style racing car which consists of 4 controllable
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Electro-Rheological (ER) SA dampers (ER-SA) and 4 DC
motors to generate different road profiles for each wheel
corner (Sename (2019)).

3. MODEL PREDICTIVE CONTROL DESIGN

3.1 Objective requirements

The objective design in time domain can be briefly classi-
fied as a) comfort and b) ride handling objective Savaresi
et al. (2010).

(1) Comfort objective: The goal of the comfort based
objective is to minimize the vertical acceleration
of the chassis (z̈s), governed by (1). The comfort
objective for a given look ahead period Tl is expressed
with

JaccTl
(X(.),U(.),Ξ(.), ax(.)) =

∫ Tl

0

(z̈s(t))
2dt (7)

(2) Ride handling objective: The goal of the ride
handling objective is to minimize the roll angle (θ)
of the vehicle. The ride handling objective for a given
look ahead period Tl is expressed with

JrollTl
(X(.),U(.),Ξ(.), ax(.)) =

∫ Tl

0

(θ(t))2dt (8)

3.2 Constraint requirements

The constraints for the SA suspension system primarily
arise from the physical limitations and secondarily from
performance requirements (Baumal et al. (1998)). For the
MPC design, the included constraints are

(1) ER-SA damper input constraints:
(a) Damper force constraint (Physical): The ER-SA

damper force is bounded i.e. ui ∈ [ui, ui], ∀i ∈
{l, r}.

(b) PWM-DC input constraints: The operating DC
for the PWM signal is constrained to φi ∈
[φi, φi], ∀i ∈ {l, r}.

(2) State constraints:
(a) Stroke deflection constraint (Physical): This forms

a linear state constraint i.e. zd,i ∈ [zd,i, zd,i],

∀i ∈ {l, r}.
(b) Wheel rebound constraint (Performance): This

bounds the deflection position between the wheel
and road. This is to ensure the tyre deflection
forces are bounded i.e. zus,i−zr,i ∈ [zreb,i, zreb,i],

∀i ∈ {l, r}.
(3) Road variable assumption: The vertical road dis-

placement at the current time instant is assumed to
be measured by means of adaptive road profile ob-
servers (Doumiati et al. (2017)) or from cloud servers
(Zhang et al. (2017)).

(4) Longitudinal acceleration assumption: The lon-
gitudinal acceleration ax is assumed to be constant
over the prediction horizon (Tl). In a real vehicle
setting ax is typically obtained from Inertial Mea-
surement Unit (IMU) of the vehicle.

The mixed input-state constraint set is compactly ex-
pressed with (X,U) ∈ Ω(X,U) ⊂ R11 × R2 and the input
constraint set is compactly expressed with U ∈ ΩU ⊂

R2. The disturbance has a probabilistic support P which
is normally distributed with Ξ ∼ N (0,Σ(X(t))), where
Σ(X(t)) = diag(Ψzr,l(X(t)),Ψzr,r (X(t))). The variance is
dependent on longitudinal velocity (vx) of the vehicle,
which is a state variable of the system (see Section 2.3).

3.3 SNMPC problem formulation

Due to the stochastic disturbances acting on the system,
it is of paramount importance to model the MPC formula-
tion to deal with the uncertainties. Thus, stochastic mea-
sures are adopted for the MPC problem formulation. The
stochastic measure adopted for the objective is the expec-
tation operator (E) and the mixed state-input constraints
(Ω(X,U)) are encapsulated in a probabilistic framework
with a finite level of violation η � 1 (as the problem is not
always feasible). In summary, with the proposed objective
and constraints function, the SNMPC OCP is casted as

J∗obj(X0,Γ0, ax,0,U
∗(.)) = min

U(.)
E[max(Γ1

0J
acc
Tl
,Γ2

0J
roll
Tl

)]

s.t. Ẋ(t) = f(X(t),U(t),Ξ(t), ax(t))

X(0) = X0, ax(.) = ax,0,U(.) ∈ ΩU

P[(X(.),U(.)) /∈ Ω(X,U)] ≤ η
(9)

where X0 represents the initial state vector and ax,0
represents the constant longitudinal acceleration over the
prediction horizon. Γ0 = [Γ1

0, Γ2
0] with Γ1

0 and Γ2
0 being

the convex weights for the two objectives comfort and ride
handling respectively. The rationale behind utilizing the
min-max objective is to minimize the objective with max-
imum cost at the current instant. It is also important to
note that the two objectives are conflicting in nature (See
Savaresi et al. (2010)). Once the optimal input trajectory
is computed, the first control action is injected into the
system and this procedure is repeated in receding horizon
fashion. In this work, a constant input profile is assumed
over the control horizon. As the SA suspension system is
inherently stable the foregoing assumption is apposite for
performance requirements for fast sampled systems.

4. SS-PNMPC METHOD

4.1 Method description

The method is an extension of the work proposed in
Rathai et al. (2018) and Rathai et al. (2019b), where
the stochastic road model is accounted in the model
dynamics. The fundamental idea of the method is to
parameterize the input set (ΩU) into finite number of
control inputs (similar to finite control set MPC) and for
each parameterized control input, the SMPC is solved by
performing MC simulations with several scenarios of the
road profile. From the simulations, the expected objective
function is numerically obtained by empirical mean and
a probabilistic constraint violation certificate (PCVC) is
numerically obtained by computing the ratio between
number of constraint violation and number of scenarios
generated. The optimal input is selected by finding the
minimum expected objective along with the consideration
of PCVC less than or equal to the specified level (η). If
none of the input satisfies the above criteria, then the input
with the least PCVC is selected. The pseudo-code for the
method is shown in Algorithm 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14572



Algorithm 1 SS-pNMPC pseudocode

Data Initialization: Model/Constraint parameters
Input: X0,Γ0, ax,0, ng, γ := Ns ×Nτ
Output: Ui∗

1: function CPU SSpNMPC(X0,Γ0, ax,0)
2: U1:ng ← grid(ΩU, ng)
3: parfor i← 1 : ng do
4: parfor l← 1 : Ns do
5: (Obji[l], CVi[l])← SIM(X0,Γ0, ax,0,Ui)
6: end parfor

7: EObji ←
∑

l
Obji[l]

Ns
; PCVCi ←

∑
l
CVi[l]

Ns
8: end parfor
9: if (EObji∗ ≤ EObj∀i\{i∗} & PCVCi∗ ≤ η) then

10: i∗ ← indexmin(EObj)
11: J∗obj ← EObji∗
12: else
13: i∗ ← indexmin(PCVC)
14: end if
15: return Ui∗
16: end function
17: function GPU SIM(X0,Γ0, ax,0,Ui)
18: CV← 0; Obj← 0
19: for j ← 0 : Nτ do
20: BO← 1; TObj← 0; Xem ← X0

21: for tloop ← 0 : h : Tl do
22: Ξ ∼ N (0,Σ(Xem)h)
23: Xem ← Xem + hf(Xem,Ui,Ξ, ax,0)
24: if (((Xem,Ui) /∈ Ω(X,U)) & BO) then
25: CV← CV + 1; BO← 0
26: end if
27: TObj← TObj + hmax{Γ1

0J
acc
ll
,Γ2

0J
roll
ll
}

28: end for
29: Obj← Obj + TObj
30: end for
31: return { ObjNτ ,

CV
Nτ
}

32: end function

Explanation of Implementation:

(1) Initialization, I/Os and Syntax declaration:
(a) The data initialization step sets the parameter

values for the half-car model and the constraints.
(b) The input variables are X0,Γ0, ax,0, ng, γ, where

ng and γ are the number of input parameteri-
zation and number of scenarios respectively. The
output variable is Ui∗ , i.e. the optimal input vec-
tor injected into the system.

(c) The qualifiers CPU and GPU denotes the
function operation in CPU and GPU respectively.
The entry point is SSpNMPC function.

(2) SSpNMPC function:
(a) In line 2, the input set ΩU is finitely discretized

into ng points and collected in the grid U1:ng .
(b) From line 3-8, the parfor i.e. parallel for function

is utilized to dispatch each and every discretized
input from U1:ng to GPU and for each input the
SIM function is utilized to conduct Ns number
of MC simulations. The respective objective func-
tion Obji[l] and constraint violation CVi[l] for the
lth MC simulation and ith input are obtained as
return arguments. Finally, the expected objective
function EObji and probabilistic constraint viola-

tion certificate PCVCi are numerically obtained for
the ith input in U1:ng .

(c) The lines 9-15, looks for the optimal input i∗ in-
dex with minimum expected objective i.e. EObji∗
and also satisfies the violation condition PCVCi∗ ≤
η. If the aforementioned condition is true, i∗ is
obtained from the function indexmin over the
vector EObj, otherwise, i∗ with the least violat-
ing constraint is obtained from the function in-
dexmin over the vector PCVC. Once the index for
the optimal input (i∗) is obtained, Ui∗ is injected
to the system.

(3) SIM function:
(a) The lines from 19 to 30 executes the MC simula-

tion for the ith input Ui. The simulation consists
of two for loops. The outer loop runs the MC sim-
ulation Nτ (Nτ = γ/Ns) and the inner loop is ded-
icated for problem (9), where the stochastic ODE
is simulated and if the constraints are violated,
the counter variable CV registers the violation
and the objective is numerically approximated
by means of Riemann sum. It is also important to
note that the total number of MC simulations for
each input is γ = Ns ×Nτ and the total number
of simulations for all the inputs is N = γ × ng.

(b) The line 31 returns the average objective and
constraint violation certificate with respect to Nτ
simulations.

4.2 Scenario generation

As the SNMPC optimization problem in (9) is numerically
solved by means of MC simulations, it is of paramount
importance to sample enough number of scenarios to
approximate the solution for the problem. Consider the
task of approximating a stochastic function defined by

h(y) = Ex∼Px [ψ(x,y)] (10)

where, x ∈ X is distributed w.r.t. the distribution Px over
X and y ∈ Y (One can liken the x to the road disturbance
scenarios and y with the damper inputs in the context of
this paper). Let the empirical mean approximation of the

function in (10) be defined with ĥ(y). Let the parameters
for accuracy, probability level and confidence level be
defined with ε, β, δ ∈ [0, 1]. Given these parameters,
the study of randomized algorithms is to derive a lower
bound for the number of scenarios required to achieve the
following requirement.

P[P[|ĥ(y)− h(y)| > ε] ≤ β] ≥ 1− δ, ∀y ∈ Y (11)

Theorem 1. Choose the integers ng and γ defined with

ng ≥
ln( 2

δ )

ln( 1
1−β )

and γ ≥ 1

2ε2
ln

4ng
δ

(12)

Generate i.i.d. samples y1, . . . ,yng ∈ Y and x1, . . . ,xγ ∈
X according to Px. Define

ĥ(yi) =
1

γ

γ∑
j=1

ψ(xj ,yi), i = 1 . . . ng and ĥ∗ = min
1≤i≤ng

ĥ(yi)

Then with confidence 1 − δ it can be said that ĥ∗ is a
probably approximate near the minimum h(.) to accuracy
ε and level β. The result is universal and applicable for all
family of functions (Vidyasagar (2001)).
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Using the results from Theorem 1, the empirical means in
the SNMPC problem (9) both in the objective as well as
the chance constraints can be numerically approximated.
An important point to note is that the chance constraint
can be recasted with expectation formulation with

P[(X(.),U(.)) /∈ Ω(X,U)] = E[1{(X(.),U(.)) /∈ Ω(X,U)}]
(13)

where, 1{A} represents the indicator function over the
set {A}. Thus, by leveraging the results propounded in
Theorem 1, the number of scenarios γ for Algorithm. 1
can be derived. Setting β = δ = 0.05 yields the total
number of input parameterization to ng = 64. Utilizing
the previous result and setting ε = 0.125, the number of
scenarios for each parameterized input is γ ≈ 270. In total,
the GPU simulates approximately 270 × 64 simulations
over the prediction horizon at every sampling period.

5. RESULTS AND SIMULATIONS

5.1 RT embedded tests on NVIDIA boards

The test was conducted to study the RT viability of the
proposed method and it involved execution of the proposed
SS-pNMPC method (Algorithm. 1) with the aforemen-
tioned scenario parameters on multiple NVIDIA embedded
boards as listed in Table 2. The key metrics which define
the H/W performance of the board are a) Number of
CUDA cores and b) Compute capability (CC) of the board
i.e. the underlying architecture of the board (See Sanders
and Kandrot (2010)). The performance of the method
is gauged with the mean computation time (CT) and
maximum computation time (CT) in terms of milliseconds
(ms). The method was programmed in C++ using CUDA
libraries. The histogram for the computational time for
different NVIDIA embedded platforms is shown in Fig.
1. The natural sampling period (Ts) of the platform is 5

Table 2. NVIDIA boards H/W configuration
and results

Board #Cores CC Mean CT (ms) Max CT (ms)

Nano 128 5.3 20.81 29.83
TX1 256 5.3 22.37 30.64
TX2 256 6.2 7.62 7.74
Xavier 512 7.2 6.04 6.59

ms and the best of embedded NVIDIA boards - Jetson
Xavier hovers around 6 ms. Yet, the method is viable for
the INOVE test platform as the optimal sampling period
was ascertained to be 26 ms (See Rathai et al. (2019a)).

5.2 Pareto optimality of objectives

As mentioned in Section 3.3, the two objectives (comfort
and ride handling) are conflicting in nature. Thus, the
convex weights Γ1

0 and Γ2
0 ought to be tuned in order

to strike a proper balance between the two objectives.
To study the effects on variations of the convex weights,
a Pareto optimality analysis was performed for several
simulations. The simulation involved the vehicle moving
at a constant velocity vx = 20m/s on a ISO-C road profile
for a duration of 10s. In Fig. 2, the Pareto optimal front
is plotted and this aids in detecting the right weights for
the best results.
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Fig. 1. Histogram of computation time on different embed-
ded GPU platforms

0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095

Normalized roll objective

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

N
o
rm

a
liz

e
d
 c

h
a
s
s
is

 a
c
c
e
le

ra
ti
o
n
 o

b
je

c
ti
v
e

Simulated data

Pareto frontier

Fig. 2. Pareto optimal front between comfort and ride
handling objective

5.3 Road profile simulation test

The simulation test involved the vehicle moving with
longitudinal acceleration and velocity profile as shown in
Fig. 3 and Fig. 4 on all the ISO road profiles. These profile
correspond to the scenario where the vehicle is subjected
to sudden braking. The convex weights used in the study
are Γ1

0 = 0.75 and Γ2
0 = 0.25. Three passive controllers -

ui, ui and nominal un,i =
ui+ui

2 , ∀i ∈ {l, r} were chosen
to compare the performance with the proposed controller.

The RMS values of the chassis acceleration for all the
systems are listed in Table 3. It is clearly evident that the
RMS value of the proposed method is less than the nominal
passive system and in par with the minimum passive
system (Comfort design). Also, at the same time, the
proposed method minimizes the ride handling objective
judiciously in comparison with other passive systems as
shown in Fig. 5 for ISO-E road profile.

Table 3. RMS value of chassis acceleration

ISO SS-pNMPC(ms−2) un(ms−2) u(ms−2) u(ms−2)

A 0.012 0.014 0.011 0.017
B 0.023 0.029 0.021 0.034
C 0.049 0.058 0.042 0.076
D 0.093 0.118 0.087 0.138
E 0.194 0.234 0.178 0.277
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Fig. 5. Roll angle plot for different controllers for ISO-E
road profile

6. CONCLUSIONS AND FUTURE WORKS

In this work, a scenario-stochastic parameterized NMPC
(SS-pNMPC) method is proposed for a Half car semi-
active suspension system. The method was simulated
in MATLAB/Simulink environment and also, the RT
feasibility of the method was validated and verified using
embedded GPU boards. The method in general, provides
a framework to implement highly nonlinear stochastic
MPC by virtue of GPUs using the input parameterization
technique. For the future line of work, the method will be
implemented for full car suspension system and tested on
the INOVE test platform at GIPSA lab.
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