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Abstract: Delta Robots belong to a class of parallel robots widely used in industrial production
processes, mostly for pick-and-place operations. The most relevant characteristics are the high
speed and the extremely favorable ratio between the maximum payload and the weight of
the robot itself. A reliable dynamic model is needed to implement torque controllers that
reduce unnecessary high accelerations and so mechanical vibrations. Moreover, when the mass
of the pickable object is unknown, it is crucial to identify with sufficient precision the dynamic
contribution of the payload and to accordingly adapt the dynamic model in order to guarantee
high performance.
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1. INTRODUCTION

Parallel robots are widely used in industrial applications
due to their stable functioning, control on the limits of
velocities and accelerations, good positional precision and
more rigid structure than serial counterparts. In the spe-
cific case of Delta robots, they are mechanically robust
and can move objects of considerable mass and dimension
at high speeds, Staicu and Carp-Ciocardia (2003), Bortoff
(2018). Delta robot has a mechanical parallel structure
with a closed kinematic chain connecting a fixed platform
to the end-effector, as shown in Fig. 1. The end-effector
moves in the work-space using three serial kinematic chains
with 3 degrees of freedom (DOF). Each serial chain con-
sists of two rigid links connected by a 2-DOF revolute
passive joint. Three drives, attached to the fixed base,
actuate the first link of each chain. The dynamic models of
Delta robots in the literature are currently approximations
of the real rigorous model, due to the presence of only
three actuated and sensed joints out of nine and a complex
kinematic structure with holonomic constraints, whose
introduction into the model would increase the mathemati-
cal and computational complexity. Kuo and Huang (2017),
Kuo (2016) proposed a dynamic model with the first link
modeled as a rigid homogeneous bar and the second link
as a point mass placed at the end of the first link. This
assumption brings to a model relatively easy to handle. On
the other hand, it does not take into account a significant
part of inertia and potential energy. This paper presents
an improvement to the state of art dynamic model of 3-
DOF Delta robots using gray-box dynamical parameter
identification, friction modelling, and payload identifica-
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tion. The improved mathematical model is validated by
using an industrial Delta robot. The paper is organized as
follows. Section 2 recalls the robot geometric representa-
tion, forward and inverse kinematics model, velocities and
acceleration computation. Section 3 introduces the robot
dynamic model. Section 4 explains our contributions to
enhance the accuracy of the dynamic model in free motion.
In particular, gray-box dynamic parameter identification
and friction modeling are presented. Section 5 shows a
method to estimate the payload in real-time. In Section
6 the final dynamic model and the real dynamic model
are compared. The mean error and the standard deviation
between the torque profiles on different trajectories will
prove the effectiveness of our model.

2. KINEMATIC MODEL

The Delta robot is represented (Fig. 1) as a rigid fixed
platform F1F2F3, connected via three sets of kinematic
chains to a rigid moving platform E1E2E3. Each chain
consists of two rigid links FiJi and JiEi, with i ∈ {1, 2, 3},
connected by a 2-DOF revolute joint in Ji. Motor drives
are fixed on points Fi of the base frame and change the
angle θi. The origin O of the global reference frame system
XY Z is located at the circumcenter of the base frame.
The point E0 is the end-effector position and it is placed
in the circumcenter of the moving platform. Commonly
the link JiEi is modeled as a two-bar parallel mechanism
to increase mechanical robustness. In the present work, it
will be considered, without loss of generality, as two rigid
links with two 2-DOF spherical joints on points Ji and Ei.
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Fig. 1. Delta robot geometrical model. αi, i ∈ {1, 2, 3} are
the rotation angles around the z-axis of the reference
frame.

2.1 Forward and Inverse Kinematics

The forward kinematics provides the Cartesian position
of E0 with respect to the reference frame O. In most
of the cases, it must be defined without considering the
passive angles, due to the lack of encoders in the passive
joints. The forward kinematics is a function κ : R3 → R3

which takes as input the values of θi and returns the
position E0 = {x0, y0, z0}. According to Kuo and Huang
(2017), assuming each kinematic chain of identical size,
with l1 = |FiJi|, l2 = |JiEi|, ra = |OFi| and rb = |E0Ei|,
the coordinates of E0 can be computed as the intersection
of three spheres with center in J ′i(xJ′

i
, yJ′

i
, zJ′

i
) and radius

l2. J ′i corresponds to the position of Ji in an “equivalent”
Delta robot with a fixed base of radius r = ra − rb and
a moving point-like platform in the E0. The equations of
the three spheres are:

(x0 − xJ′
i
)2 + (y0 − yJ′

i
)2 + (z0 − zJ′

i
)2 − l22 = 0, (1)

with xJ′
i

= (r + l1 cos θi) cosαi, yJ′
i

= (r + l1 cos θi) sinαi
and zJ′

i
= −l1 sin θi, where θi is the actuated joint rotation

angle and αi defines the rotation of Fi with respect to O
in the XY plane. The intersection of these three spheres
yields to a quadratic equation on Cartesian coordinates
that has two solutions, one belonging to the real half-space
H+ := (x, y, z) with z > 0 and the other belonging to
H− := (x, y, z) with z < 0. According to the reference
frame adopted, the end-effector moves in H− so the
solution that belongs to H+ is discarded. Please refer to
Kuo and Huang (2017) and Tsai (1999) for more details.

The inverse kinematics κ−1 : R3 → R3 computes the
values of the generalized coordinates θ1, θ2 and θ3 given
the Cartesian coordinates E0 = {x0, y0, z0} of the end-
effector, expressed with respect to the robot fixed frame
O. According to Kuo (2016), the active joint angles can be
obtained by solving the equations (1), i ∈ {1, 2, 3}. They
can be rewritten as

`i cos θi + pi sin θi = ni,

where

`i = 2rl1 − 2l1x0 cosαi − 2l1y0 sinαi,

pi = 2l1z0,

ni = 2rx0 − 2ry0 sinαi + x20 + y20 + z20 + l21 − l22 + r2.

There are four possible solutions. Please refer to Tsai
(1999) for further details on how select the right one.

2.2 Velocity and Acceleration Kinematics

The Cartesian velocity ẋ = (ẋ0 ẏ0 ż0)T and acceleration

ẍ = (ẍ0 ÿ0 z̈0)T are obtained as functions of θ̇ = (θ̇1 θ̇2 θ̇3)T

and θ̈ = (θ̈1 θ̈2 θ̈3)T by

ẋ = Jθ̇, ẍ = J̇ θ̇ + Jθ̈, (2)

where J and J̇ are the Jacobian matrix of the system and
its derivative with respect to time, Olsson (2009). Since
the identification is done offline, it is possible to use an
array of Kalman smoothers to estimate velocities θ̇ and
accelerations θ̈, Muradore and Fiorini (2011), Anderson
and Moore (1979).

3. DELTA ROBOT DYNAMICS

The dynamics of a Delta Robot is obtained by solving the
Euler-Lagrange equations of the Lagrangian of the system
L(q, q̇) = T (q, q̇)−V (q), taking into account that it has to
satisfy a holonomic constraint of rigidity (1), given by the
mechanical interconnection between the links at the end-
effector. As usual, T is the kinetic energy, V is the potential
energy and q = (x0 y0 z0 θ1θ2 θ3)T , q̇ = (ẋ0 ẏ0 ż0 θ̇1 θ̇2 θ̇3)T

are the generalized coordinates and velocities.

3.1 Kinetic and Potential Energy

T is given by the sum of the contributions of Tj , j ∈
{0, 1, 2} kinetic energies. The active links FiJi are modeled
as homogeneous rods of mass m1, length l1, with center of
mass (CoM) positioned at l1/2. The passive links JiEi are
modeled as points of mass m2 attached to the active links’
ends, Kuo and Huang (2017). Therefore, the corresponding
inertia terms can be written as

I1 =
1

3
m1l

2
1, I2 = m2l

2
1.

The end-effector E1E2E3 is modeled as a point of mass
m0 in E0. The kinetic energy contributions are

T0 =
1

2
m0 ‖ẋ‖2 ,

T1 =
1

2
I1

3∑
i=1

θ̇2i =
1

6
m1l

2
1

3∑
i=1

θ̇2i ,

T2 =
1

2

3∑
i=1

(
m2 ‖ẋ‖2 + I2θ̇2i

)
=

1

2
m2

3∑
i=1

(
‖ẋ‖2 + l21θ̇

2
i

)
,

where ‖·‖ denotes the Euclidean norm.

V is obtained similarly. Since the CoMs of the active links
are positioned in their middle points, the Vj j ∈ {0, 1, 2}
terms are given by

V0 = m0gz0,

V1 =
1

2
m1g l1

3∑
i=1

sin θi,

V2 = m2g

3∑
i=1

(z0 + l1 sin θi),

where g is the acceleration of gravity.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8893



3.2 Constrained Lagrangian Dynamics

Let f(q) = 0 be the equations (1); in the Euler-Lagrange
equations we have to take into account such constraint

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q+ λ

∂f(q)

∂q
, (3)

where λ = (λ1 λ2 λ3)T are the Lagrange multipliers and Q
the generalized forces acting on the system. For an exhaus-
tive theoretical justification please refer to the Lagrange-
D’Alambert Principle, in Bullo and Lewis (2004). Com-
puting all the derivatives appearing in the left hand side
of equation (3), we have

d

dt

(
∂L

∂ẋ0

)
= (m0 + 3m2)ẍ0,

d

dt

(
∂L

∂ẏ0

)
= (m0 + 3m2)ÿ0,

d

dt

(
∂L

∂ż0

)
= (m0 + 3m2)z̈0,

d

dt

(
∂L

∂θ̇i

)
=

(
1

3
m1 +m2

)
l21θ̈i, i ∈ {1, 2, 3}

∂L

∂x0
= 0,

∂L

∂y0
= 0,

∂L

∂z0
= −(m0 + 3m2)g,

∂L

∂θi
= −

(
1

2
m1 +m2

)
gl1 cos θi, i ∈ {1, 2, 3}.

The derivatives with respect to Cartesian variables, to-
gether with the right-hand side of equation (3), lead to
the following system of equations that we express in matrix
form as

MẌ − 2A(q)Λ = F, (4)

with

M =

[
m0 + 3m2 0 0

0 m0 + 3m2 0
0 0 m0 + 3m2

]
, Ẍ =

[
ẍ0
ÿ0

z̈0 + g

]

A(q) =

[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
, Λ =

[
λ1
λ2
λ3

]
, F =

[
Fx0

Fy0
Fz0

]
,

where

a1i = x0 + r cosαi − l1 cos θi cosαi,

a2i = y0 + r sinαi − l1 cos θi sinαi,

a3i = z0 − l1 sin θi,

for i ∈ {1, 2, 3}. The derivatives with respect to the joint
variables yield the following system

IΘ̈ +G(q)− 2K(q)Λ = T, (5)

where

I =

[
m1/3 +m2 0 0

0 m1/3 +m2 0
0 0 m1/3 +m2

]
l21, Θ̈ =

θ̈1θ̈2
θ̈3


G(q) =

[
v1
v2
v3

]
, K(q) =

[
k11 0 0
0 k22 0
0 0 k33

]
, T =

[
τ1
τ2
τ3

]
.

The terms vi are given by (m1/2 + m2)g l1 cos θi while
the terms kii are equal to (x0 cosαi + y0 sinαi + r) sin θi−
z0 cos θi for i ∈ {1, 2, 3}.
Solving the system (4) with respect to Λ, given the external
forces contribution F , and substituting the Λ values into
equation (5) allows to determine the torques T . In the

case of free motion F = [0 0 0]
T

. This model will be called
MKH since it has been derived by Kuo and Huang (2017).

4. MODEL ENHANCEMENTS

The dynamic model described in Section 3 is an approx-
imation of the real robot. In particular, the passive link,
which is modeled as a mass point, yields to a noticeable
underestimation of the inertia effect. Moreover, the con-
tribution of joint friction is not taken into account at all.
These two issues lead to an under-estimation of the real
torque computed by the industrial controller of the real
robot. In this Section a method to compensate inertia and
potential energies through gray-box dynamical parameter
identification, and the linear estimation of viscous and
Coulomb friction parameters are proposed. Fig. 2 shows
the control loop and the identification block.

Model

Identification

Delta Robot
Industrial

Controller

x
ref

q
ref

τ

κ
−1

−

q

x

M∗

κ

Fig. 2. Control loop with the identification block. M∗ is
the identified model

4.1 Gray-box dynamic parameter identification

Two scalar parameters ρ1 and ρ2 are added to the dynamic
model in order to take into account the missing inertia and
potential energy. Equation (5) is accordingly adapted to

ρ1IΘ̈ + ρ2G(q)− 2K(q)Λ = T. (6)

In order to fit the best values for ρ1 and ρ2, an offline
approach has been adopted. The method consists in min-
imizing the error εT between the real robot torques T

and the estimated torques T̂ , over a set of trajectories
Υ. The error minimization is performed with a greedy
approach over a range of values between (ρmin1 , ρmax1 ) and
(ρmin2 , ρmax2 ). In particular, the algorithm cycles through
every trajectory υ ∈ Υ, computing the torques Tυ for every
(ρ1, ρ2)υ ∈ (ρmin1 , ρmax1 )× (ρmin2 , ρmax2 ), and finds the pair
(ρ?1, ρ

?
2)υ which minimizes

(ρ?1, ρ
?
2)υ = arg min

(ρ1,ρ2)υ

εTυ = RMS(Tυ − T̂υ). (7)

The overall optimal values ρ?1 and ρ?2 to be included in (6)
are given by the average

(ρ?1, ρ
?
2) =

∑
υ (ρ?1, ρ

?
2)υ

|Υ|
,

where |Υ| is the cardinality of Υ.

The enhanced model taking into account the parameters
ρ?1 and ρ?2 will be referred as MId.
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4.2 Friction coefficients identification

Friction plays an important role in determining the torques
when the robot operates at high speed, as in the case of
Delta robots. Coulomb and viscous friction models, as re-
ported by Khan et al. (2017), account for the fundamental
modeling of friction at joints. Equation (6) is modified in
order to consider the joint friction contribution as follows:

ρ1IΘ̈ + ρ2G(q)− 2K(q)Λ +BΘ̇ + S sign(Θ̇) = T, (8)

where

B =

[
fv1 0 0
0 fv2 0
0 0 fv3

]
, S =

[
fc1 0 0
0 fc2 0
0 0 fc3

]
.

B and S contain the viscous and Coulomb friction co-
efficients, fvi and fci , respectively. The coefficients are
estimated via Least Squares method, Åström and Witten-
mark (2013). For every actuated joint a linear regression
is performed to estimate the joint friction coefficients. For
every υ ∈ Υ, let |υ| be the number of samples in υ. Let
τυ,i ∈ R|υ|×1 and τ̂υ,i ∈ R|υ|×1 be the time series of
measured torques and computed torques, for joint i, at
every sample time, respectively. Let θ̇υ,i ∈ R|υ|×1 be the
vector of i-th joint angular velocity, at every sample time.
For the sake of simplicity, from now on, the joint index i
will be omitted. Defining

∆τυ = τυ − τ̂υ,

Φυ =
[
θ̇υ sign(θ̇υ)

]
,

we have the following linear system

∆τυ = Φυ

[
fc
fv

]
υ

.

The viscous and Coulomb friction coefficients are esti-
mated by [

f?c
f?v

]
υ

= (ΦTυΦυ)−1ΦTυ∆τυ,

and, finally, [
f?c
f?v

]
=

∑
υ [fc fv]

T

υ

|Υ|
.

are the averages over all the trajectories. The enhanced
model taking into account the parameters ρ?1 and ρ?2 and
the friction terms will be referred as MId+F .

5. PAYLOAD IDENTIFICATION

Delta robots are largely used in the manufacturing indus-
try for high-speed pick-and-place tasks. When an object
is picked, the dynamic model needs to be modified ac-
cordingly to return the correct values of torques to be
provided as feedforward signal to the control architecture.
In industrial applications, robots may need to pick objects
of unknown sizes and weights resulting in a loss of precision
in the torque computation. The purpose of this section is
to present a real-time method to identify the payload to
increase the accuracy during these specific tasks. Equation
(4) (with F = 0) should be modified to explicitly consider
the payload mp as

MẌ +MpẌ − 2A(q)Λ = 0, (9)

where

Mp =

[
mp 0 0
0 mp 0
0 0 mp

]
.

Substituting Λ = 1
2A(q)−1 (M +Mp) Ẍ from (9) in (5),

we get

IΘ̈ +G(q)−K(q)A(q)−1 (M +Mp) Ẍ = T.

Denoting the torque error as ∆T = T − T̂ , where

T̂ = IΘ̈ +G(q)−K(q)A(q)−1MẌ

= IΘ̈ +G(q)− 2K(q)Λ

is the computed torque without payload, we end up with

−A(q)K(q)−1∆T = MpẌ. (10)

Defining 1 y(k) = −A(k)K(k)−1∆T (k), the Least Square
problem to be solved to estimate Mp is given by

min
M̂p

∑
k

‖y(k)T − Ẍ(k)T M̂p‖2,

where t = kTs is the current time with Ts the sample
time of the controller. As shown in Åström and Witten-
mark (2013), the recursive method to solve a least-square
problem is more computationally efficient when the obser-
vations are obtained sequentially, as in the case of a delta
robot picking and releasing objects. Therefore, the current

estimation M̂p(k) is given by the recursive equation

M̂p(k+1) = M̂p(k)−K(k)
(
y(k)T − Ẍ(k)T M̂p(k)

)
, (11)

where

K(k) = P(k)Ẍ(k + 1)
(
σ + Ẍ(k + 1)TP(k)Ẍ(k + 1)

)−1
,

P(k) =
1

σ

(
I −K(k − 1)Ẍ(k)T

)
P(k − 1).

The value σ ∈ [0, 1] is the forgetting factor. With a fine-
tuned σ, the model can adapt the torques accordingly with
the payload very fast.

6. EXPERIMENTAL RESULTS

This section contains a detailed description of the tests to
validate the effectiveness of the dynamic models described
in previous sections. To estimate the goodness of a model,
the torque profile of each model has been compared to the
real torque profile of a D3-1200 Delta robot manufactured
by SIPRO Srl using an industrial controller, over a set
of trajectories. A Net Analyzer, over Ether-CAT, allowed
the recording of kinematic information, commanded and
executed torques. The recorded torque values are already
multiplied by the motor gear ratio. The recorded data
act as ground truth to verify the goodness of each model
presented in this paper. The models have been tested on
two kinds of trajectories:

• υF is a free-motion trajectory, without payload. It
contains movements intended to stress the robot, e.g.
large accelerations and movements close to the work-
space bounds. This trajectory is used to show the
improvements between the models MKH , MId and
MId+F .

• υP is a free-motion trajectory, with a payload of
3.8kg at the end-effector. The trajectory contains
movements from a standard pick-and-place procedure
between two industrial conveyors. This trajectory is
used to show the behavior of the model MId+F in
case of trajectory with/without a payload.

1 To simplify the notation, we set A(q(k)) = A(k) and K(q(k)) =
K(k).
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Fig. 3. Torques τ compared with estimated torques τ̂
computed by the modelMKH , for each actuated joint
over trajectory υF .

Fig. 4. Torques τ compared with estimated torques τ̂
computed by the model MId, for each actuated joint
over trajectory υF .

The model MKH has been tested on the trajectory υF .
Fig. 3 shows the torque profiles τ̂i and the real robot
torques τi. The dynamical model underestimates the real
torques, due to the model simplifications highlighted in
Section 4.

The application of gray-box dynamic parameter identifica-
tion (Section 4.1), over a set of 12 trajectories, allowed to
identify the optimal parameters ρ?1 and ρ?2. The same tra-
jectory υF is used to compare the model with the identified
parameters MId and MKH . Fig. 4 shows the identified
model torque time series τ̂i with respect to the torques τi.
The dynamic parameters ρ?1 and ρ?2 allow to compensate
for the lack of inertia and potential energy in the previous
model. The model can follow more accurately the robot
torque profile. The total absence of friction modeling is
noticeable, especially when the robot is moving at low and
high velocities. In those cases, the error between the real
and computed torques increases.

Fig. 5. Torques τ compared with estimated torques τ̂
computed by the model MId+F , for each actuated
joint over trajectory υF .

Table 1. Mean error and standard deviation of
each model over υF

MKH MId MId+F

µ σ µ σ µ σ

τ1 (Nm) 14.32 23.97 3.62 11.89 3.94 5.67
τ2 (Nm) 7.98 20.30 -1.09 11.55 -1.11 5.79
τ3 (Nm) 6.62 20.23 -2.10 11.91 -1.49 6.06

Fig. 6. Mean errors with standard deviations. In (a) each
label represents the errors between the dynamical
model M∗ and the real robot torque profile. In (b)
each label represents the errors between the dynam-
ical model MId+F and the real robot torque profile
with mP = 0 and mP = m̂P .

The implementation of the friction estimation method of
Section 4.2 brings to the third model MId+F . The matri-
ces B and S allow to increase the overall model accuracy.
The dynamic model with the previously identified dynamic
parameters and the new friction coefficients MId+F is
compared to MKH over trajectory υF . Fig. 5 shows the
dynamical model enriched with friction computation τ̂i,
with respect to the real robot torque τi. The estimated
torques by the mathematical modelMId+F follow the real
torques much better, both at high and low velocities. The
mean µ and the variance σ of the error e(k) = τ(k)− τ̂(k)
have been drastically reduced as shown in Table 1. Fig.
6(a) displays the values in the table.

Until now, each model has been tested in free-motion with
no payload. In case of pick-and-place tasks with heavy
payloads, the performance would decrease, since the model
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Table 2. Mean error and standard deviation
of the MId+f torque and real τ , over the
trajectory υP , with mP = 0 and mP = m̂P .

mP = 0 mP = m̂P

µ σ µ σ

τ1 (Nm) 13.91 13.27 0.42 7.39
τ2 (Nm) 7.27 16.52 -0.02 7.49
τ3 (Nm) 5.88 5.96 0.27 5.40

Fig. 7. Torques τ compared with estimated torques τ̂ and
τ̃ computed by the model MId+F with and without
payload identification, over the trajectory υP .

does not take into consideration the different weights at
the end-effector.

The purpose of the Payload identification method is to
increase the accuracy when the lifted payload mP is
greater than zero. Fig. 7 shows the torques of the dynamic
model MId+F with the identified payload information τ̂i,
at run-time, compared to the dynamical model without
this information, τ̃i, and the real robot torques τi. The test
has been executed over the trajectory υP . Fig. 8 shows
the estimated payload m̂p using the method (11). This
model achieves good results in terms of transient time and
accuracy. Table 2 shows the values of the mean error and
standard deviation of the torque error with mP = m̂P and
without payload, mP = 0. Fig. 6(b) displays the values in
the table and shows the reduction of the errors when the
payload mP is correctly computed.

7. CONCLUSIONS

Starting from an approximated model and using gray-box
dynamic parameter identification and friction modelling,
we obtained a better mathematical model of Delta robots.
Since Delta robot are mostly used in pick-and-place tasks,
it has been proposed a method which adjusts the dynamic
parameters in order to estimate the payload contribution
in terms of computed torques, i.e. the mass of the payload
at the end-effector. Future research will focus on the im-
plementation of a feedforward torque control loop, based
on the identified dynamical model (Fig. 9).

Fig. 8. Payload estimation over time. The mass m̂p is the
estimated payload, while mp is the correct payload
attached to the end-effector. The top graph shows
the estimation using the real torque measurements
whereas the bottom graph shows the estimation using
the simulated torque of the MId+F model.

Delta Robot
Industrial

Controller

M∗

x
ref

q
ref

τFB

τFF

−

q
κ
−1

Fig. 9. Control loop with feed-forward torque τFF based
on the identified modelM∗ and feedback torque τFB .
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