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Abstract: Agreeing on a common time is essential to many coordinated tasks in wireless
networks, but this is difficult to accomplish when each agent only has access to a local
hardware clock. Therefore, clock synchronization is essential in order to carry out many of these
coordinated tasks. While there are numerous existing algorithms for clock synchronization, many
result in disruptive discontinuous virtual clocks, and most rely on regular communication, which
does not scale with large systems. Instead, this paper presents a novel clock synchronization
algorithm, which allows for a continuous virtual clock, with a dynamic event-triggered commu-
nication strategy which is strongly non-Zeno because it guarantees a designable positive time
between communication instances.
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1. INTRODUCTION

Wireless networks of individually controlled agents are
being used increasingly in a broad number of applications,
ranging from the coordination of unmanned air vehicles
to distributed reconfigurable sensor networks, and more;
see (Olfati-Saber and Murray, 2004) and (Ren et al.,
2007) and references therein. Although the design of these
networks may rely on the assumption of coordinated
timing for actions, individual agents in these wireless
networks are each equipped with their own hardware clock,
based on an oscillator. This means that different agents
will not agree on the notion of time because of clock
drift, which is running faster or slower than absolute time,
and/or an offset, which is a differing notion of time zero.

A common method to circumvent these timing discrep-
ancies is to introduce a virtual software clock for each
agent, and to then adjust that clock’s drift and offset
until all agents’ software clocks agree on the time. This
is what we refer to in this paper as clock synchronization.
Although global synchronization among all clocks is de-
sired, doing so would require distributed control that can
scale with large systems, since for large systems commu-
nication becomes a limiting resource. Distributed means
that communication must be restricted to neighboring
agents, rather than the entire system. To handle this
problem, many researchers employ a distributed consensus
approach, where the drift and offset of the software clocks
are the values to reach consensus. Consensus problems are
when agents with individual dynamics are to be driven
such that all the agents’ states are equal, which also has
applications in distributed computing, networks of sensors,
flocking, and rendezvous (Olfati-Saber and Murray, 2004;
Liu et al., 2011; Ren et al., 2007). A seminal work for
clock synchronization is (Schenato and Fiorentin, 2011),
which ensures the synchronization of the drift and offset
of virtual clocks using asynchronous periodic broadcasts,
with clocks updated discontinuously.

Many works use similar strategies to achieve convergence,
often in the presence of communication delays and/or
noise. Dengchang et al. (2013); Carli and Zampieri (2014);
He et al. (2014) all offer different algorithms to solve this
problem of the drift and offset synchronization of virtual
clocks using a consensus-like approach. Other works are
able to account for bounded noise or communication
delays, such as (Zhang et al., 2019; Garone et al., 2015;
He et al., 2017; Stanković et al., 2018).

Unfortunately, these algorithms are not scalable to large
systems because they rely on frequent communication,
such as asynchronous periodic communication or commu-
nication at random times in regular intervals, between
neighboring agents. To prevent frequent communication,
some consider event-triggered control, where communica-
tion occurs at an “event,” when some condition on the
state is satisfied. Proskurnikov and Mazo (2018) and Pos-
toyan et al. (2015) develop general methods for achieving
stability with such control strategies, and see (Nowzari
et al., 2019) for a detailed survey of works applying event-
triggered control to the consensus problem specifically.
Two earlier works to apply event-triggered communication
algorithms to the clock synchronization problem are (Kad-
owaki and Ishii, 2015; Li et al., 2015). They use functions
of time in the trigger mechanism to prevent an infinite
amount of communication in finite time (Zeno behavior).
More recent approaches by Garcia et al. (2017); Xu et al.
(2019) guarantee convergence for clock drift and model
the virtual clock parameters with continuous dynamics, so
that they remain continuous and do not disrupt concurrent
processes that depend on the clock.

However, the main problem common to these event-
triggered solutions is that none can account for finite
hardware operating frequencies, and so they are not truly
implementable event-triggered solutions. More specifically,
simply ruling out Zeno behavior may still demand that
communication occurs arbitrarily fast to guarantee con-
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vergence. As noted by Heemels et al. (2012), Nowzari
et al. (2019), and Borgers and Heemels (2014), the way to
handle this is to make sure that the event-triggered com-
munication algorithm ensures a positive minimum inter-
event time (MIET) or, in other words, that it is strongly
non-Zeno. It is important to note here that this property
of an event-triggered protocol is different from simply
forcing a MIET through the use of a chosen ‘dwell time’ or
inactive time between communications, in which case the
convergence guarantees of the algorithm may be lost. For
example, De Persis and Frasca (2013) enforce a positive
MIET for a consensus problem, but can only conclude
convergence to a neighborhood of consensus as a result.

Therefore, similar to Garcia et al. (2017) and Xu et al.
(2019), we wish to provide an algorithm where the clocks
are synchronized in a continuous manner and we wish to
ensure that it is fully distributed with an event-triggered
communication strategy so that it is scalable. However, we
also wish to make certain that a positive MIET exists for
the communication strategy so that it can be implemented.
We turn to existing event-triggered consensus algorithms
for this. Both (Dolk et al., 2017) and (De Persis and
Postoyan, 2017) are able to ensure full consensus with a
positive MIET by using a dynamic virtual state in the
event-triggering function, but neither is fully distributed.
More recently, the work in (Berneburg and Nowzari,
2019b) has provided a guaranteed positive MIET for a
fully distributed algorithm, in a similar fashion.

Statement of Contributions: We propose a dynamic event-
triggered virtual clock synchronization algorithm, for only
clock drift, that has significant advantages over the state-
of-the-art algorithms for physical implementations. We use
the same control law provided in both (Garcia et al., 2017;
Xu et al., 2019) but we define a novel dynamic event-
triggered communication strategy that has three main
advantages. First, it is a naturally asynchronous algorithm
that does not require any synchronous actions among
agents, unlike the algorithm proposed in (Xu et al., 2019).
Second, it does not use a time-dependent event-triggering
threshold and so avoids the implementation issues of
the algorithm in (Garcia et al., 2017). Finally, unlike
both previous works, this algorithm guarantees a positive
minimum inter-event time (MIET) for each agent, which
can be chosen using a design parameter, meaning it can
actually be implemented on physical platforms (Borgers
and Heemels, 2014; Nowzari et al., 2019).

2. PRELIMINARIES

The Euclidean norm of a vector v ∈ Rn is denoted by ||v||.
An n-dimensional column vector with every entry equal to
1 (or 0) is denoted by 1n (or 0n). Given a vector v ∈ RN ,
we denote by diag(v) the N ×N diagonal matrix with the
entries of v along its diagonal. The minimum eigenvalue of
a square matrix A is given by eigmin(A) and its maximum
eigenvalue is given by eigmax(A). Young’s inequality is

xy ≤ b

2
x2 +

1

2b
y2, (1)

for b > 0 and x, y ∈ R (Hardy et al., 1952).

Graph Theory A graph G = (V, E , A) has a set of vertices
V = {1, 2, ..., N}, a set of edges E ⊂ V × V , and an
adjacency matrix A ∈ RN×N with each entry aij ∈ R≥0,
where aij = 1 if (i, j) ∈ E , and aij = 0 otherwise. For
an undirected graph, (i, j) ∈ E implies (j, i) ∈ E . An
undirected graph is connected if there exists a path (a

finite sequence of edges (i, k), . . . , (n, j)) between any two
vertices i and j. Let Ni ⊂ V be the set of neighbors of
vertex i, that is, Ni = {j : (i, j) ∈ E}. The Laplacian is
L = diag ([|N1|, |N2|, . . . , |NN |])−A.

3. PROBLEM STATEMENT

Consider a wireless network of N agents interacting via an
undirected, connected graph G with edges E . With t ∈ R≥0
as the absolute time, we assume that each agent i ∈
{1, . . . , N} instead only has access to a local time

τi(t) = ait+ bi, (2)

where ai > 0 and bi ∈ R are unknown parameters
representing the drift and bias of agent i’s local clock,
respectively. For a perfect clock we should have ai = 1
and bi = 0 such that the local time is always equal to
the absolute time τi(t) = t. Since the absolute time t is
not available to any clock, it is impossible to estimate ai
and bi. Therefore, the goal is not for each agent to properly
track the absolute time t. Instead, we define a virtual clock
for each agent i ∈ {1, . . . , N}

Ti(τi) = αi(τi)τi + βi(τi), (3)

where αi(τi) and βi(τi) are what we call the synchronized
drift and bias, respectively. Although these virtual clocks
must be functions of each agent’s local clock τi, the
synchronization must be done in absolute time. Thus,
combining (3) and (2), we can rewrite the output of each
agent’s virtual clock as a function of absolute time t as

Ti(t) = αi(t)(ait+ bi) + βi(t). (4)

The goal is to synchronize all these virtual clocks so that

lim
t→∞

|Ti(t)− Tj(t)| = 0, (5)

for all i, j ∈ {1, . . . , N}. Additionally, the clocks are to
be used to inform various other processes on the agents,
so they must not synchronize to a constant virtual time,
so we require that the clocks synchronize to a trajectory
where Ti(t) is monotonically increasing for all agents i.

In this paper we only consider local clocks without bias,
that is, bi = 0 for all i ∈ {1, . . . , N}. This exact problem is
considered in (Garcia et al., 2017) and (Xu et al., 2019),
where a static time-dependent and a state-dependent
event-triggered communication and control strategy are
proposed, respectively. Therefore, defining xi(t) = αi(t)ai,
we can rewrite the output of each agent’s virtual clock as

Ti(t) = xi(t)t. (6)

Therefore, in order to achieve clock synchronization (5),
we must design an algorithm such that

lim
t→∞

|xi(t)− xj(t)| = 0 (7)

for all i, j ∈ {1, . . . , N}. The value of xi(t) will never be
known by any agent and is used for analysis purposes only.

We consider a communication model in which agent i can
directly communicate with any of its neighbors j ∈ Ni in
the graph G with negligible delay. Letting {ti`}`∈Z≥0

⊂ R≥0
be a sequence of times at which agent i communicates
information to its neighbors j ∈ Ni, each agent j maintains
the last received information at any given time t. More
specifically, we denote by α̂i(t) the last broadcast values
of agent i at any given time t. Formally,

α̂i(t) = αi(t
i
`) t ∈ [ti`, t

i
`+1), (8)

is the information available to all neighbors j ∈ Ni at
any given time t ∈ R≥0. Similarly, agent i has access to
piece-wise constant values of α̂j(t) depending on when its
neighbors j ∈ Ni communicate with it.
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To help ensure the existence of a positive MIET, we define
an auxiliary variable χi (with dynamics χ̇i = ai

dχi

dτi
), for

each agent i, which will be used to decide when that
agent will communicate, as formalized later. Therefore, the
extended state vector for a single agent i is then given by

qi(t) =

[
αi(t)
α̂i(t)
χi(t)

]
.

We define the information available to agent i as

vi(t) , (qi(t), {α̂j}j∈Ni
),

and we need to design the dynamics for each agent’s state
variable dαi

dτi
(vi) along with a communication strategy that

determines the sequence of broadcasting times {ti`}`∈Z≥0

for agent i. Note each agent i doesn’t have access to α̇i,
which is αi’s derivative with respect to absolute time t,
and instead its derivative must be written with respect to
the local hardware clock. The problem is formalized below.

Problem 3.1. (Distributed Clock Synchronization). Given
the communication graph G and unknown ai > 0 for all
agents i ∈ {1, . . . , N}, design a distributed communication
and control strategy for αi(τi) such that limt→∞ |Ti(t) −
Tj(t)| = 0 and limt→∞ Ṫi > 0 for all i, j ∈ {1, . . . , N}.

4. DISTRIBUTED DYNAMIC EVENT-TRIGGERED
CLOCK SYNCHRONIZATION

Here we present a solution to the problem described in
Section 3. We will first design a dynamic event-triggered
first-order consensus-based synchronization algorithm by
combining ideas from (Xu et al., 2019) which presents
a static event-triggered consensus-based synchronization
algorithm with (Berneburg and Nowzari, 2019b,c) which
presents a dynamic event-triggered consensus algorithm.
Details on the different classes of event-triggered consensus
algorithms are available in (Nowzari et al., 2019).

Control Strategy As proposed in (Garcia et al., 2017; Xu
et al., 2019), the control strategy for αi is given by

dαi
dτi

= −
∑
j∈Ni

(
α̂i(τi)−

aj
ai
α̂j(τi)

)
. (9)

It should be noted that (9) is presented as a dynamic vari-
able that changes with respect to agent i’s local clock τi.
Although the independent values of ai and aj in (9) are un-
known to the agents, the relative value of

aj
ai

can be easily
computed by the following method using two independent
messages separated by time as proposed in (Schenato and
Fiorentin, 2011; Garcia et al., 2017). Assuming negligible
delays, let t1 and t2 > t1 be two absolute times at which
agent j communicates with agent i. At each of these times,
agent j sends to agent i its own local time τj(t1) and τj(t2).
Using the times of its own local clock, agent i can compute
aj
ai

=
τj(t2)−τj(t1)
τi(t2)−τi(t1) . Note that this is a static quantity, so in

the presence of various uncertainties, the agents can take
repeated measurements to refine their estimate of it. We
assume this quantity can be measured exactly.

Remark 4.1. (Relation to consensus). Because α̇i = ai
dαi

dτi
,

with x̂i = α̂iai one can write (9) as

ẋi = −ai
∑
j∈Ni

(x̂i − x̂j), (10)

which is similar to the well-established input for dis-
tributed multi-agent consensus (Olfati-Saber and Murray,

2004; Ren et al., 2007; Nowzari et al., 2019). As a result,
this would can be seen as an application of such consensus
algorithms. However, adapting such algorithms to work
here is nontrivial, because of the gain ai applied to each
input and because absolute time is unknown, changing the
convergence value and the Lyapunov function. •

It is known from (Garcia et al., 2017; Xu et al., 2019)
that with sufficient sampling, the controller (9) can guar-
antee the clocks asymptotically achieve synchronization.
However, the above solutions do not exhibit robust event
separation properties as defined in (Borgers and Heemels,
2014). To address this issue, we wish to design a dynamic
event-triggered communication strategy that can guaran-
tee both that the controller (9) achieves synchronization
and that a positive MIET exists for each agent.

In general, a Lyapunov-based static event-triggered com-
munication strategy communicates when necessary to
guarantee the monotonically decreasing property of the
Lyapunov function, but this can become impractical
when dealing with distributed systems. Dynamic event-
triggered communication relaxes these requirements by
introducing a virtual dynamic variable χi ≥ 0 for each
agent i ∈ {1, . . . , N} that ensures events are triggered
among agents asynchronously and exhibit robust event
separation properties (Berneburg and Nowzari, 2019c;
Borgers and Heemels, 2014; Nowzari et al., 2019). Intu-
itively, the virtual state χi stores an agent’s contribution to
system convergence, so that events are triggered to ensure
that it is constructively contributing on average.

Communication Strategy Here we derive a dynamic
event-triggered strategy to determine when an agent i
should communicate with its neighbors j ∈ Ni. We define
the broadcast times to occur when χi = 0 but αi− α̂i 6= 0
and update α̂i = αi. More formally, the sequence of event
times {ti`}`∈Z≥0

is given by

ti`+1 = inf{t ≥ ti`|χi(t) = 0 and αi − α̂i 6= 0}, (11)

for all ` ∈ Z≥0. We now define a Lyapunov function

V =

N∑
i=1

1

ai
(xi − x∗i )2 +

N∑
i=1

aiχi, (12)

where x∗ = [x∗1, . . . , x
∗
N ] , [α∗1a1, . . . , α

∗
NaN ] denotes the

final convergence value of each xi; see Lemma 4.2. Note
that this Lyapunov function consists of two components;
the first summation is a “physical” component because
it regards the states that must reach consensus, and the
second is a “cyber” component because it regards the
auxiliary variables for the effects of communication.

Lemma 4.2. (Final Values). If α̂ = α (or α̂ is updated
sufficiently fast) with input (9), then the final value of
each αi is given by

α∗i =

∑N
j=1 αj(0)

ai
∑N
j=1

1
aj

. (13)

Proof. This proof is abridged for reasons of space. With

the control input (10), the weighted average
∑N
i=1

xi

Nai
is

constant. Therefore, one can use
∑N
i=1

x∗
i

Nai
=
∑N
i=1

xi(0)
Nai

,
and solve for x∗i , because x∗i = x∗j for i, j in 1, 2, ...N . 2

Note that each α∗i is strictly positive, if each αi(0) > 0
and ai > 0. The goal now is to design the dynamics of the
clock χi for each agent such that V̇ ≤ 0 and that χi ≥ 0
to ensure V ≥ 0. Taking the time derivative, we have
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V̇ =

[
N∑
i=1

2(xi − x∗i )ai
dαi
dτi

+ a2i
dχi
dτi

]

=

N∑
i=1

−2(xi − x∗i )
∑
j∈Ni

(x̂i − x̂j) + a2i
dχi
dτi

 ,
recalling that x̂i = α̂iai. Note that−2

∑N
i=1 x

∗
i

∑
j∈Ni

(x̂i−
x̂j) = x∗Lx̂ = 0, so we can write

V̇ =

N∑
i=1

− (2x̂i + 2aiei)
∑
j∈Ni

(x̂i − x̂j) + a2i
dχi
dτi

 ,
where e = [e1, . . . , eN ]

T , [α1 − α̂1, . . . , αN − α̂N ]
T

de-
notes the vector of errors between each agent’s state αi
and the last communicated state α̂i. Because

−2

N∑
i=1

x̂i
∑
j∈Ni

(x̂i − x̂j) = −2x̂TLx̂ = −
N∑
i=1

∑
j∈Ni

(x̂i − x̂j)2,

we can write V̇ =
∑N
i=1 V̇i, where

V̇i = −
∑
j∈Ni

(x̂i − x̂j)2 − 2aiei
∑
j∈Ni

(x̂i − x̂j) + a2i
dχi
dτi

.

Therefore, to ensure V̇ ≤ 0, we choose each dχi

dτi
for V̇i ≤ 0:

dχi
dτi

= σi
∑
j∈Ni

(α̂i −
aj
ai
α̂j)

2 + 2ei
∑
j∈Ni

(α̂i −
aj
ai
α̂j), (14)

where σi ∈ (0, 1) is a design parameter. Now, we have

V̇ =

N∑
i=1

−(1− σi)
∑
j∈Ni

(x̂i − x̂j)2 ≤ 0. (15)

Notice that, immediately after agent i triggers an event,
ei = 0 so dχi

dτi
= σi

∑
j∈Ni

(α̂i − aj
ai
α̂j)

2 ≥ 0. Therefore, χi
never becomes negative with this dynamics.

4.1 Main Results

Here we formally describe the algorithm from the perspec-
tive of a single agent i and provide the main results by dis-
cussing its properties. Each agent has a design parameter
σi ∈ (0, 1), controlling the trade-off between convergence
speed and amount of communication. The event-triggered
clock synchronization algorithm is summarized in Table 1.

Theorem 4.3. (Positive MIET). Given the communication
graph G and unknown ai > 0 for all agents i ∈ {1, . . . , N},
if each agent i implements the distributed dynamic event-
triggered coordination algorithm presented in Table 1
with σi ∈ (0, 1), then the inter-event times for agent i

are lower-bounded by Ti , σi

ai|Ni| . That is, ti`+1 − ti` ≥ Ti
for all i ∈ {1, . . . , N} and ` ∈ Z≥0.

Proof. To show that each algorithm exhibits a positive
MIET, we use the change of variables ηie

2
i , χi. Note

ηi = 0 for agent i’s trigger condition to be satisfied, and
so we define ηi as being reset to ηi > 0 at each event,
and lower bounding the time ηi takes to reach 0 from ηi
gives a lower bound on the inter-event times. Taking the
derivative, we have

η̇i = aiσi
ξTi ξi
e2i

+ 2ai(ηi + 1)
1Tni

ξi

ei
,

Initialization; at time t = 0 each agent i ∈ {1, . . . , N}
performs:
1: Initialize α̂i = αi = 1
2: Initialize χi = 0

At all times t each agent i ∈ {1, . . . , N} performs:

1: if χi = 0 and ei 6= 0 then
2: set α̂i = αi (broadcast state information to neigh-

bors)

3: set dαi
dτi

= −
∑

j∈Ni
(α̂i(τi) −

aj
ai
α̂j(τi)) (update

control signal)
4: propagate χi according to its dynamics given

in (14)
5: end if
6: if new information α̂k is received from some neigh-

bor(s) k ∈ Ni then
7: update control signal dαi

dτi
= −

∑
j∈Ni

(α̂i(τi) −
aj
ai
α̂j(τi))

8: end if

Table 1. Distributed Dynamic Event-Triggered
Clock Synchronization Algorithm.

where we define ξi , [. . . , α̂i− aj
ai
α̂j , . . . ]

T ∈ Rni and ni ,
|Ni| to write the summations as matrix multiplications.
We apply Young’s inequality (1) with bi > 0:

η̇i ≥ aiσi
ξTi ξi
e2i
− bi(ηi + 1)2 − a2i

bi

(
1Tni

ξi

ei

)2

.

We now wish to choose bi to achieve a lower bound on the
state dependent terms, which means we must satisfy

bi ≥
ai
(
1Tni

ξi
)2

σiξT ξ
=
aiξ

T
i

(
1ni1

T
ni

)
ξi

σiξT Ini
ξ

.

We can upper bound the right hand side with
aieigmax (1ni

1T
ni

)
σieigmin Ini

= aini

σi
, and so we choose bi = aini

σi
. Now,

we have η̇i ≥ −aini

σi
(ηi + 1)2 , η̇

i
, and we take η(0) = ηi,

so η
i
≤ ηi. Solving this differential equation, finding Ti

such that η(Ti) = 0, and taking the limit as ηi → ∞
(because this constant has no physical meaning), we have
the formula for Ti given in Theorem 4.3. 2

Next, we present our main convergence result.

Theorem 4.4. (Asymptotic Convergence). Given the com-
munication graph G and unknown ai > 0 for all agents i ∈
{1, . . . , N}, if each agent i implements the distributed
dynamic event-triggered coordination algorithm presented
in Table 1 with agent i triggering events when χi = 0 and
ei 6= 0 and with σi ∈ (0, 1), then all trajectories of the
system are guaranteed to asymptotically converge to the
set A , {q|aiα̂i = ajα̂j∀(i, j ∈ {1, . . . , N}}.

Proof. For reasons of space, the full proof is omitted.
Instead, we provide a brief outline of it and refer interested
readers to Berneburg and Nowzari (2019a), where a very
similar proof of convergence is given.

By (15), the Lyapunov function V is decreasing when the
system isn’t in the target set A. Additionally, from (12)
V does not depend on α̂, so it does not change during
broadcasts. Combining this with Theorem 4.3 to preclude
Zeno behavior, we use an invariance principle to show that
the system convergences asymptotically to the set A.

More specifically, we write our system as a hybrid dy-
namical system as described in Goebel et al. (2012), and
we make use of the Invariance Principle for Hybrid Sys-
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tems (Goebel et al., 2012, Theorem 8.2). Please see the
proof of Theorem V.2 in Berneburg and Nowzari (2019a)
for more details from a very similar proof. 2

Remark 4.5. (Convergence). From Theorem 4.4, it is evi-
dent that this algorithm provides only a weak convergence
result and cannot guarantee that limt→∞ |Ti(t)−Tj(t)| = 0
for all i, j ∈ {1, . . . , N} for two reasons. The first is
that agents can get stuck with

∑
j∈Ni

(α̂i − aj
ai
α̂j)

2 = 0
while ei 6= 0. However, if the algorithm is modified with
an additional trigger that guarantees that each agent i
will always broadcast again, eventually, when ei 6= 0,
then limt→∞ |xi(t)− xj(t)| = 0 for all i, j ∈ {1, . . . , N}. A
simple way to do this is to make the secondary trigger pe-
riodic with any period greater than or equal to the MIET.
The second is that convergence of x is not equivalent to
convergence of T , [T1, T2, ...TN ]T = xt, because the latter
requires that x converges fast enough. Although proving
x converges fast enough for T to converge is beyond the
scope of this paper, simulations suggest this is true, and
many existing papers conclude only that x converges. •

5. SIMULATIONS

To demonstrate our distributed event-triggered clock syn-
chronization algorithm, we perform simulations using N =
5 agents and a graph with adjacency matrix

A =


0 1 0 1 0
1 0 0 1 0
0 0 0 0 1
1 1 0 0 1
0 0 1 1 0

 . (16)

For simplicity, all agents have the same design parameter
σi = σ, for all i ∈ {1, . . . , N}. The drift of the clocks
was a = [5, 3.2, 0.6, 7, 1.4] for all simulations. Note that, in
practice, ai ' 1 for i ∈ {1, . . . , N}, so these clock drifts
have been greatly exaggerated for demonstration purposes.
Additionally, to ensure full convergence as noted in Re-
mark 4.5, we included a secondary trigger, so that each
agent will trigger an event at most 2 seconds (according
to its local hardware clock) after its previous event.

Considering each agent’s difference from the average as
an output, similar to (Dezfulian et al., 2018), we adopt
the square of the H2-norm of the system, and the average
communication rate, as performance metrics

C ,
∫ ∞
0

N∑
i=1

(xi(t)− x̄)
2
dt,

rcomm ,
Number of events

Time duration of simulation
.

Plots of simulation results with σ = 0.5 appear in Figure 1.
The top plot in (a) shows the evolution of the software
clocks for all agents with respect to absolute time. Note
that they do not converge to true time, but to a common
clock that is faster than real time. The exaggerated clock
drifts enable this convergence to be clearly visible, and
also show how the software clocks may decrease but
remain continuous. All these clocks start from zero because
there is no bias. The bottom plot shows how the cyber
component of the Lyapunov is necessary, because the
physical component is allowed to increase. (b) shows the
dynamic variable for one agent and the times of events
for all agents. Note that events are triggered for agent
5 when the dynamic variable reaches zero, and that the
first event, for that agent, instead occurs due to the
secondary trigger. The lower plot shows that all agents

trigger events aperiodically. Figure 2 shows the results
of varying the design parameter σ, demonstrating how
σ controls the trade-off between speed of convergence
and communication, as increasing σ results in a lower
communication rate but tends to result in a higher cost.

6. CONCLUSION

This paper proposes a novel fully-distributed event-
triggered algorithm to solve the clock synchronization
problem for wireless sensor networks, where only clock
drift is considered, and its communication strategy en-
sures that a desired minimum inter-event time is observed.
Future work can include modifying the control inputs to
ensure that the virtual clocks do not run backwards and
extending the results to cases where both clock drift and
bias are present, as well as guaranteeing that the software
clocks converge to consensus, instead of only guaranteeing
the convergence of the software clock drifts. Another point
of further research is modifying the algorithm to handle
communication delays.
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