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Abstract: In the context of increasing decentralization of the energy supply system, the concepts of 

microgrids are well suited to realise a reduction of CO2-emissions and create opportunities for new business 

models. For this the operation of the microgrid has a significant impact. In real systems, however, the 

consideration of uncertainties in generation and consumption data is essential for the operating strategy. 

Therefore, in this paper we propose an optimization model based on mixed-integer linear programming for 

the hybrid microgrid of a residential building district and include stochastic optimization in a 

computationally efficient way. For this, a two-stage approach is used. In a first step, we do a day-ahead 

optimization to determine a schedule for the combined heat and power plant and the power exchanged with 

the grid. In a second step, based on the results of the day-ahead optimization and the observed values for 

the uncertain parameters the intraday optimization is carried out. Using a numerical example, we 

demonstrate the advantages of this stochastic optimization over conventional optimization based on point 

forecasts. The data used originates from a real project district in Darmstadt, Germany. 
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1. INTRODUCTION 

A concept to realise a CO2-reduced energy supply are so-called 

microgrids, which for this reason are becoming increasingly 

widespread in electrical supply systems (Hirsch et al., 2018). 

Microgrids are local energy networks that connect energy 

generation units, energy storage units and loads. The energy 

generation units can be differentiated into controllable (mostly 

fossil) and uncontrollable (mostly renewable) units. The main 

difference between microgrids and macrogrids is especially 

the local proximity of producers and consumers as well as the 

resulting possibility to consider the microgrid as an overall 

system that can be controlled (Dulău and Bică, 2019; 

Gildenhuys et al., 2019). In addition to the ongoing 

technological development of microgrids and their 

components, these also represent an important part of novel 

business models in the energy sector. These are not only driven 

by the fundamental trends mentioned above, but also by 

changing legal regulations resulting from the political 

discourse on the transformation of the energy supply systems 

(Meena et al., 2019). For these reasons, microgrids are also 

intensively investigated in science and the number of 

published contributions is rising rapidly (Shah Danish et al., 

2019). In addition to several publications dealing with 

economic and political evaluation as well as classification of 

the general microgrid concept (Burke and Stephens, 2018) 

(Farrelly and Tawfik, 2020) (Ajaz, 2019), the majority of 

publications on microgrids deal with mathematical and 

technological aspects. Here, especially the question of local 

energy management is especially important for real microgrids 

for a number of different reasons (Hirsch et al., 2018), where 

the most important ones are summarised below: 

 increased local production of renewable sources, 

 rising energy prices due to additional charges, 

 most energy systems consist of electric and thermal 

components that have to be considered 

simultaneously, 

 incentives to use the locally produced energy for local 

customers/consumers, 

 decreasing prices for energy storage systems 

(batteries) that allow for time shift of energy, 

 inefficient and unwanted grid reinforcements leading 

to the situation that not all of the locally produced 

energy can be fed back to the grid. 

For a majority of microgrids, the high number of control 

variables even in systems with only a few energy components 

makes it difficult to use a rule based approach for controlling 

the energy flows in the system. Hence, various optimization 

algorithms are used to solve the problem at hand. In this 

context, a basic distinction can be made between linear and 

non-linear approaches. Non-linear approaches for example are 

presented in (Bhattacharjee and Khan, 2018) and (Hossain et 

al., 2019). Compared to non-linear approaches, linear 

approaches have the advantage that efficient solution 

algorithms can be used. Since in addition to continuous 

variables also binary variables are needed to model microgrids, 

many of the linear approaches use mixed integer linear 

programming (MILP) formulations such as in (Cardoso et al., 

2018), (Nemati et al., 2018) and (Mashayekh et al., 2017). The 
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MILP approach has the additional advantage that the quality 

of the optimisation results can be quantified. One main 

drawback of it is the inconvenient and time-consuming 

formulation of the problem, but still quite often MILPs are 

used for optimising microgrids and their operating strategies. 

Numerous scientific contributions optimize the operating 

strategies of microgrids with deterministic input data. In real 

systems, however, the consideration of uncertainties in 

generation and consumption data is essential for the operating 

strategy. Therefore, the consideration of uncertainties is 

increasingly considered in scientific discourse. Here, 

individual scientific contributions often deal with certain 

partial aspects of microgrids that are subject to uncertainties 

such as load forecasts (Alvarado-Barrios et al., 2020), but also 

with methods to deal with these uncertainties, e.g. the adapted 

operation of a combined heat and power plant (Zhang et al., 

2019). For dealing with uncertainties in microgrids, various 

types of optimization algorithms are used in literature. Often, 

two-stage MILP approaches like (Balderrama et al., 2019), 

(Parisio et al., 2016) or (Silvente et al., 2018) are used because 

they can efficiently handle the commonly extensive problem 

formulations. 

In this contribution, we focus on one main source of 

uncertainty (PV production in this case) in a residential district 

consisting of several multi apartment buildings. The supply 

system is modelled using a MILP approach where the main 

components are the mentioned PV system, a Combined Heat 

and Power plant (CHP) and a Li-ion battery. The model is 

unique in the way it includes the aging behaviour of the 

battery. This is necessary due to the high initial cost of the 

component and the strong dependency of its aging behaviour 

on the operation. The goal is to define a computationally 

efficient way of including stochastic optimization into the 

model and demonstrate the advantages over conventional 

optimization based on point forecasts. Before the stochastic 

optimization process is described in detail (Chapter 3), we 

introduce the basic MILP model with focus on the battery 

model and the implementation (Chapter 2). The results that can 

be achieved using the stochastic optimization approach are 

presented for a numerical example (Chapter 4). The article 

concludes with a short summary and outlook. 

2. MODEL DESCRIPTION 

As mentioned, we focus on residential microgrids with several 

multi apartment buildings. These buildings are supplied by a 

mix of locally as well as centrally produced electricity. A local 

energy supplier (LES) is responsible for the operation of the 

energy supply system as well as the trading of electricity with 

the market and selling energy to the local residents. The goal 

of the LES is to operate the multi building district as cost 

efficient as possible while at the same time fulfilling all 

customer needs in terms of electricity and heat. The basic 

model is based on the approach described in (Weitzel et al., 

2018). 

2.1  Structure of the microgrid model 

In order to be able to formulate a MILP problem and 

consecutively solve it, we need to define a microgrid model. 

The chosen modelling depth includes electric and thermal 

energy flows but does not include voltage, current, mass flow, 

temperature etc. That is why, both the thermal and the 

electrical system can be modelled using a single bus approach. 

Figure 1 demonstrates the coupling of the components and 

subsystems. The local residents’ heat demand is solely met by 

local production that comes from a CHP and an auxiliary 

heater and can be buffered in a Thermal Energy Storage 

System (TESS). The heater is installed due to backup reasons 

and for times where no electric energy can be sold to either 

residents or the grid. The thermal subsystem is connected to a 

natural gas grid. The electrical output of the CHP is fed into 

 

Fig. 1. Adapted structure of the micro grid model for day-ahead (black) and intraday optimization (orange) (modified 

graphic, based on (Weitzel et al., 2018)) 
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the electrical subsystem together with the generation of PV 

modules. In order to increase the self-consumption of the 

microgrid, a Battery Energy Storage System (BESS) is also 

installed. All electrical components are connected to the 

electricity grid and supply the customers with electric energy. 

This microgrid configuration is already quite common in 

modern households, especially bigger apartment buildings and 

multi-building districts in cities.  

2.2  Objective function 

The objective of the LES is to maximize its operating profit 

over a planning horizon 𝑇 that consists of seven components. 

On the revenue side lie the revenues 𝑅𝑒𝑣 
cust that result from 

delivering heat and power to customers at a fixed price and the 

revenues 𝑅𝑒𝑣 
grid

 that arise from sells of surplus electricity to 

the grid considering time variable prices. The five remaining 

components are cost components that reduce the LES’s profit: 

the purchased electricity from the grid  𝑢𝑟 
grid

, the fuel cost of 

the CHP 𝐹𝑢𝑒𝑙 
CHP, the fuel cost of the auxiliary heater 

𝐹𝑢𝑒𝑙 
HTR, the network charges 𝑁𝐶  and the battery aging cost 

𝐵𝐴𝐶 . Full network charges apply to electricity that is 

transferred using the public grid. Locally produced electricity 

that is also locally used is charged with a reduced amount of 

network charges. Battery aging cost are discussed in greater 

detail in section 2.3. Equation (1) shows the complete 

objective function that is maximized by the LES. 

max ℱ =∑(𝑅𝑒𝑣 
cust

𝑇

 =1

+ 𝑅𝑒𝑣 
grid

−  𝑢𝑟 
grid

− 𝐹𝑢𝑒𝑙 
CHP − 𝐹𝑢𝑒𝑙 

HTR − 𝑁𝐶  − 𝐵𝐴𝐶 ) 

(1) 

2.3  Battery Aging Costs 

The battery is one of the most relevant components due to its 

high initial cost and the aging behaviour that is highly usage 

dependent. It provides flexibility in the electric subsystem for 

the LES. In order to be able to adequately integrate the BESS 

into the operating strategy, its aging behaviour must be 

modelled as realistically as possible. Weitzel et al., 2018 

suggest an aging model that uses realistic calendric and 

cyclical aging behaviour and integrates it into a MILP model 

using a piece-wise linearization approach. The battery aging 

costs considered in the objective function consist of two 

components, as shown in equation (2): the cost due to calendric 

aging 𝐵𝐴𝐶cal   and the cost due to cyclical aging 𝐵𝐴𝐶cyc  . 

Both are calculated by a multiplication of the factors  𝜀𝑐𝑎𝑙   and 

𝜀𝑐𝑦𝑐, which depend on different parameters and the investment 

costs of the battery 𝐼𝑁𝑉BESS. 

𝐵𝐴𝐶 = 𝐵𝐴𝐶cal  + 𝐵𝐴𝐶cyc  
=  [ 𝜀𝑐𝑎𝑙  +  𝜀𝑐𝑦𝑐] ⋅ 𝐼𝑁𝑉BESS 

(2) 

The data for the battery model come from (Sarasketa-Zabala 

et al., 2015) and (Sarasketa-Zabala et al., 2014). In order to 

implement the non-linear behaviour in a MILP formulation, it 

has to be reformulated using a piecewise linear interpolation 

approach, for details see (Weitzel et al., 2018). 

2.4  General constraints 

In this paper, the most important constraints for understanding 

the model shall be presented in a simplified manner.  

The model is based on the microgrid's power and energy 

balances. The balance of the electrical and thermal subsystems 

at any point in time t is ensured by the equations (3) and (4). 

  
CHP +   

PV +   
BESS, d +   

grid, d
 

=   
grid, s

+   
BESS, c +   

demand 
(3) 

𝐻 
CHP + 𝐻 

HTR +𝐻 
TESS  = 𝐻 

demand (4) 

  
CHP and 𝐻 

CHP represent the electrical and thermal generation 

of the CHP, while   
PV  describes the electric PV generation 

and 𝐻 
HTR  the thermal generation of the HTR. The PV modules 

and the HTR are modelled in a simplified manner, while the 

CHP is modelled with operating point dependent parameters 

and costs. 𝐻 
TESS describes the discharge of the TESS,   

BESS, d
 

and   
BESS, c

 the discharge and charge of the BESS. In 

comparison to the simplified modelled TESS, for which only 

standing losses are considered, a detailed model of the BESS 

is used as already described. In the electrical subsystem,   
grid, d

 

and   
grid  s

 represent the additional possibility of exchanging 

energy with the public grid.   
demand and 𝐻 

demand are the 

electrical and thermal demands of the microgrid that must be 

met at all times.  

In addition to the objective function and the power balance 

equations described above, numerous other constraints are 

required. These include in particular the storage equations and 

the constraints for the generation units such as CHP or PV. 

Furthermore, additional equations are needed to linearize non-

linear relationships. This is especially related to the battery-

aging model and the operating point dependent modelling of 

the CHP. A comprehensive formulation of the constraints can 

be found in (Weitzel et al., 2018). 

2.5.  Implementation and solution 

The presented problem formulation is implemented in the 

commercial numerical computing environment MATLAB. 

For this purpose, the primary normal form is used, which is 

common for the formulation of mixed integer linear problems 

(Zimmermann, 2008). Equations (5) and (6) show the 

formulation of the inequality and equality conditions in 

primary normal form. This form results in a strict separation 

between the endogenous and exogenous variables. The 

endogenous variables of the problem are summarized in vector 

𝒙, while the exogenous variables are summarized in the 

vectors of the right-hand side  𝑖𝑛𝑒𝑞  and  𝑒𝑞 . The matrices 

 𝑖𝑛𝑒𝑞  and  𝑒𝑞  each contain the left sides of the equality and 

inequality conditions.  

 𝑖𝑛𝑒𝑞𝒙 ≤  𝑖𝑛𝑒𝑞  (5) 

 𝑒𝑞𝒙 ≤  𝑒𝑞  (6) 

For the implementation, the primary normal form is essential, 

because it allows for using standardised solvers. The pre and 
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post processing of the problem at hand is implemented in 

MATLAB. For solving the MILP, IBM CPLEX is used. It is 

based on a so-called branch-and-cut process, which uses 

various aspects of other solution methods and heuristics (IBM 

Corporation, 2014). A receding horizon technique is 

implemented for computing-efficiency. In this context, three 

different time horizons are considered, the planning horizon 𝑇, 

the optimization horizon 𝑇𝑂 and the control horizon 𝑇𝐶 . With 

these different horizons, the technique addresses two different 

problems. Firstly, the large size of the problems formulated for 

long planning horizons 𝑇. Therefore, the problem is not 

formulated for the entire horizon 𝑇 but is composed of 

subproblems, where each has the optimization horizon 𝑇𝑂. 

This leads to the fact that at the end of each period 𝑇𝑂 the end-

value problem occurs, which means, that the algorithm 

assumes that no further energy demand occurs after the end of 

the optimization horizon. This usually leads to empty storages 

in the last time step. In order to counteract to this problem, only 

the part of the operating strategy for the shorter period 𝑇𝐶  is 

included in the final result and the rest of the strategy for 𝑇𝑂 is 

discarded. After this, 𝑇𝑂 moves forward by the length of 𝑇𝐶  

and the optimization of the next subproblem starts. For this 

paper we set 𝑇 = 240 ℎ, 𝑇𝑂 = 48 ℎ and 𝑇𝐶 = 24 ℎ. This 

results in problems with 3208 variables and 2391 equations for 

the optimization horizon 𝑇𝑂 in case of a deterministic problem 

formulation.  

3. STOCHASTIC OPTIMIZATION PROCESS 

Real energy systems – especially those with a high share of 

renewable generation – are exposed to uncertainty in terms of 

variable production, e.g. due to changing weather. Also the 

exact demand of local residents is difficult to predict exactly 

as the user behaviour is subject to random decisions and 

change of plans. In order to include these aspects in the 

discussed LES concept based on a MILP formulation the 

technique of scenario optimization has proven to be suitable 

(Silvente et al., 2018), (Balderrama et al., 2019). The goal of 

the following sections is to show for a real-life problem what 

advantages can be achieved with scenario optimization based 

on a MILP formulation. 

3.1  Challenges for Local Energy Suppliers 

Two aspects lead to challenges for the LES that are used to 

motivate the scenario approach introduced in this contribution. 

First, subsidiaries for decentralised renewable energy 

production are in rapid decline in most countries. This leads to 

the situation that renewable energy has to be traded on energy 

exchanges instead. Here two basic products exist, namely day-

ahead (DA) and intraday (ID) trading. DA prices are low and 

easy to predict. ID is often more expensive and volatile and 

much harder to predict. Secondly, energy prices consist of 

several components that also include network charges for 

using the public electricity grid and other cost apportionments 

for subsidising renewable energies. A certain share of these 

cost components can be reduced when energy is produced and 

consumed locally. This leads to an interesting possibility to 

increase the profit for a LES. 

These two aspects together strongly increase the motivation 

for the LES to store and sell locally produced electricity to the 

local residents. In order to optimise the microgrid’s operational 

strategy, forecasts for production and demand are necessary. 

Especially for PV production point forecasts (only one value 

per time step) are commercially available and are often used 

by energy companies.  

3.2  Scenario generation 

In the introduced use case with the scheme shown in Fig. 1 the 

main source of uncertainty is the PV power production. The 

electricity and heat demand of the local residents can be 

predicted with much better accuracy using e.g. adapted 

persistence forecast methods (Yan et al., 2017). Therefore, the 

following chapters consider the PV production as only 

uncertain parameter, for which scenarios have to be generated. 

The scenario generation method is based on (Ma et al., 2013) 

and is often used in wind power scenario generation. It uses 

the power curve point forecasts combined with historical 

forecast errors. The main advantage of this approach is that the 

data is often available. Another advantage of the approach is 

that it is not only based on historical data, but includes point 

forecasts calculated with the help of Numerical Weather 

Prediction models (Biel et al., 2018). Therefore, they include 

available external information about the future PV production. 

For the approach, a calibration period is needed to generate 

useful predictions. During that period the power forecasts, the 

observed power curves are needed. For the planning horizon 

only the point forecast is necessary. (Ma et al., 2013) suggest 

to create at least 500 scenarios leading to a large problem size 

as it increases roughly by the square of the number of used 

scenarios. In order to reduce the computational burden, (Biel 

et al., 2018) suggest a combination of scenario generation and 

reduction using the method of (Li et al., 2016). This approach 

aims at finding a limited set of scenarios that resemble the 

stochastic process described by the large number of scenarios 

as accurately as possible. For the following numerical 

example, the scenarios have been reduced to five 

representative scenarios sampled hourly. Figure 2 shows the 

PV forecast of one day and five scenarios as well as the 

observed PV power curve. 

Fig. 2. PV scenarios, forecast and observed power curve 
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3.3  Coupling of day-ahead and intraday optimization 

The optimization process consists of two main steps: day-

ahead (DA) and intraday (ID) trading of electricity. 

On the DA market, trading deals have to be closed until noon 

on the previous day for the following day. Therefore, the first 

step consists of a day-ahead optimization using scenario 

optimization. It is the goal of the LES to determine a schedule 

for the CHP and power exchanged with the grid (positive and 

negative) for the next day. The CHP schedule is assumed to be 

fixed during the intraday optimization because a high number 

of startups drastically increases the maintenance cost 

(Kopanos et al., 2013). That is why it is not considered as 

intraday flexibility. 

In the second step, the LES takes the previously determined 

schedules for CHP and grid exchange as fixed inputs and 

performs an intraday optimization with the observed PV time 

series. Since the ID market is much more difficult to model, 

we use a simplified approach. The additional degrees of 

freedom that the LES needs to ensure the solvability of the 

problem are introduced to the model in the form of balancing 

power and PV curtailment. Balancing power can only be 

drawn from the grid to ensure the fulfilment of the customer 

electricity demand in phases of lower local supply than 

predicted. In case of a surplus of local supply that cannot be 

stored cost efficiently, PV curtailment is possible. Figure 3 

shows the connection of DA and ID optimization. 

4. NUMERICAL EXAMPLE 

In order to demonstrate the potential of the scenario method 

and quantify the advantage for a realistic example, data from a 

practical research project is used and an exemplary period of 

ten days is optimized. 

4.1  Input data and data sources 

The data used in the numerical example originate from a 

project that is investigating different energetic aspects of an 

existing residential area, as described in (Conci and Schneider, 

2017). Aside from the renovation strategy of existing multi-

apartment buildings in the city centre of a German city, the 

energy supply system of the complex is designed. The 

resulting system represents a typical microgrid with 

decentralised renewable and conventional production, heat 

and electricity demand, energy storage systems and a 

connection to the power grid. Due to the high number of 

system components with partly multi-modal character (CHP), 

simple control strategies do not leverage the potential of the 

system. Hence, the described LES approach is applied to the 

energy supply system. The real system is characterised by the 

parameters shown in Table 1. 

Table 1.  Overview of the most important input parameters 

 Parameter Value 

D
em

an
d

 Yearly power demand of residents 223 MWh 

Electricity price of residents 0.25 €/kWh 

Yearly heat demand of residents 585 MWh 

Heat price of residents 0.065 €/kWh 

S
u

p
p

ly
 

Max. electric power of CHP 20 kW 

Max. thermal power of CHP 39 kW 

Power of heater 350 kW 

Peak power of PV system 100 kW 

Average DA price 0.03 €/kWh 

Add-on for grid exchange  

(network charges etc.) 
0.18 €/kWh 

Add-on for local consumption  

(reduced network charges etc.) 
0.08 €/kWh 

Price for balancing power 0.20 – 0.60 €/kWh 

Gas price 0.04 €/kWh 

S
to

ra
g

e 

Size of BESS 100 – 400 kWh 

Power of BESS 100 – 400 kW 

Price of BESS 150 €/kWh 

Size of TESS 70 kWh 

Power of TESS 140 kW 

 

For the numerical example the German energy market is 

modelled in the simplified manner, as described in chapter 3.1. 

For the DA market variable hourly historical prices from 2015 

are used, whereas the ID market is simplified using a fixed 

Step 1: Day-ahead optimization

max ℱ =∑  (  
     𝑐    𝑐  

   
   𝑐   𝑎𝑖𝑙 𝑒𝑛    

     𝐶         
         

   
𝐶     

      𝑒  𝑒 ) 

𝑇

 =1

Step 2: Intraday optimization

max ℱ = ∑∑ ( )    (   
         

   
𝐶       

     𝑐    𝑐  
 

𝑇

 =1

      
    𝑐𝑒𝑛𝑎 𝑖  ) 

 

 =1

Step 3: Proceed to next day

 

Fig. 3. Process of stochastic optimization 
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price for energy demand. This fixed price is varied within the 

parameter study between 200 and 600 €/MWh. Also the 

battery capacity is variable in three steps between 100 and 

400 kWh.  

4.2  Results 

In order to show the influence of the optimization approach 

and the parameter selection on the results, a limited parameter 

study is carried out. We calculate results for a model without 

uncertainty (DOpt) where the observed PV production is 

known a priori. This case serves as the benchmark for the other 

alternatives with uncertainty. In order to evaluate the 

advantage of the scenario approach, the optimizations are also 

carried out using only the point forecast during DA 

optimization (POpt). In contrast to that, the scenario 

optimization (ScenOpt) uses five PV scenarios that are created 

with the approach introduced in Chapter 3.2. ID optimization 

is the same for the two cases. In addition to the optimization 

approach, the parameters battery capacity and price of 

balancing energy are varied. Table 2 gives an overview of the 

parameters. In total 27 variants with a length of ten days 

(01.06.2015-09.06.2015) were calculated. The variants were 

optimized using Matlab and the IBM CPLEX solver on a 

computer with an Intel Xeon Gold 6144 CPU clocking with 

3.50GHz and 64GB of RAM and the Windows Professional 

(64 bits) operating system. 

Table 2.  Parameter subject to variation 

Parameter Value 1 Value 2 Value 3 

Optimization 

approach 

No uncer-

tainty 

(DOpt) 

Point 

prognosis 

(POpt) 

Scenario 

technique 

(ScenOpt) 

Battery (BESS) 

capacity 
100 kWh 200 kWh 400 kWh 

Price of balan-

cing energy 

(BE) 

200 €/MWh 400 €/MWh 600 €/MWh 

 

Figure 4 shows an overview of the profits of all 27 variants 

relative to the base case with a BESS capacity of 100 kWh, BE 

price of 200 €/kWh and DOpt. What we can see is that a bigger 

BESS in all variants lead to an increase in operating profit for 

all BE prices. The additional flexibility available thus has a 

positive effect. Regardless of the size of the BESS, it becomes 

clear that the best possible result is always achieved with the 

optimization under certainty. 

For all fixed combinations of BE prices and BESS capacities, 

ScenOpt always achieves better results compared to POpt. 

This is due to the fact that the ScenOpt approach has additional 

information regarding the PV production that may occur and 

therefore adapts the optimal operating strategy. In the case of 

the lower BE price of 200 €/kWh, however, this is realised in 

a different manner than for the two cases with higher prices. 

The price of 200 €/kWh for BE is competitive to the DA 

market. The operation strategy resulting from the DA 

optimization is therefore adapted in the ScenOpt approach 

during the ID optimization by a higher use of BE compared to 

the POpt approach. The ScenOpt approach can take more 

advantage of the low-cost BE during ID optimization because 

of the less risky strategy it choses during DA optimization. 

This is the case due to the additional PV production 

information included in the scenarios. For the cases of BE 

costs of 400 €/kWh and 600 €/kWh, the reasons for the 

advantages of ScenOpt over POpt are the same.  

 

Fig. 4. Results of the parameter variation clustered in size of 

BESS (top: 100 kWh, centre: 200 kWh, bottom: 

400 kWh) and price for BE (left: 200 €/kWh, centre: 

400 €/kWh, right: 600 €/kWh). Displayed is the 

difference in percent to the base case (BESS 100 kWh, 

BE 200 €/kWh with an absolute profit of 1035 €) 
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BESS 400 kWh

DOpt POpt ScenOpt
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When cross analysing the results regarding the factors BESS 

and BE, the positive effect of the ScenOpt method becomes 

obvious. It is noticeable that with increasing BE the influence 

of the storage size on the results decreases relative to the 

influence of the optimization approach. For instance, at a BE 

price of 200 €/kWh the ScenOpt approach with a BESS of 100 

kWh achieves a worse result than the POpt approach with a 

200 kWh BESS.  This is no longer the case with high BE 

prices. If the price for BE rises to 600 €/kWh it is required to 

use a BESS of 400 kWh to perform better with the POpt 

approach than with the ScenOpt approach and a BESS of 100 

kWh. So the more expensive BE, the more valuable it is for 

the LES to use the ScenOpt approach compared to increasing 

the storage size. 

As the differences between POpt and ScenOpt is most 

significant at higher BE prices, the following in-depth analysis 

focuses on BE prices of 600 €/MWh. Table 3 shows average 

performance indicators that demonstrate the LES’s behaviour 

during DA and ID optimization. 

Table 3.  Different average performance indicators for all BE 

600 €/MWh cases during DA and ID operation 

performance indicators POpt ScenOpt 

ID optimization 

Average sum of balancing energy 519 kWh 321 kWh 

Average state of charge of BESS 32% 37% 

Average energy throughput of BESS 1098 kWh 945 kWh 

Average sum of PV curtailment 67 kWh 302 kWh 

DA optimization 

Average energy bought from grid 161 kWh 127 kWh 

Average energy sold to grid 2939 kWh 2422 kWh 

 

From the data it becomes evident that the advantages of the 

ScenOpt for high BE costs are mainly due to a lower grid 

interaction during DA optimization in combination with lower 

battery aging costs and BE costs during ID optimization. The 

scenario approach is an effective measure to reduce BE 

demand during ID optimization. A higher state of charge 

(SoC) of BESS is used to generate additional flexibility and at 

the same time, the total energy that is sold to the grid is 

reduced. A high feed-in obligation to the grid can lead to 

problems during ID optimization if the produced PV energy is 

significantly lower during the day than forecasted. Due to the 

additional scenario information, the ScenOpt approach 

reduces this risk.  Also, the battery aging is significantly lower 

for ScenOpt, which can be explained by the higher safety 

margin in the battery. This margin leads to a smoother 

operation of the battery because it is not necessary to fulfil 

extreme grid obligations with high power outputs. Due to the 

higher average SoC of the BESS and thus lower available 

capacity for charging, it is more often the case that PV power 

has to be curtailed, especially for smaller BESS capacities. 

5. CONCLUSIONS 

The presented approach shows that the use of the scenario 

technique can bring advantages for the operation of a real 

microgrid under uncertainties without the need for additional 

information compared to point forecast approaches. The 

advantage compared to the usage of a point forecast mainly 

depends on two factors, the possibility of encountering 

uncertainties internally (e.g. with BESS) and the costs of 

encountering them externally on the ID market. With the 

ScenOpt approach, both factors are optimally utilized during 

the ID optimization. In the previous DA optimization risky 

operating states are avoided or mitigated due to additional 

information of possible scenarios of uncertain parameters. 

This is especially the case for restricted state variables such as 

storage capacities that trigger an alternative mechanism when 

reaching their limit. 
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