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Abstract: We consider systems under uncertainty whose dynamics are partially unknown. Our
aim is to study satisfaction of temporal properties by trajectories of such systems. We express
these properties as signal temporal logic formulas and check if the probability of satisfying
the property is at least a given threshold. Since the dynamics are parameterized and partially
unknown, we collect data from the system and employ Bayesian inference techniques to associate
a confidence value to the satisfaction of the property. The main novelty of our approach is to
combine both data-driven and model-based techniques in order to have a two-layer probabilistic
reasoning over the behavior of the system: one layer is related to the stochastic noise inside the
system and the next layer is related to the noisy data collected from the system. We provide
approximate algorithms for computing the confidence for linear dynamical systems.
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1. INTRODUCTION

Formal methods have been vastly used in computer science
to provide correctness guarantees on the expected behavior
of a program. Most of these formal techniques have been
developed for finite-state models (Beyer et al., 2018; Beyer
and Keremoglu, 2011). In order to fully utilize the advan-
tages of formal techniques in real physical applications, one
needs to first construct a sufficiently precise model of the
system. Usually, it is hard to model a system accurately.
Besides, the dynamics of a system may vary throughout
the course of time. In such cases, statistical model checking
can be beneficial if all the states of the system can be
measured (Sen et al., 2004; Clarke and Zuliani, 2011; Sen
et al., 2005). However, statistical model checking usually
needs a large number of experiments, is not able to deal
efficiently with uncertainties in the system, and is not able
to handle synthesis problems directly (Sen et al., 2005).

A data-driven approach was developed by Sadraddini
and Belta (2018) for control of piecewise affine systems
with additive disturbances against signal temporal logic
(STL) properties. Bartocci et al. (2014) exploit concepts
from formal modeling and machine learning to develop
methodologies that can identify temporal logic formulae
that discriminate different stochastic processes based on
observations. Chou and Sankaranarayanan (2019) propose
an approach to approximate the posterior distribution of
unknown parameters for a nonlinear and deterministic
system. Lavaei et al. (2020) use model-free reinforcement
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learning for policy synthesis of dynamical systems with
finite-horizon properties under continuity assumptions on
the dynamics of the system. Kazemi and Soudjani (2020)
have used reinforcement learning for satisfying all (infinite-
horizon) linear temporal logic properties with convergence
guarantees and without any continuity assumption on the
dynamics of the system.

STL properties are introduced and used in the literature
including the works by Raman et al. (2015) and Fainekos
and Pappas (2006). Sadigh and Kapoor (2016) introduce
a new definition for the probabilistic STL that assigns
probabilities to the atomic propositions and then com-
bines them through Boolean operators. Farahani et al.
(2018b) utilize probabilistic STL properties to design a
control strategy for Barcelona wastewater system. Sat-
isfaction of properties expressed in linear temporal logic
on finite traces for linear time-invariant (LTI) systems is
investigated by Haesaert et al. (2015, 2016) using Bayesian
inference. Polgreen et al. (2017) apply Bayesian inference
to parametric Markov chain.

In this work, a Bayesian framework is introduced in order
to give a probabilistic confidence measure over an STL
property for a set of parameterized models of stochastic
systems. In our approach, a prior knowledge of the system
accompanied by the collected data from the system are
leveraged together to improve the confidence of satisfac-
tion for the properties of interest expressed as STL for-
mulas. Our main objective is to combine both data-driven
and model-based techniques for stochastic systems in order
to verify the system against probabilistic STL properties.
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The results are demonstrated for partially unknown lin-
early parameterized models of stochastic systems.

Our approach considers a probability threshold as lower
bound for the satisfaction of STL property by the stochas-
tic trajectories of the system. We under-approximate the
feasible parameter set of the probabilistic constraint by
transforming them into algebraic inequalities. Then, a
confidence value is computed using the obtained feasible
set and the distribution of the parameter is updated based
on collected data from the system. We did not include the
proofs due to space limitations and will be included in an
online arXiv version of the paper.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we make a clear overview of our problem
and the proposed approach to tackle that. Assume that
there are parametric models M(θ) of the original system
in which θ comes from a parameter set Θ. This set of
models is described as Ω = {M(θ) | θ ∈ Θ}.
Assumption 1. It is assumed that there is a true pa-
rameter θtrue such that M(θtrue) describes the behavior
of the original system S. This true parameter is unknown
in general.

Consider a property ψ defined over trajectories of the
system S. We assume this property belongs to the class of
STL properties which will be defined in Subsection 4.1. We
denote satisfaction of ψ by the trajectories of the system
with S |= ψ. We intend to give a confidence value for
the satisfaction of a probabilistic STL property ψ for a
system S by combining Bayesian inference and model-
based techniques. We consider both process noise over
the dynamics of the system, and measurement noises over
outputs of the system.

Let us define the set of data collected from the system

D = {ũexp(t), ỹexp(t)}
Nexp−1
t=0 , in which ũexp(t) and ỹexp(t)

are input-output pairs for Nexp measurements. In general,
it is assumed that we can excite the system with any
desirable input signal but within the acceptable range of
inputs.

Assumption 2. Both process and measurement noises
are considered independent and identically distributed.
Besides, they are not correlated to the input signals. Initial
state vector x(0) is considered to be known.

2.1 Stochastic Bayesian Confidence

Satisfaction of a property ψ for a deterministic system can
be considered as a binary value over the parameter space
Θ. If we have Ω as the set of parameterized deterministic
models over the whole parameter space Θ, satisfaction
function for the deterministic system can be defined as
gψ : Θ → {0, 1} in which gψ(θ) ≡ M(θ) |= ψ . This
confidence value can be only zero or one. If the system is
affected by the process noise, the satisfaction of the desired
property can be explained by a probabilistic measure.
Now, we can define a threshold on the probability of
satisfaction of a property ψ as

Pr(M(θ) |= ψ) ≥ 1− δ, (1)

where δ ∈ (0, 1). Now we can assign a satisfaction function
fδψ to the above chance constraint which is again a binary
function on the parameter space Θ.

Definition 1. Consider Ω as the set of stochastic models
M(θ) in which θ ∈ Θ, and let ψ be a temporal logic
formula (e.g. STL). The stochastic satisfaction function
fδψ : Θ→ {0, 1} is defined as:

fδψ(θ) =

{
1 if Pr(M(θ) |= ψ) ≥ 1− δ,
0 otherwise.

(2)

Let Pr(.) and p(.) denote a probability value and a
probability density function, respectively. Then, we can
define a stochastic notion of confidence using Bayesian
probability inference. It can be expressed as a distribution
over the whole set of models Ω.

Definition 2. Given a property ψ and a set of data D,
the notion of confidence for the stochastic system can be
computed as:

Pr(S |= ψ | D) =

∫
Θ

fδψ(θ) p(θ | D)dθ, (3)

where p(θ | D) is a posteriori uncertainty distribution,
given input-output pairs of data, and fδψ(θ) is the stochas-

tic satisfaction function defined in (2).

2.2 Parametric LTI Systems

Note that the integral in (3) is difficult to be tackled ana-
lytically in general. Therefore, we provide a computational
approach suitable for linear time-invariant (LTI) systems
defined next. The nominal model for the stochastic system
S is defined as:

M(θ) ∈
{
x(t+ 1) = Ax(t) +Bu(t) +Gw(t)
ŷ(t, θ) = C(θ)x(t),

(4)

where, x(t) ∈ Rn, y(t) ∈ Rp, and u(t) ∈ U ⊂ Rm,
respectively. U is the set of valid inputs and is assumed
to be bounded. We assume that matrices A and B are
known. Signal w(t) is the process noise with a zero-mean
Gaussian distribution, which has a covariance matrix ΣwΣwΣw.
The output of the stochastic system is also affected by the
measurement noise as

y(t, θ) = C(θ)x(t) + e(t), (5)

in which e(t) ∈ Rp is the measurement noise with a zero-
mean Gaussian distribution, which has a covariance matrix
ΣeΣeΣe. Both process and measurement noises are assumed to
be uncorrelated from the input signals.

2.3 Problem Statement

There is a set of parameterized models M(θ) for the
stochastic system without the measurement noise. Also,
we assume that there is a θtrue from the parameter space
Θ such that M(θtrue) describes the behaviors of the
stochastic system.

Assume that we have a prior knowledge of parameterized
models for this system. This prior knowledge can be used
in order to improve the posterior distribution function over
the parameter space after collecting data from the system.

Problem 1. Given a parameterized LTI system in (4)
together with the noisy output data in (5), data set D, and
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an STL property ψ, we aim at computing the confidence
value in (3), with which the STL specification ψ is satisfied
independently of the input value.

This approach is depicted in Fig. 1. In this figure, Θ is
the whole parameter space. We denote by Θψ the initial
feasible set of parameters which their related parametric
models satisfy the given probabilistic STL formula ψ. In
addition, p(θ | D) denotes a posterior distribution function
which is improved based on the collected data from the

system, i.e., D = {ũexp(t), ỹexp(t)}
Nexp−1
t=0 . The updated

posterior distribution function will be leveraged in order
to compute the confidence value using (3). Moreover,
the prior information regarding appropriate parameters θ,
can be incorporated in order to achieve a more precise
confidence.

Model Checker

Data Analyzer

Confidence Computation

Θ

ψ

ũexp(t)

ỹexp(t)

Θψ

p(θ | D)

Fig. 1. An overview of our proposed approach

3. BAYESIAN INFERENCE

We use Bayesian inference in order to provide the confi-
dence of property satisfaction for parametric LTI systems.
In many practical situations, we have an initial insight over
the behaviors of the system that can be leveraged in order
to increase our perception about the system. Bayesian in-
ference is a powerful framework in order to incorporate this
prior knowledge. Furthermore, the Bayesian framework
is an efficient data-driven method. As it was mentioned
before, confidence can be computed using (3). In (3), given
the set of input-output data pairs, a posterior uncertainty
distribution p(θ | D) can be inferred for the parameter θ
by

p(θ | D) =
p(D | θ) p(θ)∫

Θ
p(D | θ) p(θ)dθ

, (6)

where p(θ) indicates a prior distribution over the whole
parameter set Θ and comes from our initial knowledge of
the system. Here, p(D | θ) is the likelihood distribution
function which is computed based on our observations
within the noisy environment. Let us consider the set of

data D = {ũexp(t), ỹexp(t)}
Nexp−1
t=0 in which ũexp(t) and

ỹ(t)exp are input-output pairs for Nexp measurements.
The system gets excited with inputs ũexp(t), and ỹexp(t)
are the corresponding observed outputs of the system at
time t which are noisy. If the system is only affected by
the measurement noise, observations can be assumed to be
independent and identically distributed. In this case, the

likelihood distribution p(D | θ) can be computed simply

as p(D | θ) =
∏Nexp−1
t=0 p(ỹexp(t) | θ). By considering the

process noise, one can clearly observe that measurements
will not be independent anymore. In this scenario, we
consider the likelihood distribution as a joint distribution
function of all Nexp measurements in the form of:

p(ỹexp(0), ỹexp(1), . . . , ỹexp(Nexp − 1) | θ), (7)

where distributions for both measurement and process
noises are assumed to be Gaussian with zero means and
their corresponding covariances. We can consider this
joint probability distribution function as a multi-variate
Gaussian distribution function. The next theorem provides
covariance matrix for the noisy outputs of the system.

Theorem 1. Consider the LTI model (4)-(5). The joint
distribution p(D | θ) is multi-variate Gaussian with mean

ȳ(θ) = [ȳ(0); · · · ; ȳ(Nexp)], (8)

and covariance matrix Σỹ(θ), where

ȳ(t) := C(θ)Atx(0) +

t−1∑
i=0

C(θ)AiBu(t− i− 1)

Σỹ(θ) := M(θ) ΣW M(θ)
T

+ ΣE .

Matrices ΣW := diag(Σw,Σw, . . . ,Σw) and ΣE :=
diag(Σe, . . . ,Σe) are block diagonal.
M(θ) ∈ R(mNexp+m)×(nNexp) is computable using matrices
of the system as

M(θ)=



0 0 0 · · · 0
C(θ)G 0 0 · · · 0
C(θ)AG C(θ)G 0 · · · 0
C(θ)A2G C(θ)AG C(θ)G · · · 0

...
...

...
...

...
C(θ)ANexp−1G C(θ)ANexp−2G · · · · · · C(θ)G

 .

The previous theorem results in a symmetric parametric
covariance matrix, Σỹ(θ), for Nexp measurements of the
system. Now, the joint Gaussian distribution function for
Nexp measurements is given by:

p(ỹexp(0), ỹexp(1), . . . , ỹexp(Nexp − 1) | θ) =

1

|Σỹ(θ)| 12 (2π)
Nexp

2

exp

{
−1

2
(ỹ − ŷ(θ))T Σỹ(θ)−1(ỹ − ŷ(θ))

}
,

(9)
where, ỹ and ŷ(θ) are measured noisy output and para-
metric output vectors for Nexp experiments. |Σỹ(θ)| is
determinant of the covariance matrix. Likelihood function
obtained in (9) as the joint distribution of Nexp mea-
surements, can be used in order to update a posterior
probability using (6).

4. STL CONSTRAINTS

4.1 Signal Temporal Logic (STL)

One of the advantages of STL specifications is their capa-
bilities in defining temporal specifications for trajectories
of physical systems. We denote an infinite trajectory of
the system in (4) by ξ = x(0)x(1)x(2), . . . where x(t) is
the state of the system at time t ∈ N0 := {0, 1, 2, . . .}.
Syntax: Signal temporal logic (STL) formulae are defined

recursively using the following syntax:
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ψ ::= T | µ | ¬ψ | ψ ∧ φ | ψ U[a,b] φ,

where, T is the true predicate, and µ : Rn → {T,F} is
a predicate which its truth value is determined by the
sign of a function of the state x, i.e., µ(x) = T if and
only if α(x) ≥ 0 with α : Rn → R being an affine
function of the state and is associated with µ. Notations
¬ and ∧ denote negation and conjunction of formulas.
Notation U[a,b] denote the until operator where a, b ∈ R≥0.
Semantics: The satisfaction of an STL formula ψ by a

trajectory ξ at time t is defined recursively as follows:

(ξ, t) |= µ⇔ µ(ξ, t) = T

(ξ, t) |= ¬µ⇔ ¬((ξ, t) |= µ)

(ξ, t) |= ψ ∧ φ⇔ (ξ, t) |= ψ ∧ (ξ, t) |= φ

(ξ, t) |= ψ U[a,b] φ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (ξ, t′) |= φ

∧ ∀t′′ ∈ [t, t′], (ξ, t′′) |= ψ.

A trajectory ξ satisfies a specification ψ, denoted by ξ |=
ψ, if (ξ, 0) |= ψ. Furthermore, other standard operators
can be defined using the above defined operators. For
disjunction, we can write ψ ∨ φ := ¬(¬ψ ∧ ¬φ) and
the eventually operator can be defined as 3[a,b]ψ :=
T U[a,b] ψ. Finally, the always operator is defined as
2[a,b]ψ := ¬3[a,b]¬ψ. The horizon of an STL formula

denoted by len(ψ) is the maximum over all upper bounds
of intervals on the temporal operators. Intuitively, len(ψ)
is the horizon in which satisfaction of (ξ, t) |= ψ should
be studied. Let us now denote a finite trajectory by ξ(t :
N) := x(t)x(t + 1)...x(t + N). For checking (ξ, t) |= ψ, it
is sufficient to consider a finite trajectory ξ(t : N) with
N = len(ψ).

4.2 Under-approximation of STL Constraints

The stochastic satisfaction function defined in (2) requires
the exact feasible set of the chance constraint in (1). This
feasible set does not have a closed form in general. Previous
works tried to find under-approximations of the feasible
set. We leverage the proposed procedure in Farahani et al.
(2018a) to get an under-approximation of the feasible set.
This procedure transforms the chance constraints on the
STL property into similar constraints on the predicates of
the property using the structure of the STL formula. We
discuss this procedure in this subsection.

Suppose an STL formula ψ has a finite horizon len(ψ).
The robustness of ψ indicates that the trajectory ξ of the
system satisfies ψ at time t with probability greater than or
equal to 1−δ, if ξ(t : N) = x(t)x(t+1)x(t+2) · · ·x(t+N)
with N = len(ψ) satisfies Pr(ρψ(ξ(t : N)) > 0) ≥ 1− δ.
The next lemma, borrowed from Farahani et al. (2018a),
shows how one can transform the chance constraints on
the satisfaction of STL formulae into similar constraints
on the predicates of formulae.

Lemma 1. For any STL formula ψ and a value δ ∈ (0, 1),
probability constraints of the forms Pr(ξ(t : N) |= ψ) ≥
1− δ and Pr(ξ(t : N) |= ψ) ≤ 1− δ can be transformed
into similar constraints on the predicates of ψ based on
the structure of ψ.

Lemma 1 enables us to write down probabilistic inequali-
ties on the satisfaction of atomic predicates and use them
as an under-approximation of the original probabilistic

STL constraint. These probabilistic inequalities can be
equivalently written as algebraic inequalities given that we
know the statistical properties of the state trajectories. In
the case of LTI systems with Gaussian disturbances, x(t)
is also Gaussian with known mean and covariance matrix.
For the predicate µ(x) = {α(x) ≥ 0} with α(x) := θ̃0 +

θ̃Tx, for some θ̃ ∈ Rn and θ̃0 ∈ R, we have E[α(x)] = θ̃0 +

θ̃TE[x] and Var[α(x)] = θ̃TCov(x)θ̃. Therefore,

Pr(α(x) ≥ 0) ≥ 1− δ ⇔ Pr(α(x) < 0) ≤ δ
⇔ E(α(x)) + Var(α(x))q−1(δ) ≥ 0, (10)

where q−1 is the error inverse function with q =
1
π

∫ x
−x e

−t2 . In the following theorem, we show that the

algebraic inequalities of the form (10) are linear with
respect to the input.

Theorem 2. Chance constraint Pr(α(x(t)) ≥ 0) ≥ 1− δ,
where α(x) = θ̃0 + θ̃Tx and x(t) is the trajectory of the
stochastic system (4) at time t, can be written as the
following affine constraint in terms of the input trajectory:

θ̃0 +

t∑
i=1

θ̃TAi−1B u(t− i+ 1) + Γ(θ̃, δ) ≥ 0, (11)

where

Γ(θ̃, δ) :=

( t∑
i=1

θ̃TAi−1G ΣwΣwΣw G
T (AT )i−1θ̃

)
q−1(δ),

and ΣwΣwΣw is the covariance matrix of the process noise.

Note that Γ(θ̃, δ) is a quadratic function of θ̃ and depends
on δ nonlinearly.

5. VERIFICATION OF STL CONSTRAINTS

5.1 Feasible Set Computation

After transforming the probabilistic STL constraints into
the algebraic inequalities, as described in Section 4, these
inequalities are in the form of (11) which are linear with
respect to the input trajectory and must hold for the
whole input range. We use robust linear programming to
solve those inequalities. Here, the primary robust linear
programming problem is converted to another dual linear
programming one without a universal quantifier over the
target value based on Farkas’ lemma (Georghiou et al.,
2019). In the next theorem, we show that the feasible set
of the probabilistic predicates at each time step can be
characterized by a set of constraints at that time step.

Theorem 3. Assume that inputs at each time step t are
restricted as l ≤ u(t) ≤ l̄, u(t), l, l̄ ∈ Rm. The feasible set
of each approximated algebraic inequality in (11) for the
whole range of inputs can be characterized by the set of
constraints

PT d ≤ b, DTP = fθ̃, P ≥ 0, (12)

where

PT = [P1, . . . , P2mt] ∈ R1×2mt, Pk ∈ R≥0, ∀k ∈ {1, . . . , 2mt},

d = [l̄, l, . . . , l̄, l]T ∈ R2mt×1,

b = θ̃0 + Γ(θ̃, δ), θ̃0 ∈ R,
fθ̃ = θ̃T [At−1B;At−2B; . . . ;B] ∈ Rt×1,
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and D is a matrix with all diagonal elements equal to 1
and the ones right below diagonal is −1. Solving these
constraints simultaneously for all predicates of STL spec-
ification in horizon N , leads to the feasible set of param-
eters for the stochastic system S in (4). The complexity
of computation of confidence value in (3) can be tackled
using integrating the updated posteriori distribution over
this feasible set by virtue of numerical techniques. Two
different numerical approaches are described in the next
subsection.

5.2 Confidence Computation Techniques

Mont Carlo Method. Considering the nonlinearity in
the constraints, computation of integral in (3) can be
done efficiently using Monte Carlo techniques. The idea
is to choose N points uniformly from the bounded region
of the parameters and using them in the computation
of confidence integral in (3) as long as they satisfy all
the required constraints in (12) for the whole horizon of
STL properties. Now, the confidence integral is a random

variable and can be represented as Q N = V
N

∑N
i=1K(θ̃i),

where K(θ̃i) = fδψ(θ̃i) p(θ̃i | D) and V =
∫
θ̃
dθ̃. According

to Chebyshev’s inequality, one has

Pr(|Q N − E[Q N]| ≤ ε) ≥ 1− Var[Q N]

ε2
, (13)

for a given ε, in which Var[Q N] = V 2

N2

∑N
i=1 Var[K(θ̃i)] =

V 2δ2K
N with δ2

K = Var[K(θ̃i)]. Finally, we get Pr(Q N −
E[Q N] ≤ ε) ≥ 1 − V 2δ2k

ε2N . By choosing an appropriate N
and ε, one can expect an efficient approximation of the
confidence integral.

In order to implement the Monte Carlo technique more
effectively, one can restrict the search region by solving an
optimization problem over the constraints (12) in order
to find the extreme points for the parameters, therefore,
fewer samples are needed to be chosen in this (potentially)
smaller region.

Confidence Computation Using Piecewise Affine
Approximation Of The Nonlinear Constraint. An-
other approach for computing the confidence value in (3)

is approximating the nonlinear term Γ(θ̃, δ) in (12) using
piecewise affine (PWA) functions. Then, linear program-
ming can be used in order to approximate the feasible set.

Lemma 2. The feasible set of (12) for all predicates and
time steps within the horizon of STL property (if existing)
can be recovered in the limit for large numbers of piecewise
regions in order to approximate the nonlinear part of (12).

6. EXPERIMENTAL RESULTS

Consider a parameterized class of models M(θ) with the
state-space representation

M(θ) ∈

 x(t+ 1) =

[
a 0

1− a2 a

]
x(t) +

[ √
1− a2

−a
√

1− a2

]
u(t) +

[
1 0
0 1

]
w(t)

ŷ(t, θ) = θTx(t).

Each model in M(θ) has a single input and a single output.
The coefficient a is 0.4 and the parameter set is selected
as θ ∈ Θ = [−10, 10] × [−10, 10]. The system S ∈ M(θ)
has the true parameter θtrue = [−0.5, 1]T . System S is
a member of models demonstrated by the Laguerre-basis
functions as transfer functions (Haesaert et al., 2015). This
is a special case of the orthonormal basis functions and can
be translated to the aforementioned parameterized state
space format. The system is affected by a process noise
which is a Gaussian process with covariance matrix 0.5I2.
There is also an additive measurement noise with zero-
mean and variance 0.5. The input range is considered to
be [−0.2, 0.2].

We want to verify with high probability if the output of
the system S remains in l1 = [−0.5, 0.5] until it reaches
l2 = [−0.1, 0.1] at some time in the interval [2, 4]. We
denote the atomic propositions µ1 = {y ≥ −0.5}, µ2 =
{−y ≥ −0.5}, µ3 = {y ≥ −0.1}, µ4 = {−y ≥ −0.1}.
Our desired property can be written as Pr(S |= (µ1 ∧
µ2)U[2,4] (µ3∧µ4)) ≥ 1−δ. We select δ = 0.01. We use the
procedure in Section 4 to decompose this STL property
to algebraic constraints on the atomic propositions. The
feasible set is approximated either using the Monte Carlo
method or the piecewise affine approximation described
in Section 5. The initial set can be restricted by finding
the extreme values of θ over all constraints as described
in Subsection 5.2 which is considered [−3.5, 3.5] for this
case study. Computed feasible set using the Monte Carlo
technique is demonstrated in Fig. 2 with red-face squares.
The feasible set which is recovered with the piecewise affine
technique is illustrated in Fig. 2 with blue-edge diamonds.
We found the feasible set of parameters for (12) for all time
steps in θ and P space. Then, this feasible set is projected
into θ space using MPT3 toolbox (Herceg et al., 2013).

As we do not have any prior knowledge about the parame-
ters, we choose a uniform distribution p(θ) on the possible
models. Based on the uniform prior, the confidence is
computed using (3) as 0.0279 and 0.0258 with Monte
Carlo and PWA approximations, respectively. Afterward,
we designed an experiment on the system with the true
parameter and an input sequence as Gaussian noise with
a uniform distribution over [−2, 2] and measured output
for 50 consecutive time instances. Using updated p(θ | D)
coming from the measurement data, confidence improved
significantly into 0.9099 and 0.8962 for Monte Carlo and
PWA, respectively. We repeated the same experiment 100
times for several other true parameters θtrue. For all of
these instances, updated posteriori probability in (9), after
50 measurements, is used in order to compute the con-
fidence value according to (3). Contours of the posterior
distribution are illustrated in Fig. 2 . Results of computing
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Fig. 2. Contours of p(θ | D) for θtrue = [−0.5, 1]T after 50
measurements over the feasible set computed by the
Monte Carlo and PWA techniques.

the confidence with Monte Carlo and PWA approximation
are shown in Table 6. As it can be seen, for parameters
that lie deep inside the feasible set, the confidence value is
high with a low variance for both techniques. Meanwhile,
for the points near the edges, the variance is higher and
confidence value is lower. For points far enough from the
feasible set, confidence tends to be zero.

Table1. Means and variances of computed confidence
values for 5 different true parameters.

Monte Carlo PWA

θtrue Mean Variance Mean Variance

[−0.5, 1]T 0.9587 0.0023 0.9514 0.0042
[3,−1]T 0.4902 0.0061 0.5032 0.0062
[1, 0.5]T 0.7932 0.0025 0.7584 0.0053

[−2, 1.5]T 0.9018 0.0009 0.9156 0.0005
[2,−1]T 0.0278 0.0005 0.0480 0.0006
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