
Accelerated Model Predictive Control
Using Restricted Quadratic Programming ?

Anson Maitland ∗,1 John McPhee ∗

∗Department of Systems Design Engineering, University of Waterloo,
Waterloo, Canada

Abstract: We present a method to reduce the computational burden of solving a sequence of
convex quadratic programs (QPs). By determining offline what search space is most important,
we can restrict our online problem to that subspace, reducing the dimension and computational
cost of the QP solver. The process we present is very simple requiring surprisingly little data.
Further, we present a modified sequential QP algorithm that leverages the restricted QP
approach to solve nonlinear programming problems found in model predictive control. Lastly, we
apply these to a benchmark MPC problem and demonstrate their effectiveness using a variety
of established QP solvers. We demonstrate that QP problems can be solved faster with minimal
MPC performance degradation and highlight future directions for this work.

Keywords: Model-based control, Predictive control, Quadratic programming, Nonlinear
programming

1. INTRODUCTION

Model Predictive Control (MPC) is a modern feedback
control strategy that requires the online solution of a
parameterized optimization problem within a fixed sam-
pling time (Rawlings and Mayne, 2009). In MPC, one
predicts the plant’s state over a finite horizon of H steps
using the latest measurement (or estimate) of the plant’s
state and optimizes the future controller actions. Only
the first control action is implemented and the process is
repeated at succeeding timesteps. The resulting sequence
of optimization problems (and their solutions) are thus
intimately connected by the evolution of the plant and
controller action history.

MPC has garnered significant attention in the academic
and industrial control communities as it can handle a
wide variety of problems (Garcia et al., 1989; Qin and
Badgwell, 1997, 2003; Lee, 2011). Although MPC allows
one to explicitly handle nonlinear dynamics, constraints
and other problem aspects not possible in classical control,
the hard real-time constraint of many real systems, which
require fast sampling rates, presents a significant challenge
to MPC implementation. In response, significant attention
has been devoted to algorithms dedicated to the rapid
solution of optimal control problems found in MPC, e.g.
FORCES NLP: a fast interior-point method (Domahidi
et al., 2012; Zanelli et al., 2017), CVXGEN: a convex op-
timizer that can auto-generate custom C code for embed-
ded applications (Mattingley et al., 2010; Mattingley and
Boyd, 2012) and the real-time iteration scheme which is
an MPC approximation method (Diehl et al., 2002, 2005).
For linear systems, a variety of fast convex solvers have

? This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC), the Ontario Centres of
Excellence (OCE) and MaplesoftTM.
1 corresponding author, email: anson.maitland@uwaterloo.ca

been developed that run at the millisecond timescale for
MPC applications (Richter et al., 2011; Domahidi et al.,
2012; Jerez et al., 2014; Frison et al., 2014; Ferreau et al.,
2014).

The solution of convex quadratic programs (QPs) has
been given special attention as these problems form the
backbone of many optimization algorithms for nonconvex,
nonlinear and mixed-integer problems. Broadly, there are
three distinct classes of QP solvers: active set, interior
point and first order methods. Respective examples are:
qpOASES which uses a homotopy based strategy (Fer-
reau et al., 2014), OOQP which has an object-oriented
design (Gertz and Wright, 2003) and OSQP which uses
the Alternating Direction Method of Multipliers (ADMM)
algorithm (Stellato et al., 2017). This paper introduces
a QP reduction strategy, called restricted quadratic pro-
gramming (rQP), to reduce QP solution times that is
applicable to all three classes of solver.

The underlying idea behind the rQP approach was first
presented by the authors in the context of Newton’s
method as applied to the Karush-Kuhn-Tucker conditions
of an unconstrained optimization problem (Maitland and
McPhee, 2017; Maitland et al., 2019). By wisely select-
ing a subspace of the total search space, one can reduce
the computational burden of finding a solution without
degrading the solution quality. This approach is partic-
ularly well-suited for scenarios where one has to solve a
sequence of similar optimization problems, such as MPC.
The subspace selection is done in an offline stage using
simulation data from a collection of representative test
cases. In practice, the amount of data required has proven
to be surprisingly small and the selection strategy boils
down to simple matrix algebra.

This paper is organized in the following manner: firstly, in
Section 2 we review the basics of QP, introduce rQP and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7083

illustrate how one can select a good subspace by analyzing
the error introduced via rQP. In Section 3, we demon-
strate how one can integrate rQP into a general nonlinear
programming (NLP) method by modifying a standard
sequential QP (SQP) algorithm. Lastly, in Section 4 we
apply rQP to a benchmark MPC problem followed by some
concluding remarks in Section 5.

Notation: matrices are denoted by capital letters, e.g.
A,B, . . . and vectors by lowercase letters, e.g. x, y, . . .
All vectors are considered column vectors. We denote the
ith row of a matrix or element of a vector by Ai or xi,
respectively. Further, AI denotes the matrix made up of
the rows of A belonging to the index set I. We denote the
span of the columns of matrix A by 〈A〉. Unless specified
otherwise all norms are 2-norms or induced 2-norms.

2. RESTRICTED QUADRATIC PROGRAMMING

In this section we begin with a review of convex QPs.
These are a backbone to many NLP methods and are found
frequently in the MPC setting for linear and nonlinear
systems. We then introduce restricted QPs and, following
an error analysis, introduce a simple restricted subspace
learning method.

2.1 Quadratic Programming Review

In general, a strictly convex QP can be written as

min
y

1

2
yTGy + gT y

subject to Ay + b ≥ 0
(1)

where G is positive definite. For purposes of discussion
we assume the feasible region is nonempty so Problem (1)
has a unique solution that we denote y∗. This solution can
be recovered from the solution of the following (possibly
smaller) unconstrained QP

min
z

1

2
zTG′z + g′T z (2)

where G′ = NTGN and g′ = NT (g + GRp). N is the
kernel of AA(y∗) where A(y∗) = {i|Aiy∗ + bi = 0} is the
set of active constraints at y∗, such that AA(y∗)N = 0.
The solutions are related by the relation,

y∗ = Nz∗ +Rp

where R is chosen such that the matrix [N R] is nonsin-
gular and p is any solution to AA(y∗)Rp+ bA(y∗) = 0. The

solution of Problem (2) can be written as z∗ = −G′−1g′.
We call Problem (2) the unconstrained transformation of
Problem (1).

In the transformation of Problem (1) we restrict our at-
tention to active constraints, yielding linear equality con-
straints that we then eliminate (Wright and Nocedal, 1999;
Boyd and Vandenberghe, 2004). Problem (2) can be un-
derstood as the Null-Space Method applied to Problem (1)
about the optimum y∗. It is important to note that the
Problem (2) was constructed knowing y∗, the solution of
Problem (1). In practice, this means that we cannot solve
our original problem using the equivalent unconstrained
version directly. For example, in active-set methods one
‘learns’ A(y∗) during the iterative solution process. We
will return to this incongruity in subsequent sections.

2.2 Introducing Restrictions

Suppose we knew the solution y∗ of Problem (1) then
not only could we write down an explicit expression for
the solution, knowing the active constraints A(y∗), but
we could stretch this idea further and introduce new
constraints such that the solution remains the same. All
that will change is the manner in which we can explicitly
express y∗. We shall see how this is useful in the following.

A restricted version of QP (1) is any QP of the form

min
y

1

2
yTGy + gT y

subject to Ay + b ≥ 0

Π⊥T|r y = 0

(3)

where Π⊥|r is a matrix specifying the introduced linear

equality constraints. As long as y∗ ∈ 〈Π|r〉, where Π|r is

the kernel of Π⊥|r, then the solution of (1) and (3) are

the same. Without loss of generality we can assume that

Π =
[
Π|r Π⊥|r

]
is an orthogonal matrix, and Π|r simply

denotes the first r columns of Π. To be of interest we
assume the feasible set when the constraints are added
is nonempty.

Eliminating the constraints of Problem (3) yields the rQP

min
z

1

2
zT [ΠT

|rGΠ|r]z + gTΠ|rz

subject to AΠ|rz + b ≥ 0
(4)

which is a QP of order r. The solution can be expressed as

z∗|r = −Π|r[Π
T
|rG
′Π|r]

−1ΠT
|rg
′ (5)

if A(y∗) = A(y∗|r). We note that if we consider general

Π|r the solution of (4) may not have the same active
constraints at its optimum as the unrestricted problem (1)
and the expression given by equation (5) will be incorrect.
It is possible that the solutions differ by an arbitrarily large
amount due to the presence of inequality constraints. This
occurs when constraints near y∗ are nearly collinear with
the span of Π|r. However, by choosing Π|r well one can
avoid these pathological situations.

Now in practice if one is solving a QP they would not know
y∗ and hence an appropriate choice of Π|r. If we suppose
A(y∗) = A(y∗|r) then we can easily examine the error

between z∗ and z∗|r. We can do the analysis by breaking the

error into two orthogonal components using the projection
operator P|r = Π|rΠ

T
|r and its orthogonal complement

P⊥|r = Π⊥|rΠ
⊥T
|r = I − P|r. The error between the true

solution and the approximate one is

‖z∗ − z∗|r‖
2 = ‖P|r(z∗ − z∗|r)‖

2 + ‖P⊥|r (z∗ − z∗|r)‖
2

= ‖Π|r([ΠT
|rG
′Π|r]

−1ΠT
|r −ΠT

|rG
′−1)g′‖2

+ ‖P⊥|r z
∗‖2

= ‖Π|r[ΠT
|rG
′Π|r]

−1ΠT
|r(I −G

′P|rG
′−1)g′‖2

+ ‖P⊥|r z
∗‖2

≤ (‖Π|r[ΠT
|rG
′Π|r]

−1ΠT
|rG
′‖2 + 1)‖P⊥|r z

∗‖2

≤ (κ(G′)2 + 1)‖P⊥|r z
∗‖2

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7084

where κ(·) is the condition number of of its matrix argu-
ment. Thus if we can choose Π|r such that ‖P⊥|r z

∗‖2 is

small, then we can guarantee that the solution z∗|r is a

good approximation. In the following section we present a
strategy to do just this.

2.3 Subspace Learning

In practice, we are often not interested in solving a single
QP but a sequence of related QPs to solve some more
general optimization problem, e.g. SQP. Furthermore, one
often chooses the solution of the preceding QP as the initial
guess of the current QP. In this case we can view the
solution of the kth QP z∗[k] as

z∗[k] =

k∑
j=1

∆z[j] + z∗[0]

where z∗[0] is the initial guess of the very first problem
which without loss of generality we can assume to be 0
and ∆z[j] = z∗[j] − z∗[j − 1]. Then we can bound the
error by

‖P⊥|r z
∗[k]‖2 ≤

k∑
j=1

‖P⊥|r ∆z[j]‖2.

To minimize this bound it is optimal to choose Π|r as the
solution of

min
A∈Rn×r

k∑
j=1

‖(I −AAT)∆z[j]‖2

subject to ATA = I.

(6)

The solution A∗ of (6) can be expressed straightforwardly
using the singular value decomposition (SVD) of the
matrix S = [∆z[1] · · · ∆z[k]]. If we denote the SVD by
S = ΠΣV T then A∗ is exactly the first r columns of Π.

Again, in practice one will not know any of the solutions of
the QP sequence ahead of time (else they would not need
to be computed) so we cannot select Π|r using the above.
But in scenarios where we can compute the solutions
of representative sequences of QPs offline, such as MPC
simulations, we can use that information to find a good
approximation to the optimal choice of Π|r and then use
that choice online to speed up QP computation times using
rQP.

We can compute a good choice of Π|r using the following
steps:

(1) Run a set of representative QP sequences to collect
the snapshot matrix S by concatenating the results.

(2) Compute the SVD S = ΠΣV T .
(3) Select Π|r from the first r columns of Π.

Ideally, one wants to choose r as small as possible in
order to accelerate the QP computation time as much as
possible. However, depending on the problem not all values
of r may lead to good solutions. Analytically determining a
good choice for r is an open problem and is currently done
by trial and error to find an acceptable balance between
computation time and approximate solution quality.

3. A RESTRICTED SQP METHOD FOR MPC

In this section we present a modified SQP method, we call
restricted SQP (rSQP), that takes advantage of rQP shown
in Section 2. The novelty of this method is to combine
the solutions of rQP subproblems with orthogonal gradient
descent steps.

Consider a generic MPC problem

min
u

J(u;x)

subject to C(u;x) ≥ 0

where J is the objective (or cost) function, u is the vector
of controls over the horizon, x is the plant’s state and C are
constraints. We have presented the problem compactly by
assuming only the controls are optimization variables thus
simplifying the presentation. This could be accomplished
by eliminating the dynamic constraints using a single-
shooting formulation. In future work, we shall show how
both primal and dual variables can be handled by the rQP
approach.

The rSQP method solves a sequence of QP subproblems
using rQP in combination with a line search strategy based
on merit functions. The QP subproblems are

min
∆u

1

2
∆uTG∆u+ gT∆u

subject to A∆u+ b ≥ 0

(7)

where ∆u is the variable update step so that u+ = u +
∆u, G = ∇2J(u;x), g = ∇J(u;x), A = ∇C(u;x) and
b = C(u;x). To solve Problem (7) we break down the
solution into two orthogonal components ∆u− and ∆u⊥.
The first component is found by solving the rQP given
in (4) where the matrix Π|r was found using the method
of Section 2.

Though we have determined that Π|r is likely the most
‘important’ subspace, we must take orthogonal steps to
guarantee global convergence and ultimately garner good
performance (Maitland et al., 2019). These orthogonal
steps are computed cheaply using a projection of the
gradient

∆u⊥ = −P⊥|r g
T .

This step is scaled by a factor γ that is determined by
optimizing the step length. The full update of one iteration
is

∆u = α(∆u− + γ∆u⊥)

where α is given by a line search. Plugging this expression
back into the cost function of Problem (7) we get a
quadratic optimization problem in γ

min
γ

γ2

2
∆uT⊥G∆u⊥ + γ(∆uT⊥G∆u− +

1

α
gT∆u⊥)

which has an explicit solution. Since the line search is
actually conducted after the determination of the two
orthogonal components (this is necessary for global con-
vergence guarantees (Wright and Nocedal, 1999; Boyd and
Vandenberghe, 2004)) α is unknown. In our implementa-
tion we optimistically set α = 1 to find γ.

The final step is the line search used to guarantee con-
vergence and not violate constraints. The line search is
a standard backtracking algorithm that uses the `1 merit
function

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7085

φ(u;x, µ) = J(u;x) +
1

µ
‖C(u;x)|A‖1

with directional derivative

d(φ(u;x, µ); ∆u) = ∇J(u;x)∆u+
1

µ
‖C(u;x)|A‖1.

Algorithm 1 Restricted SQP

1: procedure rSQP(u, x,A; Π|r)
2: repeat
3: G← ∇2J(u;x)
4: g ← ∇J(u;x)
5: A← ∇C(u;x)
6: b← C(u;x)
7: (z∗|r,A, λ)← QP(ΠT

|rGΠ|r, gΠ|r, AΠ|r, b,A)

8: ∆u− ← Π|rz
∗
|r

9: ∆u⊥ ← −(I−Π|rΠ
T
|r)g

T

10: γ ← −(∆uT
⊥G∆u−+gT ∆u⊥)

∆uT
⊥G∆u⊥

11: α← LineSearch(u,∆u− + γ∆u⊥,A, ‖λ‖∞)
12: ∆u← α(∆u− + γ∆u⊥)
13: u← u+ ∆u
14: until Termination
15: return u
16: end procedure

1: procedure LineSearch(u,∆u,A, µ)
2: α← 1
3: while φ(u + α∆u;x, µ + δ′) > φ(u;x, µ + δ′) +
ηαd(φ(u;x, µ+ δ′); ∆u) do

4: α← τα
5: end while
6: return α
7: end procedure

The full rSQP method is presented in Algorithm 1. The
novelty of this algorithm is in lines 7 − 11 which break
down the QP solution into orthogonal components. The
remaining portions of the algorithm are based on Chap-
ter 18 of (Wright and Nocedal, 1999). The routine QP
represents a generic QP solver. One will note that the
matrix input ΠT

|rGΠ|r may no longer be sparse but will

retain the definiteness of G since Π|r is a subset of the
columns of an orthogonal matrix. The loss of sparsity
will have an impact on the computational burden of most
QP solvers. In the line search method η, τ, δ′ are small
positive constants selected by the user. We selected η =
0.1, τ = 0.5, δ′ = 10−3 in our simulations. We also selected
J(u−∆u;x)− J(u;x) < 10−6 as our termination criteria.

4. CASE STUDY

In this section we demonstrate the rSQP using an MPC
benchmark problem. The plant is an unstable system given
by

ẋ1 = x2 + u(µ+ (1− µ)x1)

ẋ2 = x1 + u(µ− 4(1− µ)x2)

with µ = 1
2 . Our MPC is formulated using single-shooting

with a forward Euler discretization of the plant. The goal
of the MPC is to drive the plant to zero while minimizing

Fig. 1. The state trajectories of ten MPC simulations used
to generate the snapshot data. The vector field of the
plant is shown in the background (blue u = 0, red
u = 2, yellow u = −2).

the control effort. The MPC’s parameterized cost is given
by

J(u;x(0)) =

H−1∑
k=0

‖x(k)‖2Q + ‖u(k)‖2R + ‖x(H)‖2P

where u = [u(0), u(1), . . . , u(H−1)] is the control over the
horizon, x(0) is the latest measurement of the plant’s state
and x(k) are the predicted states. The only constraints
on the problem are control bounds u ∈ [−2, 2] and a
terminal constraint ‖x(H)‖2P ≤ α. The prediction and
the control horizon are equal at H = 15 timesteps. This
problem is presented in (Quirynen et al., 2015) and is
further discussed in (Chen and Allgöwer, 1998). For the
full list of problem parameters used, see Case A in Section
5 of (Quirynen et al., 2015).

We selected 10 random initial conditions within [−1, 1]2 to
generate our snapshot data; these are shown in Figure 1.
We then applied our SVD based method to determine
Π|r for 1 ≤ r ≤ 15. In Figure 2 we plot the state
trajectories of five example MPC simulations using rSQP
with r = 2. From Figure 2 we can see that the quality
of the MPC solution using rSQP solution is sensitive
to the initial conditions. To better measure the quality
of the rSQP solutions we plot the cost of the entire
simulation J|r =

∑
‖x(k)‖2Q + ‖u(k)‖2R, where x(k) is

the state trajectory and u(k) the implemented controller
actions, for all values of r in Figure 3. Firstly, we note
that the quality of solution is not always monotonically
increasing with r contrary to what one might expect.
Some solutions have consistently good solutions while
others unexpectedly degrade for particular values of r.
However, despite the initial condition sensitivity all sample
trajectories had solutions within 1% of the unrestricted
cost J∗ for some small values of r. These results bring up
interesting questions regarding the robustness of the rSQP
method and its interaction with constraints.

Further, to better understand the rSQP method as a
solver, one must look at its convergence properties. In

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7086

Fig. 2. MPC controlled state trajectories using the rSQP
solver with r = 2. The state trajectories using an
unrestricted solver are shown in dotted black.

Fig. 3. The normalized cost of the five selected trajectories
shown in Figure 2 for different orders of restriction.

Figure 4 we display the convergence behaviour of rSQP for
different values of r on a single problem. From this plot

Fig. 4. Convergence behaviour of rSQP for a sample
problem with x = [−0.2, 0.2]T , u(0) = [1, 1, . . . , 1]T .

The true solution is u∗ and u
(k)
|r is the rSQP’s kth

iteration. The coloured lines correspond to different
values of r ranging from r = 1 (dark blue) to r = 15
(dark red).

we can see that as r increases we recover the quadratic
convergence behaviour of Newton’s method, as expected.
However for smaller values of r we can still acquire super-
linear convergence and acquire highly accurate solutions
in only a few iterations.

Fig. 5. Mean acceleration factor of QP solutions for
100 simulations. OOQP: red diamond, OSQP: green
square, qpOASES: blue circle, ASQP: magenta trian-
gle.

Lastly, we measured the computational acceleration gar-
nered by the rQP approach with 4 different QP solvers.
The first is an active set method written by the authors
inspired by Chapter 16 of (Wright and Nocedal, 1999)
which we call ASQP, the second is qpOASES another
active set method that is particularly well-suited for MPC
problems (Ferreau et al., 2014, 2008), third is OSQP a
convex QP solver that was only recently released with
promising results for MPC applications (Stellato et al.,
2017), and lastly OOQP an interior point method based
QP solver (Gertz and Wright, 2003).

Both qpOASES and OSQP were run using the MATLAB
interface and OOQP was run using the OPTI toolbox for
MATLAB (Currie et al., 2012). They were run utilizing
their problem setup and update features for faster execu-
tion. We did not modify the default solver parameters.
All simulations were run using MATLAB R2019a on a
desktop computer with an Intel Core i7-4790 CPU with
Realtime priority. The derivatives of the objective function
and constraints were computed symbolically using Maple
and exported in optimized form for use with MATLAB.

We compared the computation times of the rQP solutions
to an unrestricted QP. From Figure 5 we can observe
that OOQP, OSQP and qpOASES take advantage of the
sparsity of the unrestricted QP and can solve the larger
unreduced problem faster than some of the restricted QPs
for larger values of r. The black dashed line is the mean QP
solution time without any restriction for 100 simulations
(for reference these values are: OOQP 285.66µs, OSQP
40.405µs, qpOASES 15.745µs, ASQP 8.0616µs). However,
for all QP solvers tested, the reduced QP approach can
yield computational speedups for small enough r. The
greatest acceleration comes from solvers that don’t exploit
sparsity since the restricted QP elements become non-
sparse. We note that the acceleration factor can increase
even further for larger problems.

5. CONCLUSION

To reduce the computational burden of QPs we have
introduced a restricted QP approach. From our case study
we have seen that this approach delivers greatest com-
putational benefit for those QP algorithms that do not
rely heavily on structured sparse matrix operations. As
all strategies can typically benefit from exploiting spar-
sity, future work should consider modifying the subspace
learning process to produce sparse restriction matrices.
One possible direction would be to to use the snapshot
data to produce near optimal move-blocking strategies

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7087

for nonlinear systems (Shekhar and Manzie, 2015). Other
options to improve computational gains would be to use
a restricted version of a quasi-Newton method to update
the Hessian and cheaper γ selection strategies.

We demonstrated the benefits of rQP for an MPC problem
formulated using single-shooting and thus restricted only
the space of primal variables. In future work, we will
demonstrate how we can expand the subspace learning
approach to restrict both primal and dual variables for
other formulations of MPC problems. This would extend
the computational benefits that can be achieved using our
method to other types of solvers.

The success of rQP as an approximate QP solver is entirely
dependent on the choice of restricting subspace. We have
introduced a method to select this subspace using an offline
processing stage. However, it remains an open question as
to how to optimally choose snapshot data to garner good,
robust MPC performance using the SVD-based method
we present. Future questions ripe for investigation include:
what are the key ingredients one needs in their snapshot
data to guarantee MPC robustness? how sensitive is the
subspace selection to the snapshot data? and ultimately
how sensitive is the MPC performance to the choice of
subspace?

REFERENCES

Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge university press.

Chen, H. and Allgöwer, F. (1998). A quasi-infinite horizon
nonlinear model predictive control scheme with guaran-
teed stability. Automatica, 34(10), 1205–1217.

Currie, J., Wilson, D.I., et al. (2012). OPTI: lowering
the barrier between open source optimizers and the
industrial MATLAB user. Foundations of computer-
aided process operations, 24, 32.

Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy,
Z., and Allgöwer, F. (2002). Real-time optimization and
nonlinear model predictive control of processes governed
by differential-algebraic equations. Journal of Process
Control, 12(4), 577–585.

Diehl, M., Bock, H.G., and Schlöder, J.P. (2005). A
real-time iteration scheme for nonlinear optimization in
optimal feedback control. SIAM Journal on Control and
Optimization, 43(5), 1714–1736.

Domahidi, A., Zgraggen, A.U., Zeilinger, M.N., Morari,
M., and Jones, C.N. (2012). Efficient interior point
methods for multistage problems arising in receding
horizon control. In Decision and Control (CDC), 2012
IEEE 51st Annual Conference on, 668–674. IEEE.

Ferreau, H.J., Bock, H.G., and Diehl, M. (2008). An online
active set strategy to overcome the limitations of explicit
MPC. International Journal of Robust and Nonlinear
Control: IFAC-Affiliated Journal, 18(8), 816–830.

Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., and
Diehl, M. (2014). qpOASES: A parametric active-set
algorithm for quadratic programming. Mathematical
Programming Computation, 6(4), 327–363.

Frison, G., Sørensen, H.B., Dammann, B., and Jørgensen,
J.B. (2014). High-performance small-scale solvers for
linear model predictive control. In Control Conference
(ECC), 2014 European, 128–133. IEEE.

Garcia, C.E., Prett, D.M., and Morari, M. (1989). Model
predictive control: theory and practice
– a survey. Automatica, 25(3), 335–348.

Gertz, E.M. and Wright, S.J. (2003). Object-oriented
software for quadratic programming. ACM Transactions
on Mathematical Software (TOMS), 29(1), 58–81.

Jerez, J.L., Goulart, P.J., Richter, S., Constantinides,
G.A., Kerrigan, E.C., and Morari, M. (2014). Em-
bedded online optimization for model predictive control
at megahertz rates. IEEE Transactions on Automatic
Control, 59(12), 3238–3251.

Lee, J.H. (2011). Model predictive control: Review of the
three decades of development. International Journal of
Control, Automation and Systems, 9(3), 415.

Maitland, A., Jin, C., and McPhee, J. (2019). The
restricted Newton method for fast nonlinear model
predictive control. In ASME 2019 Dynamic Systems
and Control Conference, in print. American Society of
Mechanical Engineers.

Maitland, A. and McPhee, J. (2017). Improving model
predictive controller turnaround time using restricted
Lagrangians. In Decision and Control (CDC), 2017
IEEE 56th Annual Conference on, 3811–3816. IEEE.

Mattingley, J. and Boyd, S. (2012). Cvxgen: A code gen-
erator for embedded convex optimization. Optimization
and Engineering, 13(1), 1–27.

Mattingley, J., Wang, Y., and Boyd, S. (2010). Code
generation for receding horizon control. In 2010 IEEE
International Symposium on Computer-Aided Control
System Design, 985–992. IEEE.

Qin, S.J. and Badgwell, T.A. (1997). An overview of
industrial model predictive control technology. In AIche
Symposium Series, volume 93, 232–256. New York, NY:
American Institute of Chemical Engineers, 1971-c2002.

Qin, S.J. and Badgwell, T.A. (2003). A survey of industrial
model predictive control technology. Control engineer-
ing practice, 11(7), 733–764.

Quirynen, R., Vukov, M., and Diehl, M. (2015). Multi-
ple shooting in a microsecond. In Multiple Shooting
and Time Domain Decomposition Methods, 183–201.
Springer.

Rawlings, J.B. and Mayne, D.Q. (2009). Model predictive
control: Theory and design. Nob Hill Pub.

Richter, S., Jones, C.N., and Morari, M. (2011). Computa-
tional complexity certification for real-time MPC with
input constraints based on the fast gradient method.
IEEE Transactions on Automatic Control, 57(6), 1391–
1403.

Shekhar, R.C. and Manzie, C. (2015). Optimal move
blocking strategies for model predictive control. Au-
tomatica, 61, 27–34.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and
Boyd, S. (2017). OSQP: An operator splitting solver for
quadratic programs. arXiv e-prints.

Wright, S.J. and Nocedal, J. (1999). Numerical Optimiza-
tion, volume 2. Springer New York.

Zanelli, A., Domahidi, A., Jerez, J., and Morari, M. (2017).
FORCES NLP: an efficient implementation of interior-
point methods for multistage nonlinear nonconvex pro-
grams. International Journal of Control, 1–17.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7088

