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Abstract: In this paper, a new method for model based optimal tracking control is presented.
The special composition of the cost functional leads to design parameters for constraining the
solution so as to ensure that machine limitations are not violated. By minimizing the cost
functional with the calculus of variations, or more precisely the Euler-Lagrange equations, the
state space representation of the system dynamics is transformed into an augmented state
space representation describing the optimal tracking dynamics. The optimal control input is
numerically calculated by solving the set of differential equations, given by the augmented state
space system, globally with a specialized least-squares solver. The general control approach is
demonstrated on an underactuated crane-like system with fixed load hoisting length operating
in the horizontal plane. In this case the introduced design parameters determine the trade-
off between the cost of tracking accuracy and the cost of using large values of crane speed
and acceleration. The potential of the proposed control scheme is proven by both simulation
and experimental tests. The multibody simulation is carried out with the software Simscape
MultibodyTM. For the experimental verification an industrial robot is used whose end effector
only moves in a horizontal plane to imitate the trolley of an overhead crane.

Keywords: Trajectory tracking; Overhead crane; Feedforward control; Optimal control;
Model-based control;

1. INTRODUCTION

In the last years, the development of autonomous (or self-
driving) machines has become a strong research area and
one key aspect of self-driving technology is path tracking.
The path tracking problem deals with the task of deter-
mining speed and steering settings or more generally the
control input of a machine in order for a defined point of
the machine to follow a certain path. If the desired position
is a function of time, it is also referred to as trajectory
tracking. One special field where tracking control is used
extensively is for cranes where the payload should follow
a certain path. In general the load is attached to the
trolley with a simple cable, so the load position cannot be
directly actuated and in addition the resulting oscillatory
behavior can lead to serious difficulties for the human
operator. The oscillatory nature of cranes and the fact
that they are also underactuated systems makes them a
common benchmark problem in control engineering. The
general tracking control algorithm proposed in this paper
is therefore applied to an overhead crane in order to prove
its potential.
Since trajectory tracking is a current topic in many en-
gineering areas several different approaches have been
reported in the literature. One idea that is of particular
interest to tracking the load of a crane is the suppression
of load oscillation. This is because once there are no load
oscillations the load position is about the same as the
trolley position. For residual oscillation suppression, when
performing point to point movements, the most common

technique is input shaping (Singhose et al. (1995)). Lately,
a modified input shaping method has been developed
with the improvement of a zero time delay by Zhao and
Tomizuka (2017). Another method that is based on the
same idea as input shaping is Delayed Reference Control
(DRC) introduced in Boschetti et al. (2014). But unlike
input shaping it is feedback control. In order to avoid
load sway, oscillation damping is applied by changing
the acceleration depending on the measured swing angle
while following a predefined path. A crane also fulfills
all conditions for a flat system. So, a flat output can be
defined in a way, such that the state and input variables
can be directly expressed in terms of this flat output. For
trajectory tracking this is very useful, because once the
trajectory for the flat output is defined, the according
trajectories for the states and the input can be deduced
immediately, as shown in Fliess et al. (1995) and Böck and
Kugi (2014). Feedback Linearization is used for non-linear
systems but for this the knowledge of all system states is
required, which can be provided by a state observer for
all unmeasured states, as shown by Rózsa and Kiss Bálint
(2011). For systems with complex kinematics like nonholo-
nomic wheeled mobile robots the most popular method
for trajectory tracking is backstepping based control, as
proposed in Kumar and Sukavanam (2008) and Sanhoury
et al. (2011). An advanced method is stated in Obaid
et al. (2016) by implementing constraints and limitations
throughout the controller design. For applications where
the robustness of the control is of primary importance,
it is suggested to use sliding mode control, as in Liu
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and Guo (2012). In order to obtain a higher convergence
performance, a sliding mode control system based on back-
stepping is proposed in Wang et al. (2019). The control
approach introduced in Le et al. (2013), combines feed-
back linearization and sliding mode control for trajectory
tracking of an overhead crane. Feedback Linearization is
used to eliminate the non-linear behavior of the payload
swing and sliding mode control is used for cargo lift-
ing and trolley moving. For increasing the robustness of
tracking controls various adaptive control methods can be
found in the literature. In Ma et al. (2008) an energy-
based approach is proposed whereas in Xin et al. (2016)
the controller design is done using the finite-time control
method. Current research results suggest the use of neural
networks (Yang et al. (2020)) as they are particularly
suitable for modeling and controlling highly uncertain and
nonlinear systems. By using a recurrent neural network
for the control system it is possible to learn the behavior
of unknown dynamics on-line and adapt accordingly (Yi
et al. (2018)). Or they can be used to provide auxiliary
inputs for underactuated systems in order to establish
the controlability (Liu et al. (2019)). The literature also
provides the idea of solving the tracking problem in an
optimal sense, to obtain a control that minimizes a defined
cost function. In terms of path tracking this cost function
often includes the deviation between the actual path and
the desired path. In Liu and Jiang (2016) the path tracking
problem is transformed into a Bolza problem which is
then converted into a nonlinear programming problem by
the Gauss pseudospectral method (GPM) and solved with
a Sequential Quadratic Programming (SQP) algorithm.
Another recently discovered approach is to define the path
tracking problem as an LQR problem as shown in Akka
and Khaber (2018). Or as suggested in Majd et al. (2018),
to also add the deviation of the velocity and the accel-
eration to the cost function which enables the derivation
of an optimal control law from the Hamilton equations.
New developments based on model predictive control are
presented in Klancar and Skrjanc (2007), Katriniok et al.
(2013), Ma and Bao (2018) and Baca et al. (2018).
Since optimal tracking control is crucial for industrial
applications in order to increase the productivity of au-
tonomous transportation systems, this paper presents a
trajectory tracking approach based on optimal control
theory. It is predicated on the work described in Harker
and Rath (2018), where a numerical method based on QR
decomposition is proposed to solve the tracking problem
as an initial value problem. The algorithm in this work
solves the tracking problem with the help of the calculus
of variations as a boundary value problem and therefore
leads to a better result in terms of the residual tracking
error.
The contributions of this paper are:

(1) Global Least Squares method to determine the opti-
mal control input for a multidimensional path track-
ing problem.

(2) A new method to transform the state space repre-
sentation of the system dynamics into an augmented
state space system describing the optimal tracking
dynamics where the desired reference trajectory be-
comes the input of this augmented state space system.

(3) A multibody simulation in Simscape MultibodyTM

and experimental tests to verify the proposed con-

Fig. 1. Diagram of the studied system, a underactuated
overhead crane with fixed load hoisting length

trol scheme. The test setup consists of a spherical
pendulum mounted on an industrial robot. The load
position is determined with machine vision tools.

2. SYSTEM MODEL

The diagram of an overhead crane on which the tracking
control is to be applied is illustrated in Fig. 1. The
trolley position is defined by the coordinates (xT , yT ).
The mass m of the load, having the coordinates (xL, yL)
is accelerated through a cable with a constant length
l. We assume that the cable is massless. Since we are
only interested in the planar movement of the load the
equations of motion have to be derived for the x- and y-
direction. Under the assumption that the load sway angle
θ is small (θ < 10◦) the small-angle approximation,

sin θ ≈ θ (1)

can be used to eliminate the non linearity of the model.
This leads to the dynamic equations of the system,

ẍL = − gl (xL − xT )− b
m ẋL

ÿL = − gl (yL − yT )− b
m ẏL,

(2)

where, g is the gravitational constant and b the damping
factor, due to friction and drag. The control algorithm is to
be verified by a pendulum mounted on an industrial robot.
The industrial robot has an integrated position controller
for the end effector position and therefore only takes the
discretized end effector trajectory as an input value. This
leads to a very common two-layer control architecture,
where the high-level tracking control determines the re-
quired end effector position and speed while the low-level
control is in charge of controlling the robot axis in order to
reach the set values. Because of this structure the trolley
position can be specified as the control input u. Hence, u̇
and ü represent the trolley velocity and acceleration. In
order to obtain a state space representation,

ẋ(t) = Ax(t) + Bu(t), (3)

the following states are defined,

x1 = xL x3 = yL u1 = xT
x2 = ẋ1 x4 = ẋ3 u2 = yT .

(4)

This leads to the final state space representation,ẋ1ẋ2ẋ3
ẋ4

 =


0 1 0 0
− gl −

b
m 0 0

0 0 0 1
0 0 − gl −

b
m


x1x2x3
x4

+

0 0
g
l 0
0 0
0 g

l

[u1u2
]
. (5)
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3. CONTROL DESIGN

Since we are dealing with path tracking the criterion to use
for minimization, in order to achieve an optimal path, is
the path deviation. So, the least-square difference between
the actual position (x1(t), x3(t)) and the desired path
(ξx(t), ξy(t)) is a suitable cost function,

tf∫
t0

(x1(t)− ξx(t))
2

dt+

tf∫
t0

(x3(t)− ξy(t))
2

dt. (6)

For the sake of convenience, this can also be written
in terms of the state vector by multiplying with the
coordinate vectors e1 and e3,

tf∫
t0

(
eT1 x(t)− ξx(t)

)2
dt+

tf∫
t0

(
eT3 x(t)− ξy(t)

)2
dt. (7)

Further, in order to avoid inordinately large control values
we should introduce a penalty term. As the control input
represents the position, but the speed and acceleration are
to be limited, the following regularization term is chosen,

µ2
1

tf∫
t0

u̇T(t)u̇(t) dt+ µ2
2

tf∫
t0

üT(t)ü(t) dt, (8)

where the scalar factors µ1 and µ2 are called regularization
parameters. Note that the introduction of a regulariza-
tion term is also necessary to obtain a unique solution,
according to Kalman (1963). Finally, (5) is included as
a constraint via Lagrange multipliers in order to restrict
the solution to the system’s dynamics. This leads to the
functional,

J(x(t), ẋ(t),u(t),λ(t), t) =

1
2

tf∫
t0

(
eT1 x(t)− ξx(t)

)2
dt+ 1

2

tf∫
t0

(
eT3 x(t)− ξy(t)

)2
dt

+
µ2
1

2

tf∫
t0

u̇T(t)u̇(t) dt+
µ2
2

2

tf∫
t0

üT(t)ü(t) dt

−
tf∫
t0

λT(t) (ẋ(t)− Ax(t)− Bu(t)) dt.

(9)

So the path tracking problem has been transformed into
the variational problem of minimizing the functional (9).
It can be seen that µ1 and µ2 are used to influence
the focus of the minimization. If µ1 and µ2 are chosen
to be large, more focus would be on keeping u̇ and ü
small instead of minimizing the tracking error. In order
to perform the tracking as accurately as possible the
regularization parameter µ1 and µ2 should only be chosen
just as large as necessary so that u̇ and ü do not exceed
any machine limitations. We know the start and end
values and times because they should be the same as the
reference trajectory (ξx(t), ξy(t)), t ∈ [t0, tf ], which serve
as boundary conditions of the problem. Therefore, we can
use the Euler-Lagrange equation to minimize (9), which
are, (Courant and Hilbert (1953))

∂J
∂x −

d
dt
∂J
∂ẋ = 0

∂J
∂u −

d
dt
∂J
∂u̇ + d2

dt2
∂J
∂ü = 0

∂J
∂λ = 0.

(10)

Evaluating (10) leads to the system of ordinary differential
equations,

e1e
T
1 x− e1ξx + e3e

T
3 x− e3ξy + ATλ+ λ̇ = 0
BTλ− µ2

1ü+ µ2
2u

(4) = 0
−ẋ+ Ax+ Bu = 0.

(11)

For a system with p states and q controls, this set of
equations can be written in the matrix form,

ẋ

λ̇
u̇
ü
u(3)

u(4)

−


A 0 B 0 0 0
−E13 −AT 0 0 0 0
0 0 0 Iq 0 0
0 0 0 0 Iq 0
0 0 0 0 0 Iq

0 − 1
µ2
2
BT 0 0

µ2
1

µ2
2
Iq 0




x
λ
u
u̇
ü
u(3)



−


0 0
e1 e3
0 0
0 0
0 0
0 0


[
ξx
ξy

]
= 0

(12)
with

E13 = e1e
T
1 + e3e

T
3 . (13)

By defining,

γ =
[
x λ u u̇ ü u(3)

]T
, (14)

we can write (12) compactly as,

γ̇ −Mγ − Nξ = 0. (15)

Note, that this system of differential equations is of the
same form as (3) and therefore can be seen as an aug-
mented state space representation of the optimal track-
ing movement where the given reference trajectory ξ has
become the control input. Now, solving this system of
differential equations for γ provides the sought after con-
trol input u of the original system. However, this set of
equations expresses a continuous system. But the control
input should be determined for a given reference trajectory
(ξx(n), ξy(n)) defined in discrete time steps n ∈ [n0, nf ],
since standard PLCs work in a discrete domain. Therefore,
the system (15) has to be discretized over this interval.
The individual states of γ can be discretized directly as a
vector,

γk =


γk(t0)
γk(t1)

...
γk(tf )

 . (16)

With this representation the state vector becomes, for a
system with p states discretized into n evenly spaced time
steps, a vector of p stacked vectors with altogether np
elements,

γ =


γ1
γ2
...
γp

 . (17)

Further, the derivative of one state can simply be cal-
culated by the multiplication with a suitable numerical
differentiation matrix D (see Harker (2020)),

γ̇k ≈ Dγk. (18)

Since this computation has to be done for each state the
differentiation matrix can be combined with a p×p identity
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Fig. 2. Optimal control for a desired trajectory and esti-
mation for the actual load trajectory

matrix by the Kronecker product and then applied to the
whole state vector,

γ̇ ≈ (Ip ⊗ D)γ. (19)

This also has to be done with the matrices M and N which
leads to the final representation,

(Ip ⊗ D)γ = (M⊗ In)γ + (N⊗ In)ξ. (20)

Rearranging this equation yields the final formulation,

Lγ − f = 0. (21)

with,
L = Ip ⊗ D−M⊗ In

f = (N⊗ In)ξ.
(22)

Equation (21) can be solved with a least-squares solver
for the state vector γ. In this work the MATLAB solver
lsqlin(), which is a linear least-squares solver with equality
constraints, is used to solve this task, in order to incorpo-
rate the boundary conditions. For a rest-to-rest movement
the boundary conditions can be designated as,

γ1(t0) = ξx(t0) γ3(t0) = ξy(t0) γ9(t0) = ξx(t0)
γ1(tf ) = ξx(tf ) γ3(tf ) = ξy(tf ) γ9(tf ) = ξx(tf )
γ2(t0) = 0 γ4(t0) = 0 γ10(t0) = ξy(t0)
γ2(tf ) = 0 γ4(tf ) = 0 γ10(tf ) = ξy(tf )
γ11(t0) = 0 γ12(t0) = 0 γ13(t0) = 0
γ11(tf ) = 0 γ12(tf ) = 0 γ13(tf ) = 0
γ14(t0) = 0 γ14(tf ) = 0

(23)
With the assignments made in (4) and (14) these con-
ditions represent physical values. They ensure, that the
position of the load and the trolley meet the reference path
ξ at the start and at the end. Since we are talking about
a rest-to-rest movement the velocity of both, the load and
the trolley, has to be zero at the beginning as well as at
the end. Solving (21) and (23) for γ as a least-squares with
equality constraints problem not only delivers the optimal
control input u, but also gives us an estimation for the load
trajectory (γ1(t), γ3(t)) based on the dynamics (5). For a
miniature system of an overhead crane, which is also used
for the laboratory verification, with the parameters shown
in Table 1, the solution and the estimated load trajectory
can be seen in Fig. 2. As reference trajectory a slightly
skewed rectangular path is chosen. It has to be mentioned
that the reference trajectory is designed to remain at the
initial and final position for 1.5 s to achieve smoother

Fig. 3. Multibody model used for the simulation

results and is defined for the time interval t ∈ [0, 7]s.
Along the long edges and the short edges the load should
respectively travel with a constant speed of 0.25 m/s and
0.2 m/s. The reference trajectory ξ is discretized with 10
ms time steps.

4. VERIFICATION

4.1 Multibody Simulation

The results of the proposed optimal path tracking algo-
rithm for an overhead crane are first confirmed by a multi-
body simulation. For the simulation the software Simscape
MultibodyTM is used and the simulation parameters are
the same as for the calculation of the optimal control input
u, shown in Table 1. See Fig. 3 for the multibody model
used for the simulation. The load suspension is modeled
by a spherical joint to provide three rotational degrees
of freedom i.e., a spherical pendulum. The motion in the
horizontal plane is obtained by two actuated prismatic
joints. The simulated path is shown in Fig. 4. Furthermore,
it can be seen in Fig. 4, that the state space model (5)
describes the dynamics of the system quite well and that
for the chosen reference trajectory the small angle approx-
imation (1) is a permissible method to linearize the system
model.

4.2 Experimental Tests

For the experimental validation an industrial robot was
used to imitate an overhead crane, shown in Fig 5. The
end effector of the robot only moves in a horizontal plane
and is therefore a proper representation of the trolley.
The load is equipped with a laser-pointer on the bottom
pointing down. This laser-pointer is used to determine
the load position because it can be said that the marked
position on the floor is equal to the load position. It has

Table 1. Model parameters

Parameter Value

l (in m) 1.316

m (in kg) 0.419

b (in kg/s) 0

µ1 0.5 · 10−3

µ2 0.5 · 10−3
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Fig. 4. Comparison of the simulation result and the ex-
pected load trajectory

Fig. 5. Experimental setup used for the validation of the
proposed method

to be mentioned, due to the pendulum tilt there occurs
a small deviation between the actual pendulum position
and the marked position on the floor because the laser
beam always points in the direction of the load suspension
and not exactly in the vertical direction. Therefore, the
length of the load suspension is chosen in a way such that
there is only a small gap (∼ 10 mm) between the load and
the floor, in order to keep this error as small as possible.
According to the simulation the largest pendulum tilt is
about 4◦ which leads to a maximum deviation in the order
of 10−3 m. During the execution of the control algorithm
the laser dot on the floor is filmed. Afterwards the video
is evaluated frame by frame with machine vision tools

Fig. 6. Result of the simulation and the experimental test
displayed in the horizontal plane

Fig. 7. Result of the simulation and the experimental test
as a function of time

to obtain the load position for each frame, whereby the
payload trajectory can be established. The results of the
simulation as well as the experimental results are shown in
Fig. 6 and Fig. 7. The outcome of the experimental tests
shows that the reference trajectory is tracked with good
accuracy. The slight difference between the simulation
result and the measurement result can be explained by
the fact that the damping coefficient b was set to zero for
the simulation which does not exactly reflect reality.

5. CONCLUSION

This paper proposed a new model based optimal track-
ing control approach with the application to an overhead
crane. The tracking problem was transformed into a vari-
ational problem with known initial and final values. With
the Euler-Lagrange equations an augmented state space
system describing the optimal tracking movement was ob-
tained, where the desired reference trajectory has become
the control input. Thereby, two design parameters µ1 and
µ2 have been introduced. For the case of the overhead
crane they are used to ensure that the resulting control
input does not exceed any machine limitations, so that the
results can be applied to real world systems. The desired
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control input was calculated by solving the augmented
state space system with a least-squares method for the
whole path at once. This gives you the advantage of a
global optimal solution in a least-squares sense. Another
advantage of the proposed control scheme is its ease of
implementation as it can simply be put ahead of an already
existing machine position controller. The potential of the
proposed control scheme has been proven by experimental
and simulation results.
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