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Abstract: This paper deals with the design of a robust control scheme for a suspended Cable-
Driven Parallel Robot (CDPR), composed of eight cables and a moving-platform (MP), for a
pick-and-place application of metal plates of various shapes, sizes and masses. The set composed
of the MP and a metal plate can have a mass of up to 700 kg. In order to achieve good
accuracy and repeatability of the MP pose despite the variability of the transported mass,
a robust control scheme must be implemented on the robot. A recently developed controller
balancing between sliding mode and linear algorithms (SML) is considered for the application.
The performances of the SML controller are analyzed on a CDPR prototype located at IRT
Jules Verne, Nantes, France, along a test trajectory for several payloads. The results obtained
without any information on the platform or metal plate mass are compared to those of standard
proportional-derivative (PD) based control schemes.
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1. INTRODUCTION

Cable-Driven Parallel Robots (CDPRs) are a particular
class of parallel robots whose moving-platform (MP) is
connected to a fixed base frame by cables, as illustrated
in Fig. 1. The cables are coiled on motorized winches.
Passive pulleys may guide the cables from the winches to
the cable exit points. Accordingly, the motion of the MP
is controlled by modifying the cable lengths. CDPRs have
several advantages such as a relatively low mass of moving
parts and a potential large workspace. As a consequence,
they can be used in several applications such as heavy
load handling (Albus et al., 1992), painting and sand-
blasting of large structures (Gagliardini et al., 2018), fast
pick-and-place operations (Kawamura et al., 2000), haptic
devices (Fortin-Coté et al., 2014), support structures for
giant telescopes (Yao et al., 2010), and search and rescue
deployable platforms (Merlet and Daney, 2010). It should
be noticed that redundant actuated CDPRs are more
appropriate than cranes for accurate pick-and-place oper-
ations and large and heavy parts because they suffer less
from load swinging. Moreover, CDPRs can control both
the position and the orientation of the object contrary to
standard cranes. Accordingly, this paper deals with the
determination of a control solution for a suspended semi-
industrial CDPR prototype for pick and place operations
of metal plates. Due to the variability of the load, robust
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control is required to get high accuracy and repeatability
of the MP pose.

CDPR control strategies are often based on PD con-
trollers (Kawamura et al., 2000), which can be completed
with feedforward terms to predict the moving-platform
dynamic behavior (Lamaury et al., 2013; Santos et al.,
2019). However, the tuning of linear controllers for non-
linear systems is delicate due to their hands-on tuning
methods. Moreover, the computation of the feedforward
term requires some levels of knowledge on the carried
load, which is not always available. CDPRs, which have
more actuators than degrees of freedom, are over-actuated
nonlinear systems. Nonlinear control methods, including
the more recent developments on sliding-mode controllers,
are particularly interesting due to their robustness to
uncertainties and perturbations (Edwards and Spurgeon,
1998). Sliding mode control has been increasingly con-
sidered for CDPR control in several applications (Zeinali
and Khajepour, 2010; El-Ghazaly et al., 2015; Santos
et al., 2019) both in simulation and experimentally, with
good performances against perturbations. The drawback
of sliding mode control is the existence of discontinuities
in the control input due to the use of the sign function
(Utkin, 1992; Shtessel et al., 2014). As a consequence, the
chattering phenomenon appears: it is a high-frequency os-
cillation that leads to vibrations on the actuators and can
prematurely deteriorate gearheads and other mobile parts
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in the kinematic chains. Higher-order and gain-adaptive
sliding mode control methods have been developed to re-
duce chattering (Utkin, 1992; Shtessel et al., 2014; Levant,
1993), and have been implemented on a CDPR in (Schenk
et al., 2018). Another drawback of sliding mode control is
that the power consumption is generally higher than with
linear control methods as the system is constantly excited
to achieve high tracking accuracy. Recently, new control
methods based on linear and sliding mode algorithms
have been developed to achieve both lower chattering
and energy consumption compared to pure sliding mode
controllers (Tahoumi et al., 2018b). The controller then
balances between the two control types to get a good trade-
off between robustness and smoothness of the control out-
put. In the sequel, this controller is defined as the sliding-
mode/linear (SML) controller. The objective of the SML
controller is to take advantage of both control strategies:
1) reduced chattering and energy consumption compared
to sliding mode control and 4i) accuracy, stability and
robustness despite perturbations and uncertainties.

The objective of the paper is to implement a robust
control scheme suited for the considered pick-and-place
application. As such, the novel controller based on sliding
mode and linear algorithms (PC1-SML), is experimentally
compared to a simple PD controller (PC1-PD), and to
a control scheme implementing a PD controller with a
feedforward term that compensates for the MP mass (PC2-
PD). First, the empty MP of known mass is moved along
a test trajectory. Then the trajectory is repeated while
carrying metal plates of unknown mass, that constitute
a perturbation to the system: a metal plate M1 of mass
equal to 122 kg, then a metal plate M2 of mass equal to
249 kg.

The paper is organized as follows. Section 2 presents the
CDPR semi-industrial prototype used in the experiments
as well as its modeling. Section 3 describes the experimen-
tal setup and the test trajectory. The control scheme and
controllers are detailed in Sec. 4. Experimental results are
presented and analyzed in Section 5. Finally, conclusions
are drawn and future work is presented in Section 6.

2. PROTOTYPE DESCRIPTION AND MODELING

This section deals with the description and modeling of
the CDPR prototype named CAROCA (Gagliardini et al.,
2018), used for the experimental comparison of the control
schemes and shown in Fig. 1.

2.1 CAROCA prototype and ROCKET project

CAROCA is a reconfigurable CDPR prototype developed
at IRT Jules Verne, Nantes, France, dedicated to indus-
trial operations. A video of a logistics application on the
prototype is available ' . It this paper, its application is the
displacement of metal plates of highly variable shape and
mass, up to 700 kg, with a targeted accuracy of 1 cm and
a desired repeatability of 1 mm.

This prototype is reconfigurable, because its pulleys can be
displaced in a discrete manner on its frame, allowing the

L CDPR logistics application at IRT Jules Verne (YouTube):
bit.ly/irtjvlogisticscdpr
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Fig. 1. The moving-platform (MP) of mass equal to 366 kg,
equipped with five magnets to pick metal plates.

robot to be mounted both in a suspended configuration
and in a fully-constrained configuration depending on the
targeted application. In this paper, only the suspended
configuration is considered. The size of the prototype is
7 m long, 4 m wide, and 3 m high. It is composed of 8
cables coiled around 120 mm diameter Huchez™ winches,
that are pulling a moving-platform. The winches are
actuated by B&R Automation™ synchronous motors of
nominal speed and nominal torques equal to 2200 rpm and
15.34 Nm, respectively. A two-stage gearbox of reduction
ratio equal to 40 is assembled between each motor and
each winch. As a consequence, the prototype can carry up
to 1 ton. Figure 1 presents the moving-platform (MP) of
size 1.5 mx1.5 mx1 m and mass 366 kg. Five magnets are
embedded under the moving platform to pick metal parts.
The robot is also equipped with Tracte]™ force sensors
located between the cables and the anchor points of the
platform (Fig. 1). Hardware such as motors and control
bay are standard industrial components commercialized
by B&R Automation™. The robot programming is done
under Automation Studio 4.1™ and runs in a 2 ms real-
time loop (500 Hz).

2.2 Inverse Geometric Model (IGM)

Figure 2 depicts the main geometric parameters of a
CDPR and its i** loop-closure equation, i € {1,...,m},
m being the number of cables attached to the MP, %,
is the robot base frame, and %, is the MP frame. Cable
exit points are denoted as A;, while cable anchor points
are denoted as B;. Vector %a; points from O to A; and is
expressed in frame %;,. Vector Pb; point from P to B; and
is expressed in frame .%,. Vector bp is the position vector
of point P, the MP geometric center, expressed in %,

Vector 1; represents the i*" cable vector and points from B;
to A;, and reads as :
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Fig. 2. CDPR geometric parameterization.
bli = libui = bai — bp — bRppbi (1)

with bRp the rotation matrix from frame % to frame .%,.

l; is the length of the i*" cable and u; is the unit vector of
the ith cable vector, defined as
bl*
L= "2 u; = e (2)
112

where ||.||2 denotes the Euclidean norm of a vector.

To benefit from the most accurate modeling, the CDPR
pulleys can be included in the geometric model of the
CDPR, as described in (Gagliardini, 2016; Picard et al.,
2018).

2.8 Static equilibrium

The static equilibrium of the platform is given by

Wt+we+w, =0 (3)
with W the wrench matrix of the robot and expressed as
b b b

o up e u; . Um
W= bbl X bLl1 Ce bbi X blli Ce bbm X bllm (4)

t is the cable tension vector. w, the wrench applied to
the platform due to gravity and w,. an external wrench
expressed in frame ..

2.4 Inverse Kinematic Model (IKM)

For CDPRs, the forward Jacobian matrix A relates the
MP twist v and the cable unwinding velocities:
s T

Av=i=Fq with v=1[p ]’ (5
. . . . .T
1 = [ll R PR lg] being the vector containing the
cable velocities, q = [¢1 ... ¢; ... qg]T being the vector
containing the motor velocities, R the gearbox reduction
ratio, 7, the winch radius, *p the Cartesian position of
MP and bw its angular velocity, expressed in .%,. A and
W are related by the equation:

W= —-AT (6)
2.5 Dynamic model

From (Gagliardini et al., 2018), the dynamic model of the
CDPR reads as

Wt -L,v-Cv+w,+w,=0 (7
with I, the spatial inertia of the platform and C the matrix
of the centrifugal and Coriolis wrenches.

Given that the center of mass of the platform G does not
coincide with the origin of .%,, the wrench w, due to the
gravity acceleration g is defined as

mpls

Wg = [MSP] g (8)
with m,, the mass of the platform, I3 the 3 x 3 identity ma-
trix, MS, = R, [mpza myya mpzc]  the first momen-
tum of the moving platform defined with respect to frame
Fp. The vector S, = [za ya zG]T defines the position of
G in %,. MSP is the skew-symmetric matrix associated to
MS,,.

I, represents the spatial inertia of the platform, and reads

as )
myls —MS

I = | 2%° P 9

N g

with I, the inertia tensor matrix of the platform, that can

be computed from the platform’s inertia tensor I, using
the Huygens-Steiner theorem

MS,MS,

L, ="R, I, "R} — n%

(10)

C is the matrix of the centrifugal and Coriolis wrenches
with

(11)

where °& the skew-symmetric matrix associated to bw.

b b~
Cv = { fAWI\b/ISP}
wl,’w

2.6 State system

The dynamics of the motors (Lamaury and Gouttefarde,
2013) are given by

Tm = qu +F,q+ FsSign(q) + Tﬁt
w
where I, is the diagonal matrix containing the moment of
inertia of the gearmotors and winches associated to each
motor, and F. and F, are respectively the diagonal ma-
trices containing the static and viscous friction coefficients
for each motor.

(12)

From the motor dynamic model (equation 12), the CDPR
inverse kinematic model (equation (5)) and the CDPR
dynamic model (equation (7)), defining the state vector as
x=|q c'1]T and the system input as u = 7,,, the system
can be represented as a standard nonlinear system of the
form

x = f(x) +g(x)u (13)
The system is nonlinear and affine in the control input u.
Furthermore, f(x) is uncertain due to the presence of w,
in (equation (7)).

3. TEST TRAJECTORY AND EXPERIMENTAL
SETUP

In order to evaluate the performance of different control
methods, a desired trajectory describing a typical pick-
and-place application has been generated. The trajectory
is generated using s-curves, that ensure continuous velocity
and acceleration trajectory profiles. The z-axis of the
frame %, is defined along the width of the CDPR, the
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y-axis along its length, and the z-axis along its height.
The trajectory consists of (see Fig. 3):

(1) AB: 200 mm vertical displacement up;

(2) BC: arc along the diagonal of the base footprint, with
simultaneous displacements of 300 mm up, 300 mm
along the z-axis and 1400 mm along the y-axis;

(3) CD: arc along the diagonal of the base footprint, with
simultaneous displacements of 300 mm down, 300 mm
along the z-axis and 1400 mm along the y-axis;

(4) DE: 200 mm vertical displacement down;

The platform moves from A to E in 30 s.

z axis (m)

Y B—X?S (m)
Fig. 3. Test trajectory (blue) and CDPR configuration.

This test is first performed on the CDPR with the empty
platform of mass 366 kg. Then, to evaluate the control
robustness, two metal plates are successively carried by
the platform. Three cases are then considered:

(1) the empty moving-platform of mass 366 kg (MP);

(2) the MP and a metal plate M1 of mass 122 kg, for a
total load of 488 kg (MPM1);

(3) the MP and a metal plate M2 of mass 249 kg, for a
total load of 615 kg (MPM2)

Note that the mass variation is significant, namely +33%
(M1) and +68% (M2) with respect to the MP mass,
respectively.

(a) MPM1 (488 kg). ; (b) MPM2 (615 kg).

Fig. 4. MP carrying a metal plate: (a) M1, (b) M2.

4. CONTROL STRATEGIES

Accordingly to equation (12), Fig. 5 presents the system
input, output and perturbation signals. The system input
is the motor torque vector T,,. The usual outputs of
the system are the actual motor positions q and motor
velocities q. The considered perturbation is gravity wrench
w, of the moving-platform and the embedded metal plate.

Gravity wrench Wy ‘l

PERTURBATION

Motor positions d
Motor torques Tm E—

Cable-driven
parallel robot

INPUT
S1Nd1no

Motor velocities ¢

Fig. 5. Diagram of the CDPR.

4.1 Control schemes

No direct information on the platform pose is readily
available from the system sensors, and solving the direct
geometric model of a CDPR is not an easy task since
more than one solution is possible from a fixed set of
motor positions, even considering straight and inelastic
cables (Merlet, 2015). As a consequence, the following
control architectures only rely on the system internal
sensors i.e. the motor angular positions and velocities.
Decentralized control architectures have been considered
for their simplicity of implementation, with one controller
separately tuned for each motor.

PC1: Basic control scheme. The first control architec-
ture is denoted as PC1 (Fig. 6). The controller box at the
center of the control schemes is left unspecified in this sec-
tion. In the sequel, the proportional-derivative controller
and the sliding mode based controller will be introduced.
The corresponding control architecture is then referenced
as PC1-PD or PC1-SML, accordingly.

cq is the 6-dimensional vector containing the desired
Cartesian position and orientation of the MP, vg the
desired MP twist (linear and angular platform velocities).
dd, 94 and T, are the desired motor angular positions,
velocities obtained from the inverse geometric (IGM) and
kinematic (IKM) models, respectively. In this first scheme,
the motor torque vector 7,, is the control signal, each
signal being of dimension 8.

v .

d KM q4
Trajectory Tm
generation Controller — CDPR

MR-}

€4 d
IGM 4

Fig. 6. PC1 control architecture.

The MP Cartesian MP pose and twist are converted into
desired motor positions and velocities using the CDPR
inverse geometric (IGM) and kinematic (IKM) models.

PC2: Control scheme with feedforward.  Feedforward
terms (see Fig. 7 blue blocks) are commonly included in
CDPR control strategies to predict the dynamics of the
platform and improves the accuracy of the robot (Lamaury
et al., 2013; Vafaei et al., 2010).

From Eq. (7), a feedforward term compensating part of

the gravity is defined as

ro WT(I,ve +wy)
R

Tda = (14)
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with 74, the feedforward torque, w, the wrench due to
the gravity, r, the radius of the winches and R the
gearhead ratio. WT denotes the Moore-Penrose pseudo-
inverse of W. However, for metal plate handling,the mass
of the metal plates is supposed to be unknown. As a
consequence, only the MP mass is considered in the
feedforward term, that gives

wy = [0 0 —marpg —mupgye mapgre 0] (15)
with mpsp the MP mass and g the gravity vector expressed
in %,. x¢ and yg are the Cartesian coordinates of the MP
center of gravity G expressed in .%,. Note that z¢ and yq
are supposed to be null along the trajectory.

Also, alinear friction model (Khalil and Dombre, 2004) has
been implemented in each actuation chain to compensate
the losses in the motors, gearbox and winches:

T e = Fesign(qa) + Fodq (16)
with 7¢. the friction compensation and qq the desired
motor rate vector.

Figure 7 presents the PC2 control architecture with feed-
forward, where v contains the Cartesian acceleration and
angular acceleration of the platform. The control torques
in 7, applied to the motors is based finally on 7., T4,
and Ty..

ation

! WH(I,pa —wg)

Trajectory |Va 94,
generation

- T
Controller [

IqTq

Fig. 7. PC2 control architecture with feedforward terms.

4.2 Control algorithms

The control algorithms are described thereafter.

PD controller.  The 8-dimensional output signal of the
controller 7. is therefore defined by

7. = Kpe, + Kgey (17)
with e, the difference between the desired and actual
motor positions and ey being the difference between
the desired and actual motors velocities. In PC1-PD
(Fig. 6), u = Ty = T, while in PC2-PD (Fig. 7),
U=Ty =Tc+ Tda + Ttc-

In a decentralized control architecture, each motor is
independently controlled: then, the matrices K, and Kgq
are diagonal. For simplicity and since the identified motor
friction coefficients are similar across all motors, the 8
decentralized controllers have been tuned similarly: K, =
Kp1=K,2... and Kqg = Kgq1 = Kg2.... However, it
could be possible to independently adjust the gains of each
motor according to their errors along the test trajectory
or interdependence. The PD controller has been tuned
to achieve accuracy and stability with the MP, using the
standard method proposed by (Ziegler and Nichols, 1995).
The obtained gains K, and K are given in Table 1.

Table 1. PD controller gains.

Gain Kp Kd
ROMP values | 0.3 0.03

SML controller.  Similarly to the PD controller, eight
individual SML controllers have been implemented. Note
that in this paper, the SML controller is applied only to
the PC1 scheme (Fig. 6).

Define the sliding vector o as

o= (qa—4q)+ Maqs—q)
=e; + Ney

with qq and q respectively the desired and current motor
angular positions, qq and ¢ respectively the desired and
current motor velocities, e, and e; the corresponding
tracking errors and A a strictly positive parameter (A > 0).

Sliding mode control must ensure that the sliding variable
reaches and is maintained at zero in a finite time (Utkin,
1992; Shtessel et al., 2014): given the definition (18) of o,
when the sliding variable of the i** motor o; tends to zero,
the convergence of e, ;, the i*? component of ey, to zero is
guaranteed exponentially with a rate depending on the pa-
rameter \. This is described as the transient phase. Then,
the controller is in the steady state: the sliding variable o;
is maintained around zero and the dynamic of the control
is defined by the differential equation e ; = —Aeq,;, as such
the higher A, the faster the correction. This is described
as the sliding phase.

o has a relative degree of one with respect to 7,,. The
time derivative of the sliding variable equals

o =e;+ \e; (20)
= (A4 —4) + AQa — 9q) (21)
= (Ga+Maa — @) — & (22)

qq and q being the desired and actual motor acceleration

vectors, respectively. q is correlated to the motor torques

Tm by equation (12). & then takes the form
o =a(q) +b(Q)Tm (23)

where b(q) # 0.

In order to design the twisting algorithm, the sliding

variable is derived a second time ; one gets:

6= (4d;—9)+Aqs—9q) (24)
=(dg+XMas—q)—4d (25)
= h(a) + j(Q)Tm (26)

with j(q) # 0.

Each component of 7, Tahoumi et al. (2018a), is defined
as

Tmi = —Ki[oi| s — Ky[d;]® (27)
with 7, ; the i*" component of 7, and
[0:]® = |oi|“sign(oy) (28)

K, and K are the controller gains, and « € [0 1] based
on the following adaptation law:

|o] |7
= — 1,0 29
@ max< ﬁ(|0’i|+€a+ |oi] + €5 +1h (29)

with 3, €, and €; constant parameters chosen such that
B > 1 and €,,€e5; > 0. Values of these parameters for the
experiments are provided in table 2. The control input 7,
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is then obtained by integrating its time derivative from
Eq. (27).

The principle of the SML controller (Egs. (27)-(29)) is
the following: the value of the variable o depends on the
current tracking errors. If the absolute values of |o;| and
|6;| are large, it means that the closed-loop system is
not accurate: the controller should lean towards a robust
controller, namely the sliding mode control. That is the
case because in such a situation, & — 0, from Eq. (27),
the control becomes a twisting one (Levant, 1993):

Tm,i = —Kisign(o;) — Kasign(c;) (30)
that ensures, in practice, the convergence of o; and &; to
a vicinity of (0,0), in finite time.

On the other hand, if these errors are small, in order to
reduce chattering and energy consumption, the controller
should lean towards the linear control behavior: that
is the case because o — 1. « regulates the trade-off
between accuracy and chattering reduction. 7,,; then
tends towards the expression

%m,i = —K10'7; — KQ(j'i (31)
In order to guarantee convergence of the closed-loop sys-
tem, the gains K7 and K must be positive and follow the
condition (Levant, 1993):

K1 > KQ > 07 (Kl — Kg)jm > hM
(K + K2)jm — ha > (K1 — K2)jm + hr
(32)
with hps, 7 and jps positive constants such that for each
motor

|hig)] < har

The reduced energy consumption of the SML controller
compared to the twisting algorithm is ensured by the
following condition (Tahoumi et al., 2018a):

Kie, + Koey < K1 — Ko (35)
Recall that K; and K5 are the gains of the controller: they
must be chosen sufficiently large to counteract perturba-
tions and uncertainties effects. 8 and €,,e5 have opposing
effects on the evolution of a. These parameters should be
chosen to calibrate the controller behavior with respect
to the desired compromise between accuracy and chatter-
ing/consumption reduction: the higher S or the smaller
€s, €5, the lower a. Then, the system leans towards sliding
mode. As a consequence, the control accuracy is improved
with higher energy consumption. On the other hand, if
[ is decreased or €., €; are increased, o will increase:
the chattering and energy consumption will be reduced
as the linear control contribution increases. However, the
robustness, and then the accuracy, are reduced.

A first tuning has been obtained from a Simulink@® model
based on the inverse geometric, kinematic and dynamic
models of the robot. The initial working parameters are
set according to the following methodology:

(1) select a value of A > 0 in relation to the desired closed-
loop dynamics and 8 > 1 with respect to the desired
closed-loop accuracy;

(2) set €, to zero to force a to zero and achieve pure
sliding mode control;

(3) tune gains K7 and K> to achieve good sliding mode
control accuracy;

(4) observe o and & values, choose values for €, and €,
with the same proportionality as the average ratio
between o and &;

(5) adjust B, ¢, and €; so that the variable « evolves
between [0, 1];

After some iterations, the gains and parameters are set to
obtain a good compromise between accuracy and evolution
of a. The tuning parameters for the SML controller are
given in Table 2.

Table 2. SML controller parameter values.

Parameter A B & € K1 Ko
ROMP values | 0.15 1.01 4 80 4 2

Since only the motor position and velocity are provided
on the prototype, the motor angular acceleration errors eg
appearing in ¢ are derived from the motor velocity errors
with the usual Euler method.

5. EXPERIMENTAL RESULTS

The objective of the experiments is to compare the per-
formances of the SML controller without knowledge of the
MP and metal plate mass (PC1-SML), to those of the
PD controller (PC1-PD) in the same conditions, and of
the PD controller with feedforward for the compensation
of the MP mass (PC2-PD). A video of the metal plate
handling experiments is available? .

5.1 Motor position errors

Figure 8 presents the Root Mean Square (RMS) of Motors
1 to 8 position errors along the test trajectory, for each
controller and load. As expected, the PC1-PD gives the
highest RMS in all scenarios, up to 12 degrees, due to
the controller static error. PC2-PD provides the smallest
RMS for load MP, as the mass of the platform is exactly
compensated by the feedforward term. Thus, the static
error is greatly reduced. However, the RMS of PC2-PD
motor position error naturally increases as a metal plate
of unknown mass is carried. It appears that PC1-SML
provides the most consistent results no matter the load, the
motor position errors being always smaller than 4 degrees.
Slight differences in the performances from one motor to
another could be attributed to the impact of the new
center of mass of the set constituted of the MP and the
metal plate.

A single motor is considered in the sequel for a more
detailed analysis. Fig. 9 presents Motor 4 angular error
eq4 along the trajectory, with the three controllers and the
three payloads. Again, the static errors of PC1-PD and
PC2-PD are visible as the mass increases. The maximum
error is reached around 11 degrees for the heaviest load
(MPM2) for PC1-PD. The compensation of the MP mass
limits this maximum error to around 4 degrees for PC2-
PD. Although e; 4 has a more oscillating behavior with
PC1-SML, it is noteworthy that it is the most robust one
amongst the three controllers. Indeed, its value oscillates
around zero for all loads.

2 Metal plate handling video (Dropbox): bit.ly/ifac2020id3263
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T
0
MP MPM1 MPM2

Fig. 8. Root Mean Square (RMS) of position error (de-
grees) for Motors 1 to 8 (left to right) against load.

—A—PCi-PD
10 @ Pc2-PD
—@—Pci-smL

Position error €q4 (deg)
o

0 5 10 15 20 25 30

Time (s)
(a) Load MP (366 kg).

——rci-smL

Position error € (deg)

0 5 10 15 20 25 30
Time (s)
(b) Load MPM1 (488 kg).

—A-—Pci-PD
@ PC2-PD
——rci-sML

Position error € (deg)
(4,1

0 5 10 15 20 25 30
Time (s)
(c) Load MPM2 (615 kg).

Fig. 9. Motor 4 position error e, 4 (degrees).

The control input of Motor 4 associated with each con-
troller is plotted in Fig. 10. All controllers generate a sim-
ilarly shaped torque output, although chattering is visible
in the case of the sliding mode, that is to be expected:
this is the cost of robustness. Static friction in the gearbox
can be observed around t = 1 s and t = 6 s, when the
motor changes direction. The friction is anticipated in the
feedforward term of PC2-PD, and is quickly corrected by
the SML controller, leading to similarly shaped signals.

5.2 MP position error along z-azis

The MP pose was tracked using a HTC VIVE Tracker,
along the vertical axis (z-axis) which is the most affected
one with the change of load. Figure 11 presents the
Cartesian error between the desired and measured position
of the MP center P (see Fig. 2), for the heaviest load

£ . XPCW—SML
=4 PC1-PD
5] @ Pca2-PD
<
© 1
=)
g
S 05

0

0 5 10 15 20 25 30
Time (s)

Fig. 10. Motor 4 control input 7, (Nm) for load MPM2
(615 kg).

MPM2. The controllers are compared based on the motor
position errors. The PC1-PD controller leads to the largest
error while the addition of the feedforward term in PC2-
PD reduces this error. The sliding mode controller provides
the smallest error although a static error of around 20 mm
remains. This error is mainly due to cable elasticity,
which is not negligible for the 615 kg load, and can be
compensated in the future in order to achieve the desired
accuracy of one centimeter.

20

B [-A—Pci-PD —@—PC2-PD —@—PC1-SML |
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T ‘ ‘ ‘ ‘ ‘ ‘
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Fig. 11. MP Cartesian position error along z-axis (mm)
for load MPM2 (615 kg).

5.8 Ewvolution of

The mean value of a along the trajectory across all motors
and for each load is presented in Fig. 12. As expected, the
larger the payload, the closer the controller to sliding mode
control i.e. the lower . Figure 13 shows the evolution
of a for Motor 4 for the heaviest load (MPM2), versus
time. It can be noticed that with the current tuning of the
SML controller, the values of « are relatively low with an
average value of 0.12 in general, namely the controller is
mostly a sliding mode one along the trajectory, due to large
uncertainties in the system. It is noteworthy that around
t = 7s and t = 27 s, « reaches higher values for short
periods. Meanwhile, Fig. 10 shows reduced chattering in
Tm and Fig. 9 presents lower motor position oscillations.
Contrarily, around t = 15 s, as « lower values lead to
higher oscillations. The control is effectively smoother
when « increases.

0.2

PC1-SML

0.15

0 ¢ .

Mean o

0.05

0

MP MPM1 MPM2

Fig. 12. Mean of o along trajectory, across all motors and
for each load.
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Fig. 13. Evolution of ay for load MPM2 (615 kg).
6. CONCLUSION

Although a proportional-derivative based control scheme
can be applied for smooth control signal of a cable-
driven parallel robot, it is very restrictive due to the
required knowledge of the carried mass to achieve good
accuracy. If no information is available on the load mass,
the novel control scheme balancing between sliding mode
and linear algorithms is relevant for its stability and
robustness towards uncertainties, with lower chattering
and oscillations as parameter « increases. Future work
will focus on oscillation reduction, and include a cable
elasticity compensation to improve the repeatability and
positioning accuracy of the moving-platform.
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