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Abstract: In this paper, a nonlinear model predictive control scheme for switching dynamical
systems is presented. The controller comprises of two layers of optimization. The upper layer
is based on the embedding transformation technique, hence it does not require prior knowledge
of the switching sequence. In particular, it provides the optimal relaxed switching sequence
together with the optimal regulating inputs and the corresponding trajectories of the states.
Within the lower layer, the integrality constraints are restored and a switching solution is
recomputed to minimize the error with respect to the trajectories given from the upper-level
optimization. The scheme is presented and the bounds of the integer approximation errors
are evaluated together with brief recursive feasibility analysis. Simulation results of a tracking
and an economics optimizing nonlinear MPC for a supermarket refrigerator system show the
applicability and efficiency of the proposed approach.
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1. INTRODUCTION

Switching dynamical systems arise as a result of the
interaction between discrete and continuous dynamics
which can be observed in many processes in diverse fields
of engineering (Liberzon (2003)). Such processes attain
several modes of operation, for instance as a result of
the presence of discontinuous actuating devices, phase
changes, switching on or off pieces of equipment, and
changes in raw materials or product specifications. Such
processes can be treated within the framework of switching
systems, where the evolution of the states can be described
by a set of vector fields that are valid in different sections
of the state space (modes of operation).

Model predictive control (MPC) is an iterative model-
based controller which solves an open-loop optimal control
problem (OCP) to produce a sequence of control moves
that are optimal with respect to a certain performance
criterion. In order to realize feedback from the controlled
process, only the first part of the calculated input sequence
is sent to the process, then the evolution of the process
is captured through measurements (estimations) and is
used to reinitialize the next iteration in a moving horizon
fashion (Rawlings and Mayne (2009)).

It is well known that MPC for switching nonlinear systems
is a challenging task due to the discontinuity in the under-
lying process model, which adds to the nonlinearity and
prohibits the direct usage of the standard gradient-based
algorithms. The main source of difficulty is the determi-
nation of the optimal trajectories of the discrete degrees
of freedom including the mode sequence. In consequence,
? Corresponding author. Tel.: +49 231 755 3419, E-mail:
taher.ebrahim@tu-dortmund.de.

a mixed integer optimal control problem (MIOCP) has to
be solved in real time which is significantly more expensive
compared to the purely continuous counterparts.

Many algorithms were proposed for MPC of switching
systems which are mostly tailored to linear or piecewise
affine systems (Camacho et al. (2010)). In the mixed log-
ical dynamical (MLD) framework (Bemporad and Morari
(1999)), the optimization problem is cast into a mixed
integer linear (MILP) or quadratic (MIQP) problem by
replacing the logical decisions by a set of linearly con-
strained binary indicators which are determined within
the optimization problem. However long time horizons lead
to a combinatorial increase in the size and complexity as
reported in Till et al. (2004). Hence, the MLD approach
is tailored to linear and mildly nonlinear systems, but it
does not scale well to large problems and long horizons.
In Baotić et al. (2006) explicit MPC for small scale linear
switching systems was developed to minimize the online
computation time by shifting the expensive computations
of the control laws to be done offline.

For nonlinear systems and in order to avoid solving the
underlying mixed integer nonlinear program (MINLP)
online, many of the MPC algorithms assume that the
switching sequence is either predefined or the switches
can be detected almost as soon as they occur, which
is a realistic assumption in some processes. In Mhaskar
et al. (2005) a Lyapunov-based MPC was developed for
switching systems with a predefined switching signal. A
nonlinear MPC algorithm was presented in Müller et al.
(2012) assuming that the switches are restricted by a
system dependent average dwell time and can be detected
as soon as they occur with a small tolerance. On the other
hand, some works consider the case when the switching
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sequence is considered as a degree of freedom that has to
be determined online. A numerically efficient approach for
nonlinear MPC was proposed in (Kirches et al. (2013))
for truck control, which is based on a relaxation of the
integer constraints within the embedding transformation
formulation (Bengea and DeCarlo (2005); Sager (2009)).
After solving a relaxed problem, the integer feasibility is
restored via a rounding scheme with the aim of getting
the closest integer feasible input trajectories to the relaxed
optimized ones however, neither optimality nor feasibility,
e.g., with respect to path constraints, can be guaranteed.
In Rawlings and Risbeck (2017), the general nominal
stability theory of sub-optimal MPC was proven to hold
equally for exogenous switching systems, given a way to
solve the underlying MINLP while respecting the real
time restrictions, which is very difficult with the currently
available solvers.

In this paper, the problem of reference tracking and eco-
nomic nonlinear MPC for switching dynamical systems
is addressed. Two layers of optimization are considered
within each MPC iteration to produce a sub-optimal con-
trol input for the switching system which is guaranteed
to satisfy the state and the input constraints. The upper
layer solves a continuous optimal control problem over
a reformulated process model to generate the reference
input and state trajectories as well as a relaxed discrete
switching sequence. The lower layer is devoted to driving
the switching system in a bounded vicinity of the reference
trajectories after restoring the integrality constraints. The
lower layer is comprised of: 1) a simple MILP to gener-
ate switching input trajectories with a minimum integral
difference to the relaxed optimal ones, and 2) a tracking
auxiliary nonlinear MPC to find the optimal switching
times of the rounded inputs in order to further improve
the tracking of the reference state trajectories.

The innovative contribution of this work is in the com-
bination of the embedding transformation algorithm and
the switching time optimization in an MPC framework,
which guarantees feasibility in terms of state and input
constraints satisfaction for the switching system. Further-
more, the approach is computationally efficient and re-
duces the bound of the error between the optimal relaxed
trajectories and the switching ones, which leads to less
sub-optimal switching control. For validation purposes, the
algorithm is applied to a nontrivial benchmark problem
which contains endogenous (state dependent) as well as
exogenous switches.

The rest of the paper is structured as follows: Section 2
introduces the problem statement together with necessary
preliminaries, while the details of the proposed nonlinear
MPC scheme are explained in section 3. Section 4 illus-
trates the application of the algorithm to a version of the
supermarket refrigeration system. Finally, part 5 concludes
the paper and points out open research issues.

2. PRELIMINARIES

Switching dynamical systems are characterized by addi-
tional relatively simple discrete dynamics compared to the
continuous counterparts and by a switching function that
determines the active mode and accordingly the model
equations that are valid at each time instant. The switch-

ing function is either state dependent for endogenous type
switches or time dependent for exogenous ones (Liberzon
(2003)). Noting that the endogenous switches can be refor-
mulated as exogenous, and vice versa (Bock et al. (2018)).

It is desired to design an MPC controller for the nonlinear
switching dynamical system described by:

ẋ(t) = fi(t,x(t))(x(t), u(t), v(t)) t ∈ [t0, tf ], (1)

x(t0) = x0,

where fi(·) : Rn × Rm × Rp → Rn are C2 functions.
x ∈ Rn and u ∈ Rm denote the continuous states and
input variables. v ∈ ν , {v1, . . . , vnv}, vj ∈ Rp are
the discrete control variables. The function i : [0,∞) ×
Rn → I , {1, 2, . . . , µ} is a right continuous piecewise
constant function which defines the index of the active
mode at each time instant, while µ is the total number of
modes. The switching signal is a set of N ∈ [1,∞) ordered

pairs of modes σ , {is ∈ I}Ns=1, and the corresponding

switching instants τ , {τs}Ns=0, such that t0 , τ0 < τ1 <

· · · < τN , tf with t0, tf are the initial and final times.

2.1 Problem Formulation

We assume that all the subsystems evolve in Rn without
state jumps, and the bounds of the state variables are
enforced globally over all the subsystems. Consider the
underlying MIOCP that has to solved online:

min
x(·),u(·),i(·),v(·)

∫ tf

t0

Li(t,x(t))(x(t), u(t), v(t))dt+ ϕ(x(tf ))

(2a)

s.t. ODE equations (1), (2b)

0 ≥h(x(t), u(t)), t ∈ [t0, tf ], (2c)

0 ≥gi(t,x(t))(x(t), u(t), v(t)), t ∈ [t0, tf ], (2d)

v(t) ∈ν , {v1, v2, . . . , vnv}, t ∈ [t0, tf ], (2e)

x(tf ) ∈χf (2f)

where the mode dependent running cost Li(·) : Rn×Rm×
Rp → R+ and the terminal cost ϕ : Rn → R+ are assumed
to be C2 functions. Constraints h : Rn ×Rm → Rh denote
the state bounds and the mode independent constraints,
while the combinatorial constraints g : Rn×Rm×Rp → Rg
are explicitly dependent on the discrete variables, e.g.,
prescribing maximum number of switches, or the logical
constraints due to the transformation of the endogenous
switches into exogenous ones. χf ⊆ χ̄ denotes the terminal
set, where χ̄ is the feasible region of the target mode.

2.2 Embedding Transformation

In addition to the nonlinearity of the process model, the
discrete decision variables, i.e., mode sequence together
with the discrete inputs trajectories, result in a very de-
manding MIOCP. Embedding transformation (Bengea and
DeCarlo (2005); Sager (2009)) presents a computationally
efficient algorithm to solve such problems. Within the
embedding transformation, a continuous optimal control
problem (OCP) is solved over a convex hull relaxation
of the switching model rather than an MIOCP over the
original discontinuous model. Thus, the switching model
is embedded into a family of systems, and its state tra-
jectories are dense inside the set of trajectories of the
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embedding system. Consider the following reformulation
of model (1):

ẋ(t) =

µ·nv∑
j=1

ωbj(t) · f j(x(t), u(t), vj), x(t0) = x0. (3)

The function f j(·) denotes the dynamics of the switching
system evaluated at every discrete assignment. The set of
binary multipliers ωb ∈ {0, 1}µ.nv enumerate the feasible
discrete assignments in all modes of the switching system
and are constrained by the special set order property of
type one (SOS-1) constraint

∑µ.nv
j=1 ω

b
j(t) = 1 to impose

a single assignment at any time instant. It should be
emphasized that the two formulations for the switching
dynamics are equivalent due to the one-to-one transforma-
tion between the discrete assignments and the binary mul-
tipliers. Since the space of feasible assignments is sought
rather than the trajectories of the discrete variables, the
forbidden modes or assignments can be rejected by con-
struction (Ebrahim et al. (2018)). Next, the switching
system is embedded into a bundle of continuous systems
by dropping the integrality constraint of the binary mul-
tipliers to ωj ∈ [0, 1]µ.nv . The reformulation results in the
following OCP:

min
x(·),u(·),ω(·)

∫ tf

t0

µ·nv∑
j=1

ωbj(t) · Lj(x(t), u(t), vj)dt+ ϕ(x(tf ))

(4a)

s.t. ODE equations (3), (4b)

0 ≥h(x(t), u(t)), t ∈ [t0, tf ], (4c)

0 ≥ωj(t)gj(x(t), u(t), vj), t ∈ [t0, tf ], (4d)

x(tf ) ∈χf , (4e)

ωj(t) ∈[0, 1],

µ.nv∑
i=j

ωj(t) = 1, (4f)

where Lj(·) denotes the running cost evaluated at every
discrete assignment. As a consequence of the relaxed for-
mulation, the feasible region χ ⊂ Rn is not disjoint and
χf ⊆ χ. The combinatorial constraints (4d) are evaluated
at all feasible discrete assignments and are only enforced
when the corresponding binary multiplier assumes a value
other than zero. In order to avoid compensation effects,
feasibility is enforced separately for each possible assign-
ment (Kirches and Lenders (2016)). It should be noted
that the discrete trajectories including the switching se-
quence are captured by the relaxed binary multipliers
which are included as optimization variables. Moreover,
the optimal solution of (4) represents a tight lower bound
for any solution of switching type.

2.3 Integer Approximation Error Bound

Despite the fact that the integrality constraints were
dropped in (4) and the optimal solution is not necessarily
switching, it is computationally efficient to find an attain-
able lower bound relaxed solution and to then search for
the closest integer solution, e.g., by a rounding scheme, in a
subsequent separate step. The following theorem provides
bounds of the integer approximation error in the differen-
tial states for nonlinear systems in the from of (3).

Theorem 1. (Sager et al. (2012)). Consider the following
two model functions with t ∈ [t0, tf ]:

ẋ(t) = f(x(t), ū(t)) · ω̄(t), ω̄ ∈ [0, 1]µ.nv , (5)

ż(t) = f(z(t), ū(t)) · ωb(t), ωb ∈ {0, 1}µ.nv , (6)

where ωb(t) is a switching input approximation of the re-
laxed optimal trajectory ω̄(t) and ū(t) denotes the optimal
continuous input obtained from the OCP (4). Both state
trajectories x(·), z(·) attain the same initial conditions at
t0. It is assumed that the function f is globally Lipschitz
continuous with respect to the state vector and the Lip-
schitz constant is denoted by L > 0. Furthermore f is
uniformly bounded by M1 > 0 and its time derivative is
bounded by M2 > 0 almost everywhere on t ∈ [t0, tf ]:

‖f(x(t), ū(t))‖ ≤M1, (7)∥∥∥∥ ddtf(x(t), ū(t))

∥∥∥∥ ≤M2, (8)

‖f(z(t), ū(t))− f(x(t), ū(t))‖ ≤L‖z(t)− x(t)‖. (9)

If the integral error between the two input trajectories is
bounded by ε ≥ 0,

‖
∫ t

t0

ω̄(s)− ωb(s)ds‖ ≤ ε, (10)

then it holds that the error in the state trajectories is
bounded for all t ∈ [t0, tf ] by,

‖z(t)− x(t)‖ ≤ (M1 +M2(t− t0))εeL(t−t0). (11)

It can be observed that the solution of the OCP (4)
presents a lower bound which can be attained by a switch-
ing solution only if ε = 0. An MILP can be set up to
seek the binary trajectories which minimizes the integral
error with respect to the optimal relaxed input trajec-
tories while respecting the maximum allowed number of
switches (Sager et al. (2011)). For the sake of computa-
tional efficiency, a direct simultaneous method, e.g., direct
collocation, is the method of choice to solve the OCP (4).
The time horizon t ∈ [t0, tf ] is partitioned into intervals of
length ∆t, thus forming an equidistant time discretization
grid and the control input is parameterized by a vector
of piecewise constant functions and accordingly computed
only at time instants (t0 < t1 < · · · < tf ). If an MILP is
used to generate the binary multipliers from the relaxed
trajectories, then the error bound is dependent on the
granularity of the underlying time grid as follows (Kirches
and Lenders (2016)),

ε ≤ ∆t · ((µ.nv)− 1)2

(µ.nv)
, (12)

where µ.nv is the number of the binary multipliers, ∆t is
the interval length in case of a uniform discretization or the
maximum of the interval lengths in case of a non-uniform
discretization. Note that the given bound is only valid in
case the maximum number of switches is only constrained
by the underlying discretization grid.

3. PREDICTIVE CONTROLLER FOR SWITCHING
SYSTEMS

In this section, the proposed nonlinear MPC algorithm is
established and the formulation of the underlying optimal
control problems is discussed. Moreover, it is shown how
the state dependent constraints can be satisfied after
restoring the integrality constraints.

Consider figure (1), in which the continuous and discrete
control inputs (uk, vk) that are fed to the switching system
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are computed in each iteration by two successive layers
of optimization. The trajectories x̄(·), ū(·) and ω̄(·) are

Fig. 1. MPC scheme for switching systems

the optimal state, continuous input and relaxed binary
multipliers along the prediction horizon. ω̄nr (·) denotes the
first (nr > 1) values of the relaxed multipliers trajectory,
while ωbnr (·) is the corresponding binary feasible trajectory
with less than σmax switches. The feedback from the
controlled system is realized by x̂k which denotes the
measured state vector.

3.1 Layer 1: Primary Controller

The primary controller is based on the embedding transfor-
mation formulation (4), with all the endogenous switches
transformed into exogenous switches and integrated into
the OCP by logically constrained binary multipliers. Thus
the combinatorial constraints (4d) will contain logical con-
straints indicating the active mode at each time instant.
This controller aims at generating a tight lower-bound
reference relaxed solution for the second layer.

It can be inferred from (12) that in order to reduce the
error bound (11) for the state trajectories, the sampling
interval should be reduced such that, as ∆t → 0, the
relaxed state trajectories can be reproduced by a switching
solution. Since this significantly increases the computa-
tional effort and is usually not possible due to the real
time restrictions, it is proposed to divide the first sampling
interval into nr equidistant intervals, which will be denoted
as the rounding horizon in the sequel. Thus the time
discretization grid for the primary controller will be non-
equidistant as follows:

t0 <
∆t

nr
+ t0 <

2∆t

nr
+ t0 · · · < t1 < · · · < tf . (13)

Based on the previous discussion, the integer approxima-
tion error in the state trajectory at any time t is bounded
by,

‖z(t)− x(t)‖ ≤ (14)

(M1 +M2(t− t0))
((µ.nv)− 1)2

(µ.nv)

∆t

nr
eL(t−t0).

Despite the reduction in the error bound introduced by nr,
the propagation of the error along the prediction horizon
may lead to violation of states bounds or path constraints
and accordingly simple tightening of the constraints might
not be enough. Therefore a second controller is introduced
to provide feedback in order to contain the evolution of the
error between the actual switching system trajectories and
reference trajectories generated by the primary controller.

3.2 Layer 2: MILP and Auxiliary Controller

The purpose of the second layer is to restore the integral
feasibility and to seek a sub-optimal switching solution
which tracks the state and input references from the pri-
mary controller. As illustrated in figure (1), a portion
ω̄nr (·) of the relaxed trajectories is injected into an MILP
to compute the closest switching counterpart within the
specified upper limit of switches σmax. Note that chatter-
ing is rejected by design due to the discretization in time
within the employed direct method even if σmax is not
specified. consequentially the number of switches is upper
bounded by nr for each binary multiplier, but it can be
further constrained for practical purposes.

In addition, an auxiliary unconstrained controller is in-
cluded which aims at providing the needed feedback in
order to minimize the error between the relaxed optimal
trajectories and the computed binary solution. By dis-
cretization in time, the OCP that is solved within the
auxiliary controller is given in (15). It can be observed
that the switching times of the binary rounded multipliers
ωbnr (·) are optimized in the first period ∆t while fixing

their levels to the output of the MILP ωbk, however the
rest of the multipliers trajectories is still relaxed.

min
x(·),u(·),h(·),ω(·)

Vaux (15)

s.t. xk+1 =

µ·nv∑
j=1

hk · F j(xk, uk, vj) · ωbj,k, 0 ≤ k ≤ nr − 1

xk+1 =

µ·nv∑
j=1

F j(xk, uk, v
j) · ωj,k, nr ≤ k ≤ np − 1

x0 =x(t0),

1 =

µ.nv∑
j=1

ωj,k, ωj,k ∈ [0, 1], nr ≤ k ≤ np − 1

∆t =

nr−1∑
k=0

hk, 0 ≤ k ≤ nr − 1

where hk are the interval lengths of the binary multipliers
with dimension nr. The tracking objective of the auxiliary
controller is formulated as follows,

Vaux = βϕ(xnp) +

np−1∑
k=0

(uk − ūk)TR1(uk − ūk)+ (16)

np−1∑
k=nr

(xk − x̄k)TQ(xk − x̄k) + (ωk − ω̄k)TR2(ωk − ω̄k).

where R1, R2 and Q are positive definite symmetric ma-
trices with suitable sizes. The terminal cost is replaced by
βϕ(xnp), which introduces an implicit terminal constraint
for sufficiently large penalization β (Rawlings and Mayne
(2009)). The auxiliary controller solves a continuous non-
linear MPC problem which uses the same model as the
primary controller. The added degrees of freedom of the
switching times within the rounding horizon nr lead to
further reduction of the integer approximation error and
better tracking of the reference trajectories.

Remark 2. Parameter nr represents a compromise be-
tween computational complexity and the integer approxi-
mation error. Therefore the bigger nr is, the smaller the er-
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ror bound between the relaxed and the switching solutions
but the higher the computational effort. Similarly limiting
the number of allowed switches (σmax < nr) within the
MILP further increases the approximation error but may
be necessary for practical implementations.

Remark 3. The switching sequence is determined by the
primary controller and the auxiliary controller seeks the
optimal solution within the provided mode sequence by
optimizing the duration of each mode.

Remark 4. The bound (14) is considered conservative due
to the expected improvement that results from the opti-
mization within the auxiliary controller.

3.3 Recursive Feasibility

In this part, we discuss briefly how recursive feasibility of
the presented scheme can be established.

Assumption 5. The set χ ⊂ Rn is closed, and χf ⊆ χ ⊂
Rn is compact and contains the origin.

Assumption 6. χf is control invariant for the system (3)
and there exists a stabilizing terminal control law (uf , wf ).

Primary Controller: We require the solution of the pri-
mary controller to be strictly in the interior of the feasi-
ble region, therefore the state dependent constraints are
tightened such that the propagation of the integer approx-
imation error (14) along the prediction horizon does not
lead to violation of the state constraints. It follows that,
the solution generated by the auxiliary controller is feasible
with respect to the state constraints and satisfies xnp ∈ χf
due to the implicit terminal constraint (16).

After sending the first portion (nr steps) of the com-
bined input trajectory (u0:nr , w0:nr ) generated by the aux-
iliary controller to the process, the rest of the trajectory
(unr:np−1, wnr:np−1) is a feasible solution for the primary
controller at the next iteration after appending the termi-
nal control law. Therefore a feasible solution of the primary
controller always exists if the initial solution was feasible.
Based on the above discussion, recursive feasibility of the
primary controller follows.

Auxiliary Controller: Given a feasible initial solution from
the primary controller and due to the absence of the state
constraints, recursive feasibility of the auxiliary controller
follows by construction.

4. SUPERMARKET REFRIGERATION SYSTEM

In this section, the proposed nonlinear MPC approach
is applied to a supermarket refrigeration system with 3
display cases and 3 compressors. It is required that the
control system keeps the states within their operational
bounds despite the endogenous and exogenous switching
behavior of the process. In the following section, the
considered system will be shortly described, then the
nonlinear MPC is formulated and finally, the simulation
results are shown.

4.1 Process Description

Refrigeration systems are the core storage and distribution
components in the food industry and are responsible

for significant consumption of electric power. Therefore,
advanced control methods are sought to improve the
process efficiency and to minimize power consumption.
The main components of the system are the display
cases, the suction manifold, the compressors rack and the
condensing unit. The rack of compressors is the central
element that maintains the flow of the refrigerant to the
condensing unit and further to the display cases in order to
preserve the edible goods within the specified temperature
range. The low pressure refrigerant vapor is collected by
the suction manifold from the display cases. Therefore the
pressure inside the suction manifold must be held by the
compressors within specified bounds in order to realize
the required evaporation temperature. For a complete
description of the process dynamics including the model
equations and the parameter values, please consult (Larsen
et al. (2007)).

In our case, the condensing unit is not relevant for the
control of the process, therefore the dynamical model
is comprised of only 3 sub-models. Each display case is
described by 4 states, namely the temperatures of the
goods Tg, the evaporator wall Tw, the air curtain Ta
and the mass of the refrigerant inside the evaporator
mref . The suction manifold is modeled by the suction
pressure Psuc dynamical equation. Finally the rack of
compressors is modeled by the total volume flow of the
refrigerant Fcomp it draws out of the suction manifold. By
combining all the sub-models, the complete model of the
supermarket refrigeration system that is considered here
has n = 13 states. The discrete input variables are the 3
binary expansion valves signals (vexp(t) ∈ {0, 1}3) and the
compression level (Ucomp(t) ∈ {0, 1, 2, 3}) that indicates
how many compressors are active at any time instant.

4.2 Nonlinear MPC Controller

The dynamic model is embedded into a family of contin-
uous systems as shown in (3). The considered switching
dynamics were reformulated in Ebrahim et al. (2018) in
order to avoid synchronization of the expansion valves of
the display cases. It was proposed to restrict the switching
of the display valves to one single valve at any time
instant, which results in nα = 4 assignments for vexp(t)
including the case of switching off all the valves. Addi-
tionally, only incrementing or decrementing the current
compression level is considered rather than searching for
the optimal level directly. This is achieved by augmenting
a relaxed version of the number of active compressors
Ucomp to the state vector which increments or decrements
based on the value of Psuc. Thus the number of feasible
assignments is limited to nω = 3 regardless of total number
of compressors, provided that they have similar capacities
as formulated in (17). The choice of preserving the current
level is denoted by ωb1,k, therefore it appears only in the
SOS1 constraint.

Ucomp,k+1 = Ucomp,k + ωb2,k − ωb3,k, (17)

ωbi,k ∈ {0, 1},
3∑
i=1

ωbi,k = 1, i ∈ {1, 2, 3}.

Moreover, separability of the dynamics was exploited in
order to further reduce the number of binary multipliers
to only 7. The function F j1 (xk, v

j
exp) represents the display
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cases, while the function F i2(xk, U
i
comp) contains the right

hand sides of the differential equations for Psuc and the
augmented state Ucomp:

xk+1 =

nα∑
j=1

αj,k · F j1 (xk, v
j
exp) +

nω∑
i=1

ωi,k · F i2(xk, U
i
comp),

αj,k ∈ [0, 1], ωi,k ∈ [0, 1], (18)

where
∑nα
j=1 αj = 1 and

∑nω
i=1 ωi = 1, given x0 = x(t0).

The main function of the refrigeration system is to realize
the desired temperatures of the goods inside the display
cases while reducing the compressors switching frequency,
which can be interpreted as a traditional tracking objective
along the prediction horizon np.

ϕ(xk) =
1

nr∆t

nr−1∑
k=0

(T g,k − Tg,ref )TQ(T g,k − Tg,ref )

+
1

∆t

np−1∑
k=nr

(T g,k − Tg,ref )TQ(T g,k − Tg,ref ), (19)

where T g,k is the vector of the goods temperatures in all
three display cases. As a result of the non-uniform time
discretization grid due to the rounding horizon (nr = 5),
there are two tracking terms with different weights. The
controller was tuned by choosing the prediction horizon
np = 20, the sampling interval ∆t = 30s, and Q is a
identity matrix. It is noted that penalizing the control
moves mostly favors the solutions in the interior of the
feasible region over the bang-bang solutions which in turn
adds to the rounding error. For economic operation of the
process, the minimization of the energy consumption of
the compressors is considered as an alternative objective
function.

ϕeco(xk) = Fcomp · ρsuc(hocomp − hicomp), (20)

where ρsuc is the density of the refrigerant inside the suc-
tion manifold which is dependent on Psuc and hicomp, h

o
comp

are the enthalpies of the refrigerant going in and out of the
compressor rack, respectively.

In addition to the process dynamical equations, opera-
tional bounds are imposed on some of the state variables,
e.g., Psuc and Ta. Moreover combinatorial constraints arise
as a result of the logical decisions for incrementing and
decrementing the number of active compressors:

x ≤ xk ≤ x, k ∈ {0, 1, · · · , np}, (21)

ωi,k · gi(xk) ≤ τvc, k ∈ {0, 1, · · · , np}, i ∈ {1, 2, · · · , nω},

where, x and x are the lower and the upper bounds
of the state vector and gi(xk) contains Psuc dependent
switching conditions. For the combinatorial constraints a
regulation parameter τvc = 0.001 is added to avoid the loss
of constraint qualifications associated with combinatorial
constraints (Kirches and Lenders (2016)). A suitable back
off from the bounds is considered to achieve constraint
satisfaction in the primary controller. It was found by
extensive simulations that Ta bounds should be tightened
by 0.25◦C from both sides as well as Psuc by 0.1 bar.

Next, the rounding horizon section (nr = 5) of the optimal
relaxed binary multipliers trajectory is passed to the MILP
to generate the binary trajectories. Then the switching
times of rounded trajectories are optimized within the

auxiliary controller in order to track the relaxed reference
solution from the primary controller. The weighting ma-
trices Q,R2 in (16) are chosen such that Psuc is given 10
times more weight than other state variables and R2 was
set to the identity matrix.

4.3 Simulation Results

It is assumed that full state information is available. As
described in the previous section, the process model was
adapted in order to minimize the switching of the com-
pressors by using the complete range of the suction pres-
sure. Moreover synchronization assignments of the display
valves are avoided by construction which then avoids the
main problem of the traditional refrigeration controllers,
see Larsen et al. (2005). The simulation of the closed
loop is performed for 2 hours in the day and 2 hours
in the night. During the night, the external air load is
reduced by 40% and the temperature reference changes
from Tg,ref = 3.5◦C to 4.0◦C, also the upper bound for
Psuc is increased. Figure (2) shows the simulation results
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Fig. 2. Tracking (upper) and economic (lower) results of
using the Bi-level nonlinear MPC approach

of the controlled process under tracking and economic non-
linear MPC, respectively. The trajectories of Tg, Ta, Psuc
as well as the compression capacity Ccapacity% are shown.
It is found that only 2 compressors are needed for the
operation of 3 display cases during the day and only one
in the night mode. It can be observed that the references
for the goods temperature are tracked well and all the
process variables are kept within their operational bounds.
Moreover, the switching of the compressors is effectively
minimized by enforcing a kind of hysteresis behavior with
a width equivalent to operational range of Psuc, which
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leads to prolongation of their life time. In this case, active
compressors are increased by one only when Psuc reaches
its upper bound and decreased when the pressure is at
its lower bound. Moreover by considering the economic
MPC, it was possible to further save about 2% of the power
consumption by increasing the goods temperature Tg for
all display cases slightly above the tracked value.
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Fig. 3. Tracking Nonlinear MPC (One level)

The average CPU-time for the MPC iteration was 1.8 s,
and the worst case was 5.1 s on a standard desktop PC,
which is suitable for online application. In order to point
out the advantage of implementing the additional layer of
optimization, figure 3 shows the simulation results when
the process is controlled by a single layer nonlinear MPC
controller. The controller solves a single OCP over the
embedding model, and the resulting relaxed trajectories
are directly applied to the process after being rounded
using the sum-up rounding scheme. It can be observed
that the proposed Bi-level nonlinear MPC scheme achieves
much tighter control with a more regular input pattern
while respecting all the process constraints and states
bounds. Furthermore, the proposed scheme is more com-
putationally efficient in comparison to MPC schemes op-
timizing directly over the discrete degrees of freedom even
those that use a linearized model, e.g., using the MLD
approach (Larsen et al. (2007)) with the advantage of
wider operating range.

5. CONCLUSION

A new Bi-level nonlinear MPC scheme for switching dy-
namical systems was proposed and validated for a non-
trivial benchmark problem for both tracking and economic
based operation. The scheme determines a tight attainable
lower-bound relaxed solution and subsequently restores
the integrality constraints and seeks a close sub-optimal
switching solution within the specified bounds. Compu-
tationally efficiency and recursive feasibility are achieved
considering only the nominal case. Future work focuses on
stability analysis as well as robustness against plant-model
mismatch and parametric uncertainties.
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