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Abstract: The objective of this work is to provide systematic tools for the analysis and
mitigation of sensor faults in sampled-data processes with discretely-sampled and delayed state
measurements. The emphasis is on determining the effects of varying process and controller
parameters, including faults, sampling period, delay, plant-model mismatch and controller gain,
on the stability and performance characteristics of the closed-loop system, and providing insight
into how these effects can be counteracted through the use of active fault accommodation
measures. The developed insights and methods are applied to a representative chemical process
system with sampled and delayed state measurements. The stability of the closed-loop system
is first characterized as a function of the sampling rate, the measurement delay, the fault
magnitude, the fault accommodation measures, and the plant-model mismatch. The faults
assessed have the form of diminished or hyperactive measurements of the system states. As
a primary accommodation measure for these faults, the location of the closed-loop poles are
adjusted to achieve stability during faulty operation. A performance metric that captures the
closed-loop system’s disturbance recovery behavior is chosen and parameterized in the same
manner as the stability of the system, and is used to inform the fault accommodation decision-
making process further. The explicit characterization of the stability and performance regions
offer insight into the operational robustness and ranges of tolerable sensor faults that can be
accommodated; and these are discussed with some simulation results for context.

Keywords: Sensor faults, fault accommodation, sampled-data systems, measurement delay,
chemical processes.

1. INTRODUCTION

The ability to operate a process safely and profitably
despite faulty conditions in the process or control sys-
tem components is an increasingly critical requirement of
modern-day process systems. The fundamental and practi-
cal significance of this problem have motivated significant
research work leading to an extensive body of work on
the analysis, design and implementation of fault-tolerant
control systems (see, for example, Blanke et al. (2003);
Isermann (2005); Mhaskar et al. (2013)). This problem
has classically been studied in the context of conventional
feedback control systems which assume that continuous
state and/or output measurements are available from
the sensor to the controller. Due to advances and cost
reduction in sensing technologies, discrete sampled-data
measurements are becoming more common in industrial
processes. This has implications for the control scheme for
such systems as continuous measurement of system data
often proves logistically or technologically prohibitive with
these sampled-data sensors. In such systems, the stability
and performance of the closed-loop system (and hence its
fault-tolerance capabilities) are directly linked to the sam-
pled measurement frequency. This has motivated a series
of prior works addressing the problem of fault-tolerant
control in the context of sampled-data process systems
using active control structure reconfiguration (Sun and

El-Farra (2011)) and stability-based fault accommodation
approaches (Napasindayao and El-Farra (2013)). These
works were extended in Napasindayao and El-Farra (2015)
to include an optimization-based approach for fault esti-
mation to aid in the fault accommodation framework and
in Allen and El-Farra (2017) to incorporate performance
considerations in the fault accommodation logic in the
context of faulty control actuators.

The majority of these prior works maintained a focus
on control actuator faults, with relatively little attention
dedicated to handling sensor faults. However, sensor faults
are common and often critical to the performance of
the overall system. This is especially evident in the case
of dense sensor deployment and large sensor networks,
which are common in many industrial applications. Ex-
amples of previous works on this subject include stud-
ies on passive fault-tolerant control approaches in the
context of sensor data losses (e.g., Gani et al. (2008)),
sensor reconfiguration-based approaches (e.g., Yao and El-
Farra (2014)), stability-based accommodation using de-
layed measurements (e.g., Peng and El-Farra (2015)), and
performance-based accommodation of systems with multi-
rate sensor faults (e.g., Allen et al. (2019)).

While this growing body of work has looked separately
into the issues of stability, performance, delays and sensor
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faults, as a whole there has not been any rigorous assess-
ment or examination of the implications and nuances that
occur when these factors are addressed at once. In partic-
ular, the model’s time evolution exhibits multiple discrete
instances of discontinuity as a consequence of the update
schemes required in sampled-data models, as discussed in
the case of actuator faults in Allen et al. (2019). Because
of these discontinuities, the effects of measurement delays
on the performance characterization of such systems are
especially complex, and to date those effects have not
been explored in the context of sampled-data systems with
sensor faults. This study aims, in part, to address this gap.

Motivated by these considerations, in this work we seek to
develop a unified framework for sensor fault-tolerant con-
trol of sampled-data process systems with measurement
delays that offers further insights into both the limitations
imposed by sensor faults and measurement delays on the
performance and stability of the closed-loop system, and
the possible fault accommodation strategies that incorpo-
rate both stability and performance considerations. This
framework offers a more comprehensive picture of fault-
tolerant control through addressing specifically the per-
formance aspects of the system under sensor faults as a
function of various process parameters.

2. PRELIMINARIES

2.1 System description

In this work, we consider the following class of linear
continuous-time systems with dynamics captured by a
state-space representation of the form:

ẋ = Ax+Bu

y = Φx
(1)

where x ∈ Rn is the vector of system state variables,
A ∈ Rn×n and B ∈ Rn×m are constant state and input
matrices, respectively, describing the system dynamics,
u ∈ Rm is the vector of manipulated inputs, y ∈ Rn is
the vector of state measurements, Φ = diag{φi} ∈ Rn×n is
a diagonal matrix that indicates the fault or health status
of the measurement sensors, where φi represents the fault
in the i-th measurement sensor. A value of φi = 1 indicates
a healthy sensor, while any other value different from 1 is
taken to indicate a faulty sensor. In this representation,
sensor faults are basically modeled as either diminished
or amplified state measurements. When all measurement
sensors are healthy, Φ will be the identity matrix.

Referring to the system of Eq.(1), the control problem
considered is that of stabilizing the states of the closed-
loop system at desired steady-state values in the presence
of measurement sensor faults, while minimizing the closed-
loop performance degradation resulting from the sensor
faults. This objective is to be achieved using discretely-
sampled and delayed state measurements, while account-
ing for the performance of the post-fault closed-loop sys-
tem in the selection of an appropriate fault accommoda-
tion strategy. For the purposes of this study, it is assumed
that a satisfactory method for detecting and estimating
the size of the sensor faults is available (whether that be
a single estimate of the fault or a range of values that
the fault is assumed to be contained within), as well as
some means of delay estimation such as time stamping

of measurements. These assumptions are made in light of
the intended emphasis of this work on the analysis and
mitigation aspects of the problem.

2.2 Model-based feedback controller design

In a sampled-data system, measurements of the states of
the system of Eq.(1) are not continuously available. This
necessitates the use of an inter-sample model predictor
to estimate the system states between sampling times in
order to provide a continuous control action to the process.
To this end, we consider the following system model:

˙̂x = Âx̂+ B̂u (2)

where x̂ is the vector of the modeled system states; and

Â and B̂ are the modeled values of the state and input
matrices, A and B, respectively. The difference between

the plant matrices (A,B) and the model matrices (Â, B̂)
describes the plant-model mismatch.

The model of Eq.(2) is embedded within the control system
and its states are assumed to be continuously available to
the feedback controller. The model-based control action
can then be computed as follows:

u = Kx̂ (3)

where K is a constant feedback gain matrix chosen to
stabilize the origin of the closed-loop model, where this
stability condition is determined by the placement the
poles of the closed-loop model.

While the values of x̂ are continuously available to the
controller, it is important to periodically update x̂ to
match the state of the actual system dynamics and correct
for any inaccuracies caused by the plant-model mismatch.
The implementation of this model state update is compli-
cated when state measurement delays are involved since
updating x̂ using a delayed measurement of the state
x introduces unneeded errors in the feedback loop. One
way to compensate for such errors is to include within
the control system a propagation unit that provides an
estimate of the current state of the system based on the
delayed measurement. A propagation unit of the following
form is used to account for measurement delays:

˙̄x = Āx̄+ B̄u (4)

where x̄ is the state of the propagation unit, Ā and
B̄ are constant matrices describing the dynamics of the
propagation model (note these are not necessarily equal

to A,B or Â, B̂).

If measurements arrive at the controller after a delay τ
from the time the measurements were taken and transmit-
ted, the propagation unit will propagate the state mea-
surements from the transmission time to the current time
in order to provide a more accurate estimate of the current
state of the system which is then used to update the state
of the model. A schematic representation of the model and
propagation unit update patterns is depicted in Fig.1 for
the case when no sensor faults are present. It can be seen in
Fig. 1 that the state of the propagation unit is reset to the
state of the system at each transmission time, tk−τ , where
τ represents the length of the delay (which for the purposes
of this study is assumed to be known and constant). The
sampling period is given by h = (tk+1 − τ) − (tk − τ),
and without loss of generality, it is assumed that τ < h.
It should be noted, however, that this assumption is made
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Fig. 1. Model and propagation unit state update patterns using
discretely-sampled and delayed measurements.

only to simplify the model and propagation unit update
patterns, but can be readily relaxed at the expense of
increased complexity in the analysis.

In the presence of sensor faults, the update law for the
state of the propagation unit is modified as follows:

x̄(tk − τ) = y(tk − τ) = Φx(tk − τ) (5)

where the Φ is the sensor fault matrix defined earlier in
Eq.(1). Note that the presence of sensor faults causes
the state of the propagation unit to be updated with
a distorted measurement of the system state at each
transmission time. Once the state of the propagation unit
has been refreshed, it propagates the delayed measurement
to the signal arrival time, tk, and updates the model state
of Eq.(2) as follows:

x̂(tk) = x̄(tk) (6)

It is important to note that for the implementation of
this type of delay-handling strategy it is assumed that at
each arrival time, tk, the propagation unit immediately
propagates the received measurement over the interval
t ∈ (tk−τ, tk) using the stored control inputs from Eqs.(2)-
(3). For this to be possible the delay size τ must be known
or estimated.

3. CHARACTERIZATION OF CLOSED-LOOP
STABILITY SUBJECT TO SENSOR FAULTS

To elucidate the influences of sensor faults on the stability
of the closed-loop system, we proceed in this section to
formulate an augmented closed-loop system that captures
the collective dynamics of the plant, the controller model
and the propagation unit. To this end, we define an
augmented state vector ξ = [xT eTp eTm]T , with ep =
x̄ − x representing the propagation unit error and em =
x̂ − x̄ representing the model estimation error. With
these definitions, the augmented closed-loop system can
be represented in the following form:

ξ̇ = Λξ (7)

where

Λ = [ Λ1 Λ2 Λ3 ] (8)

with

Λ1 =

 A+BK

Ā−A+
(
B̄ −B

)
K

Â− Ā+
(
B̂ − B̄

)
K



Λ2 =

 BK

Ā+
(
B̄ −B

)
K

Â− Ā+
(
B̂ − B̄

)
K

 , Λ3 =

 BK(
B̄ −B

)
K

Â+
(
B̂ − B̄

)
K


It can be shown (using calculations similar to those in Na-
pasindayao and El-Farra (2013)) that the solution to the
above augmented closed-loop system takes the following
piecewise form:

ξ(t) =



eΛ(t−tk)Mkξ(t0)

∀t ∈ [tk, tk+1 − τ),∀k ≥ 0

eΛ(t−tk+1+τ)Ipe
Λ(h−τ)Mkξ(t0)

∀t ∈ [tk+1 − τ, tk+1),∀k ≥ 0

(9)

where h = tk+1 − tk is the sampling period, and M is
a special matrix that dictates closed-loop stability and is
given by:

M = Ime
ΛτIpe

Λ(h−τ) (10)

with Im and Ip defined as follows:

Im =

[
I O O
O I O
O O O

]
, Ip =

[
I O O

Φ− I O O
I − Φ I I

]
(11)

where I represents the identity matrix. The matrices Im
and Ip are referred to as the model and propagation
unit update matrices, respectively, since the structures of
these matrices are dictated by the model and propagation
update logics. Note that the sensor fault parameter Φ
manifests itself only in the propagation unit update matrix
Ip due to the fact that the state of the propagation unit
is updated with a potentially incorrect state measurement
as per Eq.(5). The model state, however, is only indirectly
influenced by the sensor fault since it is updated using the
state of the propagation unit.

Due to the discretely-sampled nature of the state mea-
surements, it can be shown (e.g., see Napasindayao and
El-Farra (2013), Garcia et al. (2014)) that closed-loop
stability is assured if the maximum eigenvalue magnitude
of the stability test matrix M is strictly less than one, i.e.:

λmax

(
M(A,B, Â, B̂, Ā, B̄,K,Φ, h, τ)

)
< 1 (12)

From an operational standpoint, the condition in Eq.(12)
can also be leveraged as the basis for the development
of stability-based fault accommodation strategies that
explicitly account for the effects of all the parameters
shown in Eq.(12). Potential measures for mitigating the
impact of faults include adjusting any variable parameter
in the model as well as the more conventional approach
of varying the feedback controller gain, K. For any fault
accommodation strategy, the condition in Eq.(12) can be
used to explicitly determine a priori if the accommodation
measure taken will stabilize the post-fault closed-loop
system. For example, for a given plant-model mismatch,
sampling period, delay size, and fault size, this condition
can be used to determine the range of possible values that
an accommodation variable (such as pole location) can
assume so as to maintain post-fault closed-loop stability
(see Section 5 for a demonstration).
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4. CLOSED-LOOP PERFORMANCE
CHARACTERIZATION UNDER DELAYS AND

SENSOR FAULTS

To analyze the impact of measurement sampling, delays
and sensor faults on closed-loop performance, we take the
system to be initially at steady-state prior to an impulse
perturbation at some time by an external disturbance in
a particular input. The performance of the closed-loop
system is then characterized in terms of the settling time
of some chosen performance output in response to this
perturbation. To this end, we consider the following state-
space system representation, which now includes the input
disturbances:

ẋ(t) = Ax(t) +Bu(t) + Ew(t) (13)

z(t) = Jx(t) (14)

where w(t) = δ(t−t0) ∈ Rq×1 is an impulse disturbance at
some time t0 that manifests itself into the plant dynamics
through the matrix E ∈ Rn×q; z(t) is the performance
output, and J is the performance output matrix. Based on
this representation, it can be shown that the augmented
closed-loop system takes the following form:

ξ̇(t) = Λξ +Hw(t) (15)

z(t) = Lξ(t) (16)

where H = [ET − ET O]T and L = [J O O], and that
the performance output is given by:

z(t) =


z1(t), ∀t ∈ [tk, tk+1 − τ),∀k ≥ 0

z2(t), ∀t ∈ [tk+1 − τ, tk+1),∀k ≥ 0

(17)

where

z1(t) = LeΛ(t−tk)MkH

z2(t) = LeΛ(t−tk+1+τ)Ipe
Λ(h−τ)MkH

(18)

Recall that in general, the H2-norm is given by:

‖G‖2H2
=

∞∫
t0

zT (t)z(t) dt (19)

Substituting the performance output response of Eqs.(17)-
(18) into Eq.(19), we obtain the following expression for
the extended H2-norm of the sampled-data closed-loop
system:

t∞∫
t0

zT (t)z(t) dt =

∞∑
k=0

tk+1−τ∫
tk

zT1 (t)z1(t) dt


+

∞∑
k=1

 tk∫
tk−τ

zT2 (t)z2(t) dt

 (20)

Based on this, it can be shown that the extended H2-norm
can be computed as:

‖G‖H2
= trace

(
HT (X1 +X2)H

)1/2
(21)

where X1 and X2 are the solutions to the following discrete
Lyapunov equations:

MTX1M −X1 +Wo (0, h− τ) = 0

MTX2M −X2+(
eΛ(h−τ)

)T
ITp Wo (0, τ) Ipe

Λ(h−τ) = 0

(22)

with Wo(0, h− τ) and Wo(0, τ) defined by:

Wo (0, h− τ) =

h−τ∫
0

(
eΛt
)T
LTLeΛtdt

Wo (0, τ) =

τ∫
0

(
eΛt
)T
LTLeΛtdt

(23)

An examination of the above equations shows that the
closed-loop performance metric is characterized in terms of
the same process, model, and propagation unit parameters
that appear in the closed-loop stability characterization
of Eqs.(10) and (12). This characterization of the closed-
loop performance can be used in conjunction with the
closed-loop stability characterization discussed in Section
3 to explore the interplays between plant-model mismatch,
delays, sampling rates, and faults on the closed-loop per-
formance. These interplays are explored in the context of
a simulation case study in Section 5. This insight can then
be used to develop fault mitigation strategies that not only
ensure closed-loop stability but also minimize performance
deterioration in the presence of faults.

5. SIMULATION STUDY

To explore the methods developed in Sections 3 and 4,
a process composed of a cascade of two non-isothermal
continuous-stirred tank reactors with a recycle stream and
three parallel irreversible elementary reactions is used as
an illustrative example (see Sun and El-Farra (2008) for
the process model and model parameters). This process
is chosen due to its controllability and thus the ability to
place the poles of the closed-loop system at any location.
This aids in the illustrative value of this process when
assessing fault accommodation measures. The linearized
process model of this system can be cast in the form of
Eqs.1-4 with the following numerical values for the state
and input matrices:

A =

 25.30 4.97 31.75 0
−78.03 −45.94 0 34.64
14.70 1.42 −2.84 1.42

0 13.47 −22.45 −24.88



B =

 9.45e−6 0 0 0
0 2.82 0 0
0 0 3.47e−6 0
0 0 0 5.71

 (24)

The state and manipulated inputs of the system are de-
fined as x = [x1 x2 x3 x4]T and u = [u1 u2 u3 u4]T , respec-
tively, where x1 and x3 are the dimensionless deviations of
the temperature in the first and second reactors, respec-
tively; and x2 and x4 are the dimensionless deviations of
the reactant concentration in the first and second reactors,
respectively. Likewise, u1 and u3 are the deviation vari-
ables for the heat duty and feed-stock concentration to the
first reactor; and u2 and u4 are the equivalent quantities for
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the second reactor. The system is to be operated around
the open-loop unstable steady state.

The disturbance input to the system for the simulations
was chosen to be the temperature of the feedstock stream
into the first reactor. Any plant-model mismatch is re-
ported as a deviation in the modeled estimates of the en-
thalpy of reaction for all three reactions: ∆Hi,model = (1+
δ∆H) ·∆Hi,actual. This mismatch primarily manifests itself
in the deviations in the linearized temperature equations
(i.e. the first and third rows of the A matrix), such that

A 6= Â and A 6= Ā. The controller gain K was calculated
by placing the poles of the closed loop system model at
α·[−1, −2, −3, −4], where α is the primary means of fault
accommodation with a baseline value of α = 1. Finally,
and to simplify the analysis and visualization of the results,
the sensor fault matrix was taken to be of the form Φ = φI,
where φ is the fault size which is assumed to be the same
for all measured states. It is possible, however, to consider
different fault sizes for different measured states.

5.1 Effects of sensor faults and plant-model mismatch

First we will explore the effects that sensor faults and
plant-model mismatch have on the stability and perfor-
mance of the closed-loop system. By leveraging the anal-
ysis tools presented in Sections 3 and 4 we can observe
how the potential under- and over-estimation of a given
process parameter can impact the stability, performance,
and tolerable fault range of the system.
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Fig. 2. Contour plot showing the closed-loop stability region (uncol-
ored) and performance contours as a function of the sensor fault
φ and enthalpy of reaction mismatch δ∆H , with a sampling
period of h = 0.05 hours and delay of τ = 0.025 hours, with (a)
the pole placement parameter at its nominal value of α = 1 and
(b) the pole placement parameter at its largest tested value of
α = 10.

Fig.2 shows the performance metric obtained in Section 4,
where a given contour line inside the white region depicts
the settling time (recall that lower values correspond to
better performance). The stability region of this process
is also shown in this figure: any set of parameter values
that fall in the region of solid color correspond to unstable
operation.

Nominal process operation, meaning no sensor fault and no
plant-model mismatch, corresponds to a value of φ = 1 and
δ∆H = 0. Note how a relatively small underestimation of
the plant-model mismatch (any deviation to the left along
the horizontal line at φ = 1) would result in the system
being pushed to the unstable region of operation, whereas
a much larger perturbation would need to occur in the
positive direction to result in instability. This is true for

both cases shown in Fig.2. This illustrates the fact that
underestimating the heat generated from this exothermic
reaction is quite detrimental whereas overestimation of the
heat generation actually results in increased performance
(to a point). This is believed to be due to the “built-
in” aggressiveness in the controller that occurs when the
enthalpy of reaction is overestimated.

Comparing Fig.2(a) to Fig.2(b) shows the benefit of the
chosen accommodation measure. In the case of nominal
operation, Fig.2(a) shows that the region of best perfor-
mance cannot be obtained with no plant-model mismatch
(δ∆H = 0). However, when the accommodation variable is
adjusted as shown in Fig.2(b), this pushes the region of
best performance to overlap with operation of the plant
with a perfect model. This also has the added benefit of
increasing the range of tolerable faults of the kind φ > 1
that the system can remain operable during. It should
also be noted that with the parameters shown in Fig.2,
the most effective safeguard against faults that diminish
the sensors’ output (φ < 1) would be to introduce some
positive plant-model mismatch (δ∆H > 0).

5.2 Effect of sensor faults and pole placement parameter:
active fault accommodation

In this section we will examine the prescribed fault ac-
commodation parameter α, and how it can be adjusted to
accommodate for sensor faults. As with the prior section,
5.1, this will be done relative to the sensor faults.
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Fig. 3. Contour plot showing the closed-loop stability region (un-
colored) and performance contours as a function of the sensor
fault φ and pole placement parameter α, with a sampling rate of
h = 0.05 hours and delay of τ = 0.025 hours, with (a) a perfect
process model and (b) a plant-model mismatch of δ∆H = 0.05.

The trends shown in Fig.3 are consistent with those
in Fig.2, where the perfect model does not offer much
difference in the magnitude of the tolerable fault ranges
across the accommodation variable α when compared to
the case with plant-model mismatch. However, the values
of the tolerable faults that these can accommodate are
quite different. This is consistent with Fig.2, where vertical
slices at δ∆H = 0 and again at δ∆H = 0.05 produce similar
fault ranges. Interestingly, due to the stability landscape,
the larger the plant-model mismatch the further down
the tolerable range is shifted in absolute terms. This has
interesting implications to fault-tolerance and operability
if these types of trends are known a priori. For example,
an operator could intentionally augment some modeled
parameters in such a way to provide more “centered” fault-
tolerance, or could “hedge” operation in such a way to be
more robust to faults in a certain direction.
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5.3 Closed-loop simulation results

In this section we consider the dynamic response of the
closed-loop system to a disturbance in the case of faults
that may be performance-degrading and/or destabilizing.
The results in the presence and absence of fault accommo-
dation are compared. The disturbance creates an increase
in the temperature of the feed into the first reactor, which
due to the kinetics of the three parallel reactions causes the
undesirable products to out-compete the desired product
leading to a decrease in the desired product concentration
(i.e., the performance output decreases).
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Fig. 4. Illustration of performance-based fault accommodation:
Time response of the dimensionless closed-loop states (plot (a))
and performance output (plot (b)) to a performance-degrading
fault of φ = 1 → 1.01 · I at t = 1 hour, with a disturbance in
the inlet temperature at t = 2.5 hours, and an accommodation
measure of α = 1 → 10 at t = 3.5 hours, with no plant-model
mismatch, operating with a sampling period of h = 0.05 hours
and a delay of 0.025 hours.

Fig.4 illustrates the benefits of performance-based fault
accommodation. In the absence of fault accommodation,
the system does self-regulate to the prior stable value (as
predicted in Fig.3(a)); however, with accommodation it
does so in a more timely manner. The inlet tempera-
ture disturbance in this instance is solely performance-
degrading, as the closed-loop system is able to recover to
its pre-fault state values.
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Fig. 5. Illustration of stability-based fault accommodation: Time
response of the dimensionless closed-loop states (plot (a)) and
the performance output (plot (b)) to a stability-degrading fault
of φ = 1 → 0.99 · I at t = 1 hour, a disturbance in the inlet
temperature at t = 2.5 hours, and an accommodation measure
of α = 1→ 10 at t = 3.5 hours, with no plant-model mismatch,
operating with a sampling period of h = 0.05 hours and a delay
of 0.025 hours.

Fig.5 illustrates the utility of stability-based fault accom-
modation. After the system is perturbed post-fault, it
is unable to recover until accommodation measures are
enacted, which is consistent with the trends shown in
Fig.3(a). This disturbance is of the same magnitude as
in Fig.4; however, the fault here is a destabilizing one.
Although the overall trends are similar to those in Fig.4,

in this case the system is unable to recover without the
fault being accommodated.
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