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Abstract: In this work, we present a novel approach based on linear matrix inequalities to design a
linear-time varying model predictive controller for a nonlinear system with guaranteed stability. The
proposed method utilizes a multi-model description to model the nonlinear system where the dynamics
is represented by a group of linear-time invariant plants, which makes the resulting optimization problem
easy to solve in real-time. In addition, we apply the control invariant set designed as the final stage
constraint to bound the additive disturbance introduced to the plant by other subsystems interfacing with
the controller. We show that the persistent feasibility is ensured with the presence of such constraint on
the disturbance of the specified kind. The proposed method is then put into the context of emergency
lane change for steering control of automated vehicles and its performance is verified via numerical
evaluation.
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1. INTRODUCTION

The past few decades has witnessed great advances in enabling
technologies of automated vehicles. By removing human fac-
tors in driving, automated vehicles are widely expected to pro-
foundly reshape our society and daily life. While many suc-
cessful results have been reported, it is still too early to take
the safety aspect for granted, especially under the shadow of a
recent incident Knight (2018).

Among a chain of complex modules of an automated vehicle,
the control unit for path tracking is one key component which
plays a pivotal role in ensuring the safety. Although it is reason-
able to assume it operates under nominal conditions at large,
its capability to handle emergency shall never be overlooked.
When something unexpected happens ahead, emergency lane
change (ELC) is a common maneuver other than breaking. In
fact, one study suggests that in many of those cases, the optimal
maneuver would be steering alone (Llorca et al. (2011)). As
a result, different aspects of ELC with different control tech-
niques have been studied, Shiller and Sundar (1998); Swaroop
and Yoon (1999); Llorca et al. (2011); Vanholme et al. (2013),
to name a few.

In recent years, model predictive control (MPC) has been
recognized as another promising approach for vehicle control
and has gained significant attention. Although in theory, two
essential aspects of MPC, namely feasibility of obtaining a
numerical solution and stability of the resulting closed-loop
system, have been well studied (refer to Mayne et al. (2000)
and references therein), the formal analysis of them can be
found absent in practice due to implementation difficulties
(Falcone et al. (2007)). In those cases, extensive tests are carried

? This work was supported by the Swedish Research Council,and the Swedish
Foundation for Strategic Research.

out to verify the control functionality, but it may as well be
inadequate in scenarios like ELC. To address the problem, an
additional convex constraint is introduced by Falcone et al.
(2008) to ensure stability. However, the resulting MPC is cast
as a Sequential Quadratic Program (SQP), which is relatively
burdensome compared to Quadratic Program (QP). Inspired by
the multi-plant description in Kothare et al. (1996), where a
linear-time varying (LTV) system is described by a class of
linear time-invariant (LTI) models, Lima et al. (2017a) propose
a MPC controller which allows the resulting MPC to be solved
as a QP problem with guaranteed stability, and the method
exhibits its capacity in field experiments (Lima et al. (2018a)).
However, the lattice-based design procedure for the final stage
cost introduced in those works requires analytical ingenuity and
the output of the procedure fulfills a necessary, not sufficient
condition for stability, which means the designed final stage
cost needs to go through all LTI model description to verify
its correctness after one design iteration, which results in an
iterative procedure for computing the final stage cost alone.

In addition, the ELC scenarios may impose a new challenge
on the feasibility problem. In the methods introduced above,
the persistent feasibility of obtaining a solution is guaranteed
by proper design of final stage constraint once it’s initially
feasible, which is known as recursive feasibility. However, such
a property is obtained with the assumption that the initialization
procedure would not repeat while operating. When an abrupt
change of lanes occurs, it may be regarded as another initiation
should the provided reference not be executable, which is
significantly different from the one occurred during ignition. By
executable, here we mean the reference is physically feasible
to follow or at least leads to a numerically feasible solution
of the controller. Although it is reasonable to assume the
reference path provided by the planning unit is executable
for the controller, such an assumption would indeed be more
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plausible if a certain metric is provided by the controller itself
to indicate the numerical feasibility of the provided reference
candidate. Similar discussion, although not within the context
of ELC, is found in Simon et al. (2012).

This paper extends our previous works (Lima et al. (2017a,
2018a)) and the approach presented here features the following
new contributions:

(1) the computation of the final stage cost, which is used to
ensure the closed-loop stability, is cast as linear matrix
inequalities (LMIs) to greatly ease the design procedure;

(2) the feasibility of LTV-MPC under a change of set points
are analyzed and a bound is introduced as a sufficient
condition to ensure the feasibility of those changes;

(3) the vehicle control problem in the ELC scenario is put
in connection with the feasibility and stability analysis of
LTV-MPC under set point changes and its performance is
examined via numerical evaluation.

The rest of this paper is organized as follows. Section 2 presents
the preliminaries of LTV-MPC and notations applied here. Sec-
tion 3 reminds the computation of final stage constraints and
final stage cost without disturbance via multi-model represen-
tation. Sections 4 introduces the bound for the disturbance to
ensure feasibility and a LMI formulation for the design of the
final stage cost, and the proposed method is tested via numerical
evaluation in an emergency lane change scenario in Section 5.
Section 6 concludes the paper.

2. PRELIMINARIES ON LTV-MPC

In this section, we introduce the preliminaries on LTV-MPC.
We deal with discrete-time nonlinear systems subject to exter-
nal inputs and additive disturbance on the states:

z(k + 1) = f(z(k), u(k)) + ω(k) (1)
where z(k) ∈ Rn and u(k) ∈ Rm are state and input vectors
respectively. ω(k) ∈ Rn are undesired change introduced by
other subsystems interfacing with the control unit and therefore
regarded as disturbance by the controller. The system is subject
to state and input constraints

z(k) ∈ Z, u(k) ∈ U , ∆u(k) ∈ ∆U , ∀k ∈ N+ (2)
where the sets Z ⊆ Rn and U , ∆U ⊆ Rm are polytopes,
and ∆u(k) = u(k) − u(k − 1). Regarding ω(k), we make the
following assumption:
Assumption 2.1. ω(k) 6= 0 only if z(k) is within certain
polytope Zw ⊆ Z .

Such an assumption is plausible since ω(k) is used to model
undesired change from other subsystems. Within the context of
ELC, this disturbance comes from the path planning module of
the vehicle. Within our scope, the disturbance shall be checked
to fulfill the constraint

ω(k) ∈ W ⊆ Z, ∀k ∈ N+ (3)
whereW is to be designed, as is Zw.

Now consider the problem of controlling the discrete-time non-
linear system (1) with constraints (2) to track a given time-
varying reference when z(k) ∈ Z \ Zw. Under Assump-
tion 2.1, ω(k) is absent. Denote the reference states and inputs
as zr(k) ∈ Z and ur(k) ∈ U and assume it is a solution of
Eq. (1) when ω(k) = 0. Let Z̄r(k) = {zr(k), zr(k+1), ...} be
the reference state path obtained by applying an input sequence

Ūr(k) = {ur(k), ur(k + 1), ...}. Then by first order Taylor
expension, we obtain

z̃(k + 1) = A(ξ(k))z̃(k) +B(ξ(k))ũ(k) (4)
where z̃(k) = z(k)− zr(k) and ũ(k) = u(k)− ur(k) and

A(ξ(k)) =
∂f(z, u)

∂z

∣∣∣z=zr
u=ur

, B(ξ(k)) =
∂f(z, u)

∂u

∣∣∣z=zr
u=ur

(5)

where ξ(k) is a parameter vector of the form ξ(k) =
[zr(k)T ur(k)T ]T , which is known at each step k. Besides,
ξ(k) ∈ Ξ where Ξ is a closed set given by

Ξ = {ξ ∈ Rm+n : ξmin ≤ ξ ≤ ξmax} (6)
where the inequality operations are considered element-wise.

Let γ ∈ Γ represent a model described by a specific pair
(A(ξ), B

(
ξ)
)
, where the set Γ is a multi-plant description

defined as
Γ = {(A,B) ∈ Rm×m × Rm×n :

A = A(ξ), B = B(ξ), ξ ∈ Ξ}. (7)
Note that each γ ∈ Γ is time-invariant and depends on a
(known) parameter ξ. In addition, we assume |Γ| <∞.

Assume that a full measurement or estimate of the state z(t)
is available at the current time t. Then, the following MPC
problem can be formulated

min
Ũt

z̃Tt+N |tQf z̃t+N |t +

t+N−1∑
k=t

z̃Tk|tQz̃k|t + ũTk|tRũk|t (8a)

s. t. z̃k+1|t = A
(
ξ(k|t)

)
z̃k|t +B

(
ξ(k|t)

)
ũk|t,

k = t, ..., t+N − 1, (8b)
∆uk+1|t = uk+1|t − uk|t, k = t, ..., t+N − 1, (8c)

z̃k|t ∈ Z̃, k = t, ..., t+N − 1, (8d)
uk|t ∈ U , k = t, ..., t+N − 1, (8e)
∆uk|t ∈ ∆U , k = t, ..., t+N − 1, (8f)

z̃t+N |t ∈ Z̃f , (8g)
z̃t|t = z̃(t), (8h)
∆ut|t = u(t)− u(t− 1), (8i)

where Ũt = {ũt|t, ..., ũt+N−1|t} is the sequence of inputs to be
optimized, which are constrained to be in a convex polytope U .
The difference between the state vector at time t+` predicted at
time t and the reference state vector zr(t+`) is defined as z̃t+`|t
where ` = 0, 1, ..., N . The difference between the predicted and
the reference state is constrained to be in a convex polytope Z̃ .
The predicted difference of inputs between t+ `+ 1 and t+ `,
denoted as ∆ut+`+1|t, is constrained to be in a convex polytope
∆U . Here, the notation zt+`|t stands for the state z at time t+ `
predicted at time t. The notation is analogous for ut+`|t and
∆ut+`|t. Note that z(t) is then the actual state z at time t, and
u(t) and u(t − 1) are actual inputs at t and t − 1 respectively.
The matrices R, Q, and Qf are positive definite and penalize
deviations from the reference input, state, and terminal state,
respectively.

In addition, we introduce some concepts from Borrelli et al.
(2017) to address the feasibility problem. The following def-
initions are with regards to the system (1) with constraint (2)
under Assumption 2.1 and z(k) ∈ Z \ Zw.
Definition 2.1. We denote the one-step controllable set with
regard to some target set S ⊆ Z as

Pre(S) = {z ∈ Rn : ∃u ∈ U , f(z, u) ∈ S}. (9)
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Definition 2.2. TheN -step controllable set with regard to some
target set S ⊆ Z is defined recursively as

Kj(S) = Pre(Kj(S)) ∩ Z, K0(S) = S (10)
for j = {1, ..., N}.
Definition 2.3. A set O ⊆ Z is said to be a positive invariant
set if

z(0) ∈ O =⇒ z(k) ∈ O, ∀k ∈ N+.

Definition 2.4. A set O∞ ⊆ Z is said to be the maximal
positive invariant set if

O∞ = ∪i∈IOi
where I indexing the family of invariant sets.

In addition, given certain predefined feedback control law l(k),
the system would become autonomous one, namely

z(k + 1) = fa(z(k)) + ω(k) (11)
where fa(z(k)) = f(z(k), l(k)z(k)). For such autonomous
system, all above definitions can be defined analogously.
Theorem 2.5. (Theorem 10.1 in Borrelli et al. (2017)) A set
O ⊆ Z is a positive invariant set for autonomous system (11)
under constraint (2) with ω(k) = 0 if and only if

O ⊆ Pre(O). (12)

3. STABILITY AND FEASIBILITY WITHOUT
DISTURBANCE

In this section, we recall the results derived in Lima et al.
(2017a, 2018a) when ω(k) is absent. For LTI model, a typical
choice for Z̃f is the maximal positive invariant set OLQR

∞ for
the closed-loop system

z̃(k + 1) =
(
A(ξ) +B(ξ)LLQR

(
ξ)
)
z̃(k), (13)

where ξ ∈ Ξ here is a fixed vector and LLQR is the asso-
ciated LQR gain (i.e., the unconstrained infinite time optimal
controller gain).

However, under multi-model description, there are several max-
imal positive invariant setsOLQR

∞ (γ) and several different LQR
feedback controllers LLQR(ξ), one for each ξ ∈ Ξ. Therefore,
the maximal positive invariant set ŌLQR

∞ for the LTV plant, by
Theorem 2.5, shall fulfill ŌLQR

∞ ⊆ Preγ(ŌLQR
∞ ), ∀γ ∈ Γ

where Preγ(·) is with respect to autonomous system under
LQR control law for LTI model γ. With absence of disturbance
ω(k), the following result is derived with regards to the system
(1) under constraint (2) in Lima et al. (2018a) as

ŌLQR
∞ = lim

k→∞
Ωk (14)

where Ωk is computed recursively as

Ωk+1 =
⋂
γ∈Γ

Preγ(Ωk) ∩ Ωk, Ω0 = Z̃

Regarding closed-loop stability, when the model is LTI (i.e., for
a specific ξ ∈ Ξ), the control law u(t) = LLQR(ξ)z̃(t) would
result in an infinite-horizon cost given by

J∗∞
(
z̃(t)

)
= z̃(t)TP (ξ)z̃(t) =

∞∑
k=t

z̃Tk|tQz̃k|t + ũTk|tRũk|t,

(15)
where P (ξ) is given by the solution of the algebraic Riccati
equation for the system (4) for a specific ξ ∈ Ξ, i.e.,

A(ξ)T
(
P (ξ)− P (ξ)B(ξ)

(
B(ξ)TP (ξ)B(ξ)+

R
)−1

B(ξ)P (ξ)
)
A(ξ) +Q− P (ξ) = 0, (16)

which can be rewritten as
Acl(ξ)

TP (ξ)Acl(ξ) +LLQR(ξ)TRLLQR(ξ) +Q− P (ξ) = 0,
(17)

where Acl(ξ) =
(
A(ξ) + B(ξ)LLQR(ξ)

)
. Therefore, the ter-

minal cost z̃Tt+N |tQf z̃t+N |t is typically chosen as the solution
of the algebraic Riccati equation for the system (4) for a given
ξ ∈ Ξ.

To prove the closed-loop stability through Lyapunov techniques
for LTV-MPC, a lattice based method is introduced in Lima
et al. (2018a) where some candidate P̄ that is positive definite
is obtained and then verified to check if
Acl(ξ)

T P̄Acl(ξ) +LLQR(ξ)TRLLQR(ξ) +Q− P̄ � 0, (18)

holds ∀ξ ∈ Ξ. Via such iterative procedure, if P̄ fulfills (18),
then the closed loop stability is ensured. The following results
are proven in Lima et al. (2018a). The narratives are slightly
modified to fit the notion here and the system concerned is
without disturbance ω(k).
Theorem 3.1. (Theorem 5.1 in Lima et al. (2018a)) The prob-
lem (8) is feasible for all t ≥ 0 if Qf = P̄ , Z̃f = ŌLQR

∞ , and if
z̃(0) ∈ KN (ŌLQR

∞ ).
Theorem 3.2. (Theorem 5.2 in Lima et al. (2018a)) Consider
the model (1) under constraint (2) without disturbance ω(k),
and the LTV-MPC controller (8). Assume there is no external
disturbance. The terminal penalty matrix Qf is chosen as P̄ ,
and the terminal constraint Z̃f is chosen as ŌLQR

∞ . Then, the
state of the closed-loop system converges to the origin. More-
over, the origin of the closed-loop system is asymptotically
stable with domain of attraction KN (ŌLQR

∞ ).

4. MAIN RESULTS

Under Assumption 2.1, when ω(k) 6= 0, W is ought to be
present for other subsystems, which introduce ω(k) to the
controller, in order to ensure the feasibility of the control
law, and indeed it can be computed based on the results in
Theorem 3.1.
Theorem 4.1. Given Zw. Let Assumption 2.1 hold. The recur-
sive feasibility is ensured if the disturbance constraintW fulfill

W ⊕Zw = ŌLQR
∞ , (19)

where ⊕ denote the Minkowski addition.

Proof. When ω(k) 6= 0, the control problem (8) can be
viewed to have a new initialization. By Theorem 3.1, under
Assumption 2.1, since ŌLQR

∞ ⊆ KN (ŌLQR
∞ ) the feasibility can

be ensured if (19) holds.
Remark 4.1.1. According to Theorem 3.1, if the disturbance
constraint fulfills

W ⊕Zw = KN (ŌLQR
∞ ),

the resulting system would have a feasible initial condition.
However, it is intractable to explicitly compute KN (ŌLQR

∞ )
since it is dependent on γ. On the other hand, it is not easy
either to verify if z̃+ω ∈ KN (ŌLQR

∞ ) since both z̃ and ω are not
available offline. Note that in Theorem 3.1 z̃(0) ∈ KN (ŌLQR

∞ )
since z̃(0) is the system state during true initialization, which is
available offline.
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Besides, the lattice based approach ensure a necessary condi-
tion is fulfilled, which as a result require verification of inequal-
ity (18) once a candidate P̄ is obtained. Although the analytical
solution for (23) may not be easy to obtain, the existence of
such a P̄ can be sought via Linear Matrix Inequalities (LMI)
approach, as is given below.
Theorem 4.2. Consider the model (1) under constraint (2) and
let Assumption 2.1 hold. The soughted P̄ in Theorem 3.2 is any
solution of the following LMIs:[

P̄ P̄Acl(ξ)
Acl(ξ)

T P̄ P̄ + ∆V (ξ)

]
� 0, ∀ξ ∈ Ξ, (20)

where ∆V (ξ) is given as

∆V (ξ) = Acl(ξ)
TP (ξ)Acl(ξ)− P (ξ). (21)

Proof. By Theorem 3.2, we are seeking positive-definite P̄
such that (18) holds ∀ξ ∈ Ξ. However, by (17), we have

LLQR(ξ)TRLLQR(ξ) +Q = P (ξ)−Acl(ξ)
TP (ξ)Acl(ξ).

(22)
Plugging (22) into (18), we have

Acl(ξ)
T
(
P̄ − P (ξ)

)
Acl(ξ)−

(
P̄ − P (ξ)

)
� 0. (23)

Note that (23) can be viewed as a Schur complement of block
P̄ + ∆V (ξ) in (20). Therefore, LMIs in (20) is equivalent to
ensure (23) to hold and P̄ to be positive definite simultaneously.
As a result, the LMI conditions here are sufficient and necessary
for (18) to hold ∀ξ ∈ Ξ and for the cost function (8a) to be a
valid Lyapunov candidate. Given a P̄ which fulfills (20), the
cost function (8a) can then be applied as Lyapunov candidate
for the stability analysis. It can be shown that the cost is
nonincreasing due to (18). Details of this derivation can be
found in Lima et al. (2018a).

5. AUTOMATED VEHICLE APPLICATION

In this section, we apply the LTV-MPC framework introduced
above to an automated truck and test its performance via numer-
ical evaluations. The test scenario is a road with two obstacles,
40 meters apart from each other, which is immediately followed
by a steep curve, as is illustrated in Fig. 1. Within such a situa-
tion, the truck can become unstable easily, as is the case for the
controller without the final state cost, while our proposed LTV-
MPC controller manages to stabilize the truck while ensuring
feasibility under multiple ELCs.

40 m40 m20 m

1 m 50 m

Fig. 1. The scenario for LTV-MPC controller stability test. For
the purpose of clear presentation, the scale in the figure is
not consistent.

5.1 Spatial vehicle model for controller design

We apply the spatial vehicle model introduced in Gao et al.
(2012) for controller design. Via such a model, the deviation
from path central line and correct heading can be directly
addressed. In addition, the model can be applied to address
other criteria, such as accuracy and smoothness of tracking,
which is verified in the field tests in Lima et al. (2017b).

The nonlinear bicycle in the road aligned framework is shown
in Fig. 2 and its dynamics is given as

e′y =
ρs − ey
ρs

tan(eψ),

e′ψ =
(ρs − ey)

ρs cos(eψ)
κ− ψ′s.

(24)

where s denotes the position align the road central line, ey is
the deviation from the central line, eψ is the heading error,
ρs is the radius of curvature of the road and ψs is the road
heading angle. The derivatives are taken with respect to s. The
vehicle curvature κ is related with the vehicle steering angle δ
by κ = tan(δ)

l where l is the distance between front and rear
wheels.

y

l

v

ρs(s)

s

road centerline

tangent

δ

eψ
ψs

ey

x

Fig. 2. A nonlinear bicycle model in the road aligned framework
Lima et al. (2017a).

Via linearization and discretization around a reference path
zr(k) = [ey,r(k), eψ,r(k)]T = [0, 0]T for all k ≥ 0 given
by a reference sequence of inputs Ūr(k), if ∆s is assumed to
be constant, a LTV model of the form (4) when disturbance is
absent can be obtained as follows[

ey(k + 1)

eψ(k + 1)

]
=

[
1 ∆s

−κ2
r(k)∆s 1

][
ey(k)

eψ(k)

]
+

[
0

∆s

]
κ̃(k),

(25)
where κr = κs = 1

ρs
is the curvature of reference path.

5.2 Computation of the final state constraint

With system dynamics (24), the final stage constraint is com-
puted by (14). Here we design the Zw to be in the vicinity of
the origin andW can be obtained accordingly. All the compu-
tations are carried out via MPT toolbox in MATLAB Herceg
et al. (2013). One of such results for a perticular design of Zw
is shown in Fig. 3.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 3. Given the design of Zw,W is obtained via (19).
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During an ELC, a higher-level path planner generates a lane
change distance modelled as w(t), which is compared to the
disturbance set W to ensure the persistent feasibility of the
controller. A visualization of their relations in an ELC scenario
is shown in Fig. 4. In this case, the magnitude of ELC is within
W .

Z̃f
N

Reference path

Predicted path

Terminal set

ωŌLQR
∞

W 

Fig. 4. An ELC is planned to occur at k = 5 where the changed
lane is in green and the setW in yellow. In this particular
illustration, such ELC would be regarded as feasible since
z̃(5) + ω(5) ∈ ŌLQR

∞ .

5.3 Computation of the final stage cost

As for the final stage cost P̄ with model (25), we solve the
LMIs (20) while minimizing the trace of P̄ . We plot out the
ellipse of xT

(
P̄−P (ξ)

)
x = 1 in solid line and xTAcl(ξ)

T
(
P̄−

P (ξ)
)
Acl(ξ)x = 1 in dashed line. The ellipses with the same γ

are in the same color. xT
(
P̄ − P (ξ)

)
x = 1 is always encircled

by xTAcl(ξ)
T
(
P̄ − P (ξ)

)
Acl(ξ)x = 1 for the same γ, which

indicates (23) hold, and consequently the values of Lyapunov
function is decreasing.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 5. The ellipses of of xT
(
P̄ − P (ξ)

)
x = 1 and

xTAcl(ξ)
T
(
P̄ − P (ξ)

)
Acl(ξ)x = 1 with different ξ.

5.4 Dynamic vehicle model for verification

We apply the dynamic vehicle model with 2 wheel axles of
trucks as the plant to test the performance of the proposed LTV-
MPC. We choose trucks to evaluate the controller performance
as they have less maneuverability as opposed to small vehicles,
and they can operate in closed environments for industrial op-
erations, which increases the chance of having fully-automated
functions deployed in the near future, as opposed to those driv-
ing in the public traffic network.

The dynamic vehicle model is given by

m(v̇x − ψ̇vy) = Fx − Fyf sin δ,

m(v̇y + ψ̇vx) = Fyb + Fyf cos δ,

Jzψ̈ = fFyf cos δ − bFyb ,

where vx and vy are velocities in longitudinal and lateral
directions in the vehicle frame respectively, and since our focus
is lateral control, vx holds constant in our simulation. ψ̇ is
the yaw rate, δ is the steering angle of front wheels. Model
parameters m, Jz , f , b are constants. The side forces are linear
functions of slip angles given by

Fyf = −Cfαf , Fyb = −Cbαb,
where Cb and Cf are stiffnesses of the rear and the front axles,
respectively, and the slip angles are given

αf = arctan
(vy + ψ̇f

vx

)
− δ, αb = arctan

(vy − ψ̇b
vx

)
.

The relation between the curvature of the vehicle and its steer-
ing angle can be described by

δ = arctan
(
(l + kusv

2
x)κ
)
,

where l = b+f and kus is the understeer gradient of the vehicle.

The model has been widely applied as it represents well the
vehicle dynamics, and the set of model parameters we use
here are from Lima et al. (2018b). The value of the understeer
gradient is computed by its relation to m, b, f , l, Cf , and Cb
given in Dixon (1996).

5.5 Numerical evaluation

For our numerical evaluation, we set the vehicle speed as 10 m/s
and initially 20 m away from the first obstacle. We have the
state cost matrix Q as a diagonal one with Q11 to be set in
different values and Q22 fixed. The input cost parameter R is
fixed. Since the purpose here is to test the feasibility and the
stability of the controller, those parameters are not fine-tuned.
The LTV-MPC controller runs 50 Hz on the vehicle while the
discretization step for (25) in the controller design is 0.1 s. Such
a setup is initially suggested by Gao et al. (2012) and has been
proven to work well in the previous field tests reported by Lima
et al. (2018a). The controller parameters are summarized in
Table 1.

Table 1. Controller parameters (SI units)

Q22 R N emax
y emax

ψ κmax κ̇max l

10 10 9 4 0.8 0.18 0.05 4

The numerical results of states and inputs for Q11 being 2 and
3 are shown in Fig. 6 and Fig. 7 respectively. The first ELC is
performed at t = 0 s while the second is at t = 4 s. In the case
where both controllers lead to stable trajectories, the one with
the final stage cost outperforms the one without the Qf term,
while in the other case when Q11 = 3, the controller with Qf
term leads to a slightly faster rise time of ey (1.4 s, as opposed
to 1.52 s when Q11 = 2), while the one without Qf leads to
an unstable closed-loop system. Notice that in the cases where
the final stage cost in place, there are small offsets of ey in both
Figs. 6 and 7, with magnitudes of 0.09 and 0.08 m respectively.
This is due to that (25) used for prediction in control neglects
the lateral friction which is present in the simulation model.
Compared with the size of the vehicle, such small offset is
acceptable.

In addition, the lane change distance, modelled as ω(t) in our
approach, is compared to the disturbance set W to ensure the
persistent feasibility of the system.
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Fig. 6. States and control with and without final stage costs
where Q11 = 2.
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Fig. 7. States and control with and without final stage costs
where Q11 = 3.

6. CONCLUSION

In this paper, a LMI based approach is presented for LTV-MPC
design. The resulting control law has guaranteed stability for
the closed-loop system and persistent feasibility of the opti-
mization problem under certain additive disturbance from other
interfacing system can be ensured via utilizing the final stage
constraint, which is computed offline. The proposed method is
applied for steering control for automated vehicle application in
an ELC scenario and its capacity is justified through numerical
evaluation.

As for future work, we would like to investigate the potentials
of the control invariant sets for the overall LTV system and the
ones for each LTI model to be integrated into the tube-based
robust MPC. Besides, we are also interested in the analytical
methods to address the stability condition of the LTV-MPC
problem with multi-model representation, apart from the LMI
based numerical approach.
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Wahlberg, B. (2017b). Spatial model predictive control for
smooth and accurate steering of an autonomous truck. IEEE
Transactions on Intelligent Vehicles, 2(4), 238–250.
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