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Abstract: The ability for kinematics to adapt is important for robotic systems applied in
complex environments. This paper focuses on the trajectory control problems of a robotic system
with varying kinematics at the end-effector. A new adaptive control approach is developed for
robotic manipulators with unknown kinematics and dynamics. This is achieved by using a
model-free adaptive controller combined with a kinematics observer. The introduced kinematics
observer allows for estimating the kinematic parameters, even under some unconventional
application scenarios where typical image processing based techniques are not applicable.
Stability of the model-free control with kinematics observer is proven. Control performance and
estimation results have been assessed for a wider range of scenarios in a simulation environment
which incorporates full nonlinear arm dynamics, finite sampling time and sensor noise.

Keywords: Unknown kinematics, Kinematics estimation, Identification and control methods,
Robot manipulators, Adaptive control, Information and sensor fusion.

1. INTRODUCTION

The robotics industry has experienced rapid improve-
ments in productivity and accuracy during the past several
decades. However, most application fields are still limited
to the industrial uses such as assembly, painting, welding
and handling work in the mass-production factories. The
working environments of these robots are usually strictly
defined, which means the kinematics of these robotic ma-
nipulators are fully known. Recently, because of the great
advancements in computing performance, novel sensor
technology and machine learning, there is an increasing
demand of robots in the medical field, service field and
even in the household, where the working environment
and mission show a high level of diversity. The kinematic
adaptability of the manipulator is of great importance in
these scenarios. For instance, in waste processing industry
(Aitken et al., 2018), a robotic manipulator has to change
different tools for classifying, size-reducing and handling
objects made of different materials. Therefore, the ma-
nipulator must show adaptive performance even when the
dimensions of the object or the tool is unknown.

Typical approaches to deal with kinematic uncertainties
are based on visual servoing. This concept was firstly
published by Shirai et al. (1973), who uses visual in-
formation as feedback to reduce the tracking errors of
the manipulator. In visual servoing approaches, the con-
trol is usually implemented in an image space instead
of Cartesian space or joint space, which means it shows
great adaptability with unknown robotic kinematics and
uncalibrated cameras. For example, Piepmeier et al. (1999)
develops a new ”dynamic” quasi-Newton strategy. The al-
gorithm successfully addresses the moving target problem
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for an uncalibrated image-based visual servoing system
with 2 degrees of freedom (DOF). Work performed by
Hsu et al. (1999), Zergeroglu et al. (2001), Parra-Vega
et al. (2003) are limited to the visual servoing control of
planar 2 DOF manipulators. Though these results come
with different structures or algorithms, all of these con-
trollers require accurate measurement of the end-effector
velocity in the image space. This brings significant control
inaccuracy. One more degree of freedom is achieved by
Wang et al. (2010), who develop a new adaptive controller
for image-based tracking of a 3 DOF robot manipulator.
Though it does not require accurate image-space velocity
measurement, an estimation of the image-space velocity
is still required. Visual servoing approach can also be
applied to soft robotics, where the deformation of soft
components introduces kinematic uncertainties during op-
erations. Navarro-Alarcón et al. (2013) focuses on using
a manipulator to realize a deformation controller of an
elastic object based on the visual-servoing approach. Satis-
fying deformation control is successfully obtained without
knowing the deformation model of the elastic object or the
kinematic parameters of the manipulator kinematics. Nev-
ertheless, the convergence rate of the online estimator is
not fast enough for real-time applications at a high motion
speed. Therefore, this strategy requires slow motion of the
robot manipulators. Wang et al. (2016) applies an adap-
tive visual servoing controller based on piecewise-constant
curvature kinematics to a cable-driven soft manipulator.
The controller successfully drives the manipulator to the
desired position without knowing the true values of the
manipulator’s length. However, the convergence rate is
relatively slow when the robot is strongly interacting with
the environment.

Another common control scheme employs the manipu-
lator’s Jacobian matrix for trajectory control without
knowing the robot system kinematics. Specifically, work
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published by Cheah et al. (1999, 2006) present adaptive
Jacobian controllers for trajectory tracking of robotic ma-
nipulators with uncertain kinematics and dynamics. These
algorithms use the measurement of the end-effector posi-
tion, joint angles and joint velocities to online estimate
and update the Jacobian matrix of the manipulator. This
control method has been successfully tested on a SONY
SCARA robot, which has 2 DOF. In contrast to Cheah’s
method, Dixon (2007) exploits a feedforward control term
that actively compensates for the parametric uncertainty
in the Jacobian matrix. One common disadvantage of these
control algorithms, based on the estimated Jacobian, is
the high complexity of the uncertainty estimators. The
regressors in the uncertainty estimators require knowledge
of not only joint space position, but also joint space ve-
locity, which greatly increases the computational cost and
decreases the estimation accuracy.

In specific industries, the accuracy of the camera mea-
surements heavily depends on the environmental factors,
such as brightness (Pérez et al., 2016) or radiation (Aitken
et al., 2018). Specifically, in case of radiation, it may not
be advisable to mount cameras directly on the manipu-
lator to avoid proximity to a damaging radiation source.
A stationary set-up relative to the arm might be more
suited to observe the manipulator end-effector. This is the
scenario fitting the work in this paper. This paper presents
an adaptive control scheme which adapts to the unknown
kinematics and the unknown system dynamics of a robot
arm. The control scheme consists of a kinematics observer
and an adaptive model-free controller. The kinematics
observer estimates and updates the unknown parameters
online while the only information required is the end-
effector position, the joint space position and joint space
velocities. In contrast to previous work, the proposed kine-
matic observer works online where no end-effector velocity
is required. This means that it requires no pre-training and
low computational power. Moreover, the observer allows
for accurate real-time estimations when the kinematic
parameters change during manipulator operations.

2. PROBLEM FORMULATION

Here, a typical serial robotic manipulator controlled by
motors is considered in this work. This paper assumes
that the dynamics (including, link mass, link inertia, and
centre of mass position of each robot link) of the system are
unknown. This situation is typical in applications using off-
the-shelf robots because the detailed designs are confiden-
tial or difficult to access. In addition, the unknown objects
held by the manipulator introduces dynamic uncertainty.
Besides, it is assumed that some kinematics parameters are
unknown, since the tool or object held by the manipulator
comes with unknown 3D dimensions while the robotic
manipulator itself sometimes may come with unknown link
length.

As motions of the manipulator are directly provided by
the torques generated by each joint motor, the motion
equation (Siciliano et al., 2010) of an n-joint robot can
be modelled by

τ = M(q)q̈ + V (q, q̇)q̇ +G(q) (1)
where τ ∈ Rn is the vector representing the torque applied
at each joint. Vectors q, q̇, q̈ ∈ Rn indicate the angular
positions, angular velocities and angular accelerations at
each joint. M(q) ∈ Rn×n is the inertia matrix, V (q, q̇)
is the vector representing the centrifugal and Coriolis’s
term, and G(q) denotes the gravity term. Note that the
terms M , V and G change with the robot’s motions and
also vary due to unknown kinematics and dynamics of
the system. The dynamics equation shown in Equation
(1) is in the joint space q. However, the tasks (like
handling) performed by robotic manipulators are usually

about to control the robot end effector following a desired
trajectory in the Cartesian space. Specifically, the end-
effector in this problem is defined as the tip point of the
unknown tool held by the manipulator. Though the real-
time end-effector position can be measured by a calibrated
camera, the real-time end-effector velocity can hardly be
measured accurately by a camera. As stated by Wang
et al. (2010), since the camera sampling rate is slow in
general, the differentiation of camera’s imaging output
introduces a large noise level of the velocity measurement.
Besides, Simoncelli et al. (1991) proved that the accuracy
of the velocity measurement is easily affected by the
contrast level and camera noise. Therefore, the Cartesian-
space end-effector position/velocity are computed from
the measurements in joint space with the knowledge of
the manipulator kinematics model, shown in the following
equations:

x = F (q) ẋ = J(q)q̇ (2)

where x denotes the end-effector position (and orientation)
in a 3D Cartesian space. F (q) represents the forward kine-
matics of the manipulator from its base to the end-effector
when holding various tools or objects, J(q) represents the
Jacobian matrix of the manipulator. Due to the unknown
dimensions of the robot’s end-link with an unknown load,
both F (q) and J(q) are partially known. This implies
similar to Colbaugh et al. (1995), the representation of
(1) in the Cartesian space:

τc = Mc(q) · ẍ+ Vc(x, ẋ)ẋ+Gc(x) (3)

In order to follow a desired trajectory, the end-effector
is subject to a feedback controller which is designed to
minimize the tracking error. The tracking error is defined
as:

e = xd − x (4)

where xd represents the demanded end-effector’s 3D po-
sition in the reference Cartesian space. Therefore, the
derivative of the tracking error ė = ∂e

∂t with respect to
time t can be computed by

ė = ẋd − ẋ. (5)

where ẋd and ẋ are the time derivatives of the demand
signal xd and the measurement x in 3D. It can be as-
sumed that xd and its first two derivatives in time remain
bounded.

Here, a calibrated camera is used to identify the tip
(end-effector point) of the robot, which may carry an
unknown load at the end-effector. The camera measures
the Cartesian position of the end-effector point, in order to
estimate the 3D dimensional information of the unknown
tool via a kinematics observer. One important property
is that, the kinematics function (2) can be factorized in
terms of a regressor and a vector representing the unknown
parameters which are observed:

x = Y (q)Ψ (6)

where Ψ is the parameter vector (to be estimated) of the
kinematics function, and Y (q) = [Yi,j(q)] is the regressor
matrix which is a function of joint-space position q.

Subsequently, it is also necessary that Y (q) is persistently
excited (Sastry et al., 2011):∫ t+T

t

Y T (q)Y (q)dt ≥ εI (7)

satisfying the existence of a positive constant ε for a
specific value of T > 0 and all time t ≥ 0. The kinematics
observer designed in this work (discussed in the following
section) requires these properties.
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3. NOVEL ADAPTIVE CONTROL AND
KINEMATICS OBSERVATION SCHEME

3.1 Colbaugh et al.’s Model-free Adaptive Controller

The model-free adaptive controller of Colbaugh et al.
(1995) is adopted as a part of the overall adaptive control
scheme. The controller is implemented in Cartesian space
instead of joint space. Therefore, the required knowledge
is the forward kinematics F (q), the end-effector velocity
and the Jacobian matrix J(q), for which the kinematics
observer and the joint space positions/velocities will be
used to estimate those. However, this is still a reduced set
of feedback signals and greatly reduces the computational
cost (e.g. the inverse kinematics F−1(q) is not required to
be computed in real-time).

Firstly, a “modified demanded velocity” and a “weighted
position/velocity error” are defined as

ẋ∗d = ẋd + λe (8)

e∗ = ė+ λe = ẋ∗d − ẋ (9)
where ẋ∗d is the modified demanded velocity, e∗ is the
weighted position/velocity error, xd is the desired position
in Cartesian space. λ is a positive constant weighting factor
to compose the “modified errors”. The adaptive control
signal is defined as:

τA = A(t)ẍ∗d +B(t)ẋ∗d + f(t) + [2k +K(t)]e∗ (10)

ḟ = −α1f + β1e
∗ (11)

Ȧ = −α2A+ β2e
∗(ẍ∗d)

T (12)

Ḃ = −α3B + β3e
∗(ẋ∗d)

T (13)

K̇ = −α4K + β4e
∗(e∗)T (14)

where τA ∈ Rn is vector of virtual control forces to be
applied to τc, i.e. τc = τA (3). k, αi=1,2,3,4 and βi=1,2,3,4

are constant positive scalars. A(t), B(t),K(t) and f(t) are
time-variable adaptive gains which are updated online. It
can be seen in Equations (8) and (9) that, this adaptive
controller requires real-time values of the end-effector po-
sition and velocity. As the angular measurements q of a
robotic manipulator usually take place at each joint by
the motor encoders, the most accurate and convenient
approach is to measure the manipulator joint space po-
sition/velocity. As a result, the end-effector’s position and
velocity can be computed using the forward kinematics
F (q) and Jacobian matrix J(q) online. However, F (q) and
J(q) are not fully known due to the unknown tool/load
dimensions held by the manipulator. In order to deal with
these kinematic uncertainties, a kinematics observer is
introduced in the control scheme, which is presented in
the following section.

3.2 Unknown Kinematics Observer

The kinematics observer in this scheme is to estimate
the unknown 3D dimensions of the end-effector online.
The observer requires the real-time measure of the end-
effector’s position from the camera. The estimation will
then be used to update the estimates of F (q) and J(q),
which can be used by the model-free adaptive controller.

Firstly, an estimation error e′ is defined as the difference
between the measured end-effector position xpos (e.g.
camera) and the estimated end-effector position:

e′ = xobserved − F̂ (q) (15)

where xobserved is the Cartesian position of the end-effector
point measured by the camera and F̂ (q) is the estimated

end-effector position according to the estimated forward
kinematics. The estimation of F̂ (q) is defined as:

F̂ (q) = x̂ = Y (q)Ψ̂ (16)

where Y (q) = [Yij(q)] is the regression matrix defined

in Equation 6 and Ψ̂ is the estimated tool dimension
parameter vector. This also implies the velocity estimate
˙̂x:

˙̂x = Ẏ (q)Ψ̂, (17)

where Ẏij(q) =
∂Yij(q)
∂q q̇.

The estimation of the tool dimensions are updated online
according to the following update law:

˙̂
Ψ = Y T (·)Λe′ (18)

where
˙̂
Ψ is the rate of change of the estimated parameters,

Λ is a positive definite matrix, Y is the regression matrix
defined above and e′ is the difference between the real end-
effector position and the estimated end-effector position
(15). This implies the following result in terms of the
kinematics observer:

Lemma 1. Assuming the regressor Y (q) is persistently
excited, the camera observation is error free x = xobserved
and we consider Ψ = const., then the estimate Ψ̂ converges
exponentially to the true value Ψ, i.e. limt→∞ Ψ̂ = Ψ and

VΨ = (Ψ̂−Ψ)T (Ψ̂−Ψ) (19)

satisfies

V̇Ψ ≤ −αvVΨ, VΨ ≤ e−αvtVΨ(t = 0) (20)

for some αv > 0. •
Remark 1. Note that the assumption of Ψ = const. can
be slightly relaxed to allow for piecewise constant values
of Ψ. In a more general case, Ψ 6= const., the derivative
Ψ̇ should be assumed to be bounded which would imply
a result of ultimate boundedness for the estimation error
(Ψ̂−Ψ). ◦

Proof. Let us choose the Lyapunov function of (19). This
implies:

V̇Ψ = −(Ψ̂−Ψ)TY T (q)ΛY (q)(Ψ̂−Ψ) (21)

Given persistent excitation of Y (q) (7), Theorem 2.5.1
and 1.5.2 of Sastry et al. (2011) implies exponential

convergence of the error (Ψ̂−Ψ) −→ 0 and (20). �

3.3 Adaptive Control with Unknown Kinematics Observer

Figure 1 presents how the model-free adaptive controller
interacts with the kinematics observer. Hence, the control
system with the kinematics observer is summarized as:

ê= xd − x̂, ˙̂e = ẋd − ˙̂x (22)

˙̂x∗d = ẋd + λê (23)

ê∗ = ˙̂e+ λê = ˙̂x∗d − ˙̂x (24)

so that the adaptive control law with kinematics observer
is to be rewritten as:

τ =A(t)ẍ∗d +B(t) ˙̂x∗d + f(t) + [2k +K]ê∗ (25)

ḟ =−α1f + β1ê
∗ (26)

Ȧ=−α2A+ β2ê
∗(¨̂x∗d)

T (27)

Ḃ =−α3B + β3ê
∗( ˙̂x∗d)

T (28)

K̇ =−α4K + β4ê
∗(ê∗)T (29)
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Fig. 1. The block diagram of the proposed adaptive Con-
troller with unknown kinematics and dynamics.

Given the modified adaptive control law and the expo-
nential stability characteristics of the exponentially stable
kinematics observer, the following robust stability crite-
rion for the adaptive control law with kinematics observer
can be formulated following Theorem 1 (Colbaugh et al.,
1995):
Theorem 1. The modified adaptive model-free controller
(25)-(29) with kinematics observer (18) guarantees that e,
e∗, f , A, B, K are globally uniformly bounded. The state
error e is guaranteed to converge to a compact set that
can be made arbitrarily small.

Proof. (abbreviated) Let us consider the following errors
(similar to Colbaugh et al. (1995)) considering (3):
Φf = f −Gc, ΦA = A−Mc, ΦB = B−Vc, ΦK = K+Vc.

(30)
The Lyapunov equation for closed-loop stability and per-
formance analysis is

V = e∗TMce
∗ + kλeT e+

1

2β1
ΦTf Φf

+
1

2
tr

[
1

β2
ΦAΦTA +

1

β3
ΦBΦTB +

1

β4
ΦKΦTK

]
(31)

This function, V , is positive definite in
{e∗, e,Φf ,ΦA,ΦB ,ΦK}. The closed loop analysis is in-
spired by Colbaugh et al. (1995). However, here we need
to look at the error terms introduced through the use of
the estimated kinematics, (16) and (17). It follows from
(25):

τ =A(t)ẍ∗d +B(t)ẋ∗d + f(t) + [2k +K(t)]e∗

(Vc − ΦB)(λe′) + [2k + ΦK −K](ė′ + λe′) (32)

ḟ =−α1f + β1e
∗ + β1(ė′ + λe′)︸ ︷︷ ︸

=ε1

(33)

Ȧ=−α2A+ β2e
∗(ẍ∗d)

T + β2(ė′ + λe′)(ẍ∗d)
T︸ ︷︷ ︸

=ε2a

+β2(ė′ + λe′)(λė′)T︸ ︷︷ ︸
=ε2b

(34)

Ḃ =−α3B + β3e
∗(ẋ∗d)

T + β3(ė′ + λe′)(ẋ∗d)
T︸ ︷︷ ︸

=ε3a

+β3(ė′ + λe′)(λe′)T︸ ︷︷ ︸
=ε3b

(35)

K̇ =−α4K + β4e
∗(e∗)T + β4(ė′ + λe′)(e∗)T︸ ︷︷ ︸

=ε4a

+β4(ė′ + λe′)(ė′ + λe′)T︸ ︷︷ ︸
=ε4b

(36)

It follows that there are positive constants η0, η1, η2a, η2b,
η3a, η3b, η4a and η4b so that

‖λe′‖ ≤ η0e
−αv2 t

‖ε1‖ ≤ β1η1e
−αv2 t

‖ε2a‖ ≤ β2η2ae
−αv2 t ‖ẍ∗d‖ , β2 ‖ε2b‖ ≤ η2be

−αvt

‖ε3a‖ ≤ β3η3ae
−αv2 t ‖ẋ∗d‖ , ‖ε3b‖ ≤ β3η3be

−αvt

‖ε4a‖ ≤ β4η4ae
−αv2 t ‖e∗‖ , ‖ε4b‖ ≤ β4η4be

−αvt (37)

Hence, from (Colbaugh et al., 1995, Appendix A), it
follows for some positive α10, α20, α30 and α40, the
relationship ẋ∗d = ẋd + λe and ẍ∗d = ẍd + λe∗ − λ2e
and Young’s inequality for some sufficiently small positive
constants η̃0, η̃1, η̃2, η̃3, η̃4a and η̃4b:

V̇ ≤−(
k

4
− η2

0e
−αv2 t

4η̃0
− η2

4ae
−αvt

4η̃4a
− λ2η2

2ae
−αvt

4η̃2b
) ‖e∗‖2

−(
kλ2

4
− η2

3ae
−αvt

4η̃3a
− λ4η2

2ae
−αvt

4η̃2b
) ‖e‖2

−(
α10

4β1
− η̃1) ‖Φf‖2 − (

α20

4β2
− η̃2a − η̃2b − η̃2c) ‖ΦA‖2

−(
α30

4β3
− η̃3a − η̃3b) ‖ΦB‖2 − (

α40

4β3
− η̃4a − η̃4b) ‖ΦK‖2

+
1

β1
δ1 +

1

β2
δ2 +

1

β3
δ3 +

1

β4
δ4 +

1

4η̃1
η2

1e
−αvt

+
1

4η̃2c
(η2a ‖ẍd‖ e−

αv
2 t + η2be

−αvt)2

+
1

4η̃3b
(η3ae

−αv2 t ‖ẋd‖+ η3be
−αvt + η0e

−αv2 tη0e
−αv2 t)2

+
1

4η̃4b
e−2αvt + η̃0 ‖Vc‖ η0e

−αv2 t

+[2k + ‖Vc‖]η3ae
−αv2 t (38)

Lemma 1 shows that the kinematics observer converges
in principle independently from the controller, assuming
sufficient persistent excitation exists. Hence, it follows
after a finite period of time, t, for sufficiently large gain
k > 0 (10), sufficiently small positive scalars η̃1, η̃2a, η̃2b,
η̃2c, η̃3a, η̃3b, η̃4a and η̃4b the following holds

k

4
>
η2

0e
−αv2 t

4η̃0
+
η2

4ae
−αvt

4η̃4a
+
λ2η2

2ae
−αvt

4η̃2b
,

kλ2

4
>
η2

3ae
−αvt

4η̃3a
+
λ4η2

2ae
−αvt

4η̃2b
,

α10

4β1
> η̃1,

α20

4β2
> η̃2a + η̃2b + η̃2c

α30

4β3
> η̃3a + η̃3b,

α40

4β3
> η̃4a + η̃4b. (39)

Hence, it follows that the first six terms of the right
hand of (38) create a sum which is negative definite
(and quadrativ) in {e∗, e,Φf ,ΦA,ΦB ,ΦK}. The remaining
terms can be argued to remain bounded for a any time
t. This follows from the fact that the demand velocity
‖ẋd‖ and acceleration ‖ẍd‖ are each globally bounded
at all time. Moreover, the value of Vc remains bounded
for any finite time t. We now consider a large enough
compact set Ω in {e∗, e,Φf ,ΦA,ΦB ,ΦK} (with 0 in its
interior) which also set of all possible initial conditions.
There is then a compact Ωa ⊂ Ω to which the closed loop
system converges and all states remain within finite time.
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At that point, all the remaining terms, specifically also
the product ‖Vc‖]e−

αv
2 t remains bounded at all time and

even exponentially decreases over time. Thus, the system is
ultimately bounded. The compact set to which the system
converges can be made arbitrarily small by choice of δ1,
δ2, δ3 and δ4 (see also Colbaugh et al. (1995)). �

4. A PRACTICAL SIMULATION ENVIRONMENT
AND SIMULATION RESULTS

This section describes the creation of a practically relevant
simulation environment which is used to test the described
controller. Here, we introduce various factors, e.g. sen-
sor noise, into the simulation environment to be able to
demonstrate the practical feasibility of the controller. In
this work, a KUKA LBR iiwa 7 R800 (KUKA GmbH,
2019) is selected as the off-the-shelf robotic manipulator
being controlled. It comes with 7 rotational joints in se-
ries allowing for 7 DOF. The manipulator model is built
in Matlab Simulink using the Simscape Multibody Tool-
box (MathWorks, 2019). The kinematic parameters are
modelled using the robot’s design specifications (KUKA
GmbH, 2019). The density of the manipulator itself is as-
sumed to be unified. Therefore, the weight of each link are
assumed to be distributed according to the length of each
link. The centre of mass is at the geometric center of each
link. Figure 2 presents the link frames of the manipulators,
as well as the multi-body model of the manipulator in the
simulation.

Fig. 2. A sketch of the simulated KUKA iiwa 7 R800
(middle), the assigned link frames (right), and the
multi-body model in Matlab (left)

The noise from actuators and sensors are assumed to sat-
isfy Gaussian distribution in the simulation. The assumed
magnitudes of the noises are given in Table 1.

Table 1. Noise level in the simulation

Sensor/Actuator type Standard derivation
Joint position sensor 0.001 rad
Joint torque output 0.001 Nm

Position measure via cameras 0.01 m

The dynamics of the robot’s multi-body model is simulated
in a continuous manner in Simulink, whereas the controller
is implemented in a discretized way. Here, a sampling rate
of 1 kHz is adopted as the highest sampling frequency
allowing for torque control of the robot in practice (KUKA
GmbH, 2019). The joint angular positions are sampled
via an analogue to digital converter that are simulated
by zero-order holders with 1 ms sampling period. The

discrete control block outputs the control torques at each
rotational joint. The torques are converted from digital
to analogue signals, and the conversion is simulated using
zero-order holders. In detail, the parameters in the discrete
adaptive controller are configured as follows. f , A, B and
K are initialized with zero elements (see equations from
(25) to (29)). α1,2,3,4 are 0.001, 0.001, 0.1 and 0.001,
and β1,2,3,4 are set as 5, 50, 500 and 1500. λ in (24)
and k in (25) are tuned as 50 and 5 respectively. Any
integrator of the control system is implemented in the
simulation using the Euler approximation. The continuous
demand trajectory is generated using a cubic polynomial
interpolation method given by Craig (2009). This strategy
ensures highest smoothness for a given point-to-point
movement with a specified period of time.

In the simulation environment, the manipulator is con-
trolled to drive the tool tip to different Cartesian positions
and orientations in a time period of 100s. The inertia and
dimensions of the tool also change at certain time. This
allows for evaluating the convergence of the kinematics
observer and the overall control performance, when there is
significant time-varying unknown dynamic and kinematics
in the robotic system. Specifically, three situations are
simulated:

(1) The target position and orientation change gradually
while the kinematics remain unchanged.

(2) The kinematics parameters (tool dimensions) change
gradually while the target position and orientation
remain constant.

(3) The kinematics parameters (tool dimensions) change
rapidly while the target position and orientation
remain constant.

Fig. 3. Actual end-effector position against demand posi-
tion

Fig. 4. Actual end-effector orientation against demand
orientation. α, β, γ are the X-Y-Z Euler Angles.

In Situation 1, the end-effector is driven from a demand
position (at [0,0,1.2]T m at an Euler orientation of [0,0,0]T

rad) to another position (at [0.6,0.4,0.5]T m at [1,1,1]T rad
Euler orientation) through a demand trajectory change in
3.3 s. During this movement, the largest error of position
control is 7.8×10−3 m and the overshoot is 2.2×10−3

m. For end-effector orientation, the largest tracking error
occurs in the α angle (rotation along the x-axis), with a
magnitude of 1.35 ×10−2 rad. The control for orientation
has an overshoot of 2.5 ×10−3 rad at maximum.

For the 2nd situation, the tool dimension changes gradu-
ally from [0.04,0.1,0.18]T m to [0,0,0.2]T m defined by a
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Fig. 5. Estimated dimensional information of the tool held
by the manipulator.

Fig. 6. Position control error of the adaptive controller.

Fig. 7. Orientation control error of the adaptive controller,
where α, β, γ denote the X-Y-Z Euler Angles.

Fig. 8. Estimation error of the kinematics observer between
the actual values and estimations.

cubic polynomial within an time interval of 5 s. It can be
seen that the kinematics observer reacts correctly to the
gradual change of the kinematics parameters, but with a
time delay of 0.6 s.

The tool dimension abruptly changes from [0,0,0.2]T m (in
height, width and length) to [0.02,0.05,0.15]T m in the 3rd
situation. The kinematics observer takes 0.81 s to converge
to the new kinematics parameters with an error less than
2× 10−3 m.

Lastly, the steady state performance of the manipulator is
investigated. The largest steady-state error is 2.1 ×10−3

m in position control, 4.6×10−4 rad in the end-effector
orientation and 1.7 ×10−3 m in kinematics estimations.

5. CONCLUSIONS

This paper presents a new adaptive control algorithm,
which compensates for unknown kinematics and dynamics
online. The controller only requires the kinematic struc-
ture of the robot manipulator and achieves an accurate
3D positioning performance. The unknown dimensional
information can be obtained by the developed kinematic
observer. The controller is implemented for an industrial
robotic manipulator in simulation. In three simulated
cases, the controller shows stable and accurate perfor-
mance for the end-effector control, even when the kinemat-
ics and dynamics are time-varying. A formal proof of sta-
bility has been provided (considering a scenario of piece-
wise constant kinematics parameters, avoiding additional
complexity of a bounded temporal change in kinematics
parameters).
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