
Task Decomposition for MPC: A
Computationally Efficient Approach for

Linear Time-Varying Systems ?

Charlott Vallon ∗ Francesco Borrelli ∗

∗University of California at Berkeley, Berkeley, CA 94701, USA
(e-mail: charlott, fborrelli@berkeley.edu).

Abstract: A Task Decomposition method for iterative learning Model Predictive Control
(TDMPC) for linear time-varying systems is presented. We consider the availability of state-
input trajectories which solve an original task T 1, and design a feasible MPC policy for
a new task, T 2, using stored data from T 1. Our approach applies to tasks T 2 which are
composed of subtasks contained in T 1. In this paper we formally define the task decomposition
problem, and provide a feasibility proof for the resulting policy. The proposed algorithm reduces
the computational burden for linear time-varying systems with piecewise convex constraints.
Simulation results demonstrate the improved efficiency of the proposed method on a robotic
path-planning task.

Keywords: Data-based control, Iterative and Repetitive Learning control, Linear Model
Predictive Control, Convex Optimization

1. INTRODUCTION

Classical Iterative Learning Controllers (ILCs) aim to
improve a system’s closed-loop reference tracking perfor-
mance at each iteration of a repeated task (Bristow et al.
(2006); Lee and Lee (2007)). Recent work has also explored
reference-free ILC for applications whose goals are more
appropriately defined via a performance metric, rather
than a reference trajectory to track. Examples include au-
tonomous racing tasks (e.g. “minimize lap time”) (Rosolia
et al. (2017); Kabzan et al. (2019)), or optimizing flight
paths for tethered energy-harvesting systems (e.g. “maxi-
mize average power generation”) (Cobb et al. (2019)).

In both classical and reference-free ILC, the controller uses
data from previous iterations to improve future closed-loop
performance with respect to the appropriate performance
metric. At the very first iteration, these methods require
either a reference trajectory to track or a feasible trajec-
tory with which to initialize the control algorithm. If the
task changes, a new trajectory must be designed, which
can be difficult for complex tasks.

A variety of model-based methods have been suggested
for finding feasible trajectories or policies for new tasks
using stored data from related tasks. One approach relies
on building and adapting trajectory libraries. For example,
Nguyen et al. (2016) design a walking gait across stepping
stones for a bipedal robot by linearly interpolating tra-
jectories from a library of asymptotically stable periodic
walking gaits. The authors of Yang et al. (2019) consider
a set of actions and corresponding motion primitives for
iterative teleoperative tasks. Given a new user-provided

? This research was sustained in part by fellowship support from the
National Physical Science Consortium and the National Institute of
Standards and Technology.

input, probabilistic inferences are made over the respective
set of locally feasible trajectories. Similar approaches con-
sidering probabilistic distributions over trajectory libraries
are proposed for robotic manipulators and autonomous
vehicles in Paraschos et al. (2013) and Zhi et al. (2019),
respectively. In Stolle and Atkeson (2010), environment
features are used to divide a task and create a library
of local trajectories in relative state space frames. These
trajectories are then pieced back together according to
the features of the new task environment. The authors
in Berenson et al. (2012) propose running a desired path
planning method in parallel with a retrieve and repair
algorithm that adapts a reference trajectory from a pre-
vious task to the constraints of a new task. While these
methods decrease planning time, they require verifying or
interpolating saved trajectories at each new time step, and
cannot a priori guarantee constraint satisfaction.

Other approaches learn generalizable policies from stored
task data. The authors of Dai and Sznaier (2018) con-
sider linear hybrid systems. Data is collected in individ-
ual modes, and a polynomial optimization problem is
formulated to find a stabilizing controller for arbitrary
switching sequences. In Pereida et al. (2018), a fixed map
is learned between a given reference trajectory and the
input sequence required to track the trajectory with a
linear system. This defines a policy given a new refer-
ence trajectory, but does not provide the trajectory itself.
The authors of Fitzgerald et al. (2019) learn a mapping
between a robot gripper pose performing the same task
with different tools, based on online human corrections.
This method was effective in demonstrations, but required
human supervision and cannot guarantee safety.

In this paper, our objective is to efficiently find a feasi-
ble trajectory to smartly initialize an Iterative Learning

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 4306

Model Predictive Controller (ILMPC) (Rosolia and Bor-
relli (2017)) for a new task. ILMPC is a reference-free
ILC that uses a safe set to design an MPC policy for an
iterative control task. This safe set is initialized using a
feasible task trajectory, and collects states from which the
task can be completed. In Vallon and Borrelli (2019), a
Task Decomposition for ILMPC (TDMPC) algorithm was
introduced for nonlinear, constrained dynamical systems.
TDMPC is data-efficient, requires no human supervision,
and, if the algorithm converges, produces trajectories that
are guaranteed to satisfy all constraints for the new task.
TDMPC decomposes an initial task T 1 into different
modes of operation, called subtasks, and adapts stored T 1
trajectories to a new task T 2 only at points of subtask
transition, by solving one-step controllability problems.
The main contributions of this paper are as follows:

1. We present an extension to the TDMPC algorithm in
Vallon and Borrelli (2019). We introduce a new formula-
tion for linear time-varying systems with piecewise con-
vex state and input constraints. The new formulation
further reduces the computational burden of finding
feasible trajectories for a new task T 2 by formulating
the goal as a convex optimization problem, and simul-
taneously increases the size of the resulting T 2 safe set.

2. We prove that the induced safe set based MPC policy
is feasible for T 2. This policy can be used to initialize
an iterative learning control algorithm, or to directly
obtain a suboptimal execution of T 2.

2. PROBLEM DEFINITION

2.1 Tasks and Subtasks

Consider a discrete-time system with linear, time-varying
dynamics

xk+1 = Akxk +Bkuk, (1)

subject to state and input constraints

xk ∈ X , uk ∈ U , (2)

where the vectors xk and uk collect the states and inputs
at time step k. We define a set P ⊂ X to be the target
set for an iterative task T , performed repeatedly by the
system and defined by the tuple

T = {X ,U ,P} .
In this work we consider tasks T that can be decomposed
into an ordered sequence of subtasks with piecewise linear
dynamics and convex constraint sets. Specifically, the i-th
subtask Si is the tuple

Si = {Ai, Bi,Xi,Ui,Ri} . (3)

Within Si, the system is subject to linear dynamics

xk+1 = Aixk +Biuk, (4)

and convex state and input constraints

xk ∈ Xi, uk ∈ Ui, (5)

where Xi ⊆ X and Ui ⊆ U are convex sets. Ri is the set
of transition states from Si into the next subtask Si+1:

Ri ⊆ Xi = {x ∈ Xi : ∃u ∈ Ui, Aix+Biu ∈ Xi+1}. (6)

A successful subtask execution E(Si) of a subtask Si is a
trajectory of states and inputs evolving according to (4),
respecting state and input constraints (5), and ending in

the subtask transition set (6). We define the j-th successful
execution of subtask Si as

Ej(Si) = [xji ,u
j
i], (7a)

xji = [xj0, x
j
1, ..., x

j

T j
i

], xk ∈ Xi ∀k ∈ [0, T ji],

xj
T j
i

∈ Ri, (7b)

uji = [uj0, u
j
1, ..., u

j

T j
i

], uk ∈ Ui ∀k ∈ [0, T ji], (7c)

where xjk and ujk denote the system state and the control

input at time k of subtask execution j. T ji is the duration
of the j-th execution of subtask i. Fig. 1 depicts three
feasible subtask executions from a robotic path-planning
example detailed in Sec. 4. Again, the final state of each
successful subtask execution is in the subtask transition set
Ri, from which it can evolve into the subsequent subtask.
In order to keep notation simple, we have written all
subtask executions as beginning at time step k = 0.

Let task T be an ordered sequence of M subtasks,
T = {Si}Mi=1. The j-th successful task execution is the
concatenation of the corresponding subtask executions:

Ej(T) = [Ej(S1), Ej(S2), ..., Ej(SM)] = [xj ,uj], (8)

xj = [xj1,x
j
2, ...,x

j
M],

uj = [uj1,u
j
2, ...,u

j
M],

xjα ∈ Ri, i ∈ [1,M − 1],

Aix
j
α +Biu

j
α ∈ Xi+1, i ∈ [1,M − 1],

where α = T j[1→i] is the duration of the first i subtasks

during the j-th task iteration. When the state reaches a
subtask transition set, the system has completed subtask
Si, and it transitions into the following subtask Si+1.
The task is completed when the system reaches the last
subtask’s transition set, P = RM , the task’s target set.

Definition: A set P ⊂ X is a control invariant set for the
system (1) subject to the constraints (2) if:

xk ∈ P =⇒ ∃uk ∈ U : Akxk +Bkuk ∈ P, ∀k ≥ 0. (9)

Assumption 1 : P is a control invariant set (9).

The optimal task T completion problem is given by:

V ?0→T (x0) = min
T,u0,...,uT−1

T∑
k=0

h(xk, uk) (10)

s.t. xk+1 = f(xk, uk),

xk ∈ X , uk ∈ U ∀k ≥ 0,

xT ∈ P,
where V ?0→T (x0) is the optimal cost-to-go from the initial
state x0, and h(xk, uk) is a chosen stage cost.

2.2 Safe Set Based ILMPC

In Rosolia and Borrelli (2017), a data-driven formulation
for approximating the optimal control task (10) for a
linear time-invariant system with convex constraints (2)
is introduced. Here we propose a formulation for linear
time-varying systems with piecewise convex constraints.

Each execution of task T is referred to as an iteration.
After J number of task iterations, we define the time-
indexed sampled subtask safe set of subtask Si as:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4307

KSi,k =


J⋃
j=1

xj
T j
i
−k

 , k ∈ [0,max
j
T ji − 1]. (11)

For given k and i, xj
T j
i
−k

is the k-to-last state visited

in Si during the j-th task iteration. Thus the set (11)
is the collection of states from which the system reaches
the subtask transition set Ri in exactly k steps during a
previously recorded task iteration, while satisfying subtask
constraints (5). We similarly define a time-indexed sampled
subtask input set of subtask Si as:

KU i,k =


J⋃
j=1

uj
T j
i
−k

 , k ∈ [0,max
j
T ji − 1].

Because Xi and Ui are convex, there also exists a feasible
k-step input sequence to Ri for each convex combination
of elements in KSJi,k. We define convex subtask safe sets
and convex subtask input sets as:

CKi,k =


|KSi,k|∑
p=1

λpzp : λp ≥ 0,

|KSi,k|∑
p=1

λp = 1, zp ∈ KSi,k

 ,

CU i,k =


|KUi,k|∑
p=1

λpwp : λp ≥ 0,

|KUi,k|∑
p=1

λp = 1, wp ∈ KU i,k

 ,

(12)
where |KSi,k| is the cardinality of KSi,k. Fig. 1 depicts
these sets for three trajectories (J = 3) through a subtask
from a robotic path-planning detailed in Sec. 4. We define
a barycentric cost-to-go over the convex subtask safe sets:

v(x) = min
λp≥0, I, K

|KSI,K |∑
p=0

λpV (zp) (13)

s.t.

|KSI,K |∑
p=0

λp = 1,

|KSI,K |∑
p=0

λpzp = x, zp ∈ KSI,K ,

where V (zp) is the realized cost-to-go from state zp during
a past execution. At time step k of iteration J + 1, we
approximate the optimal control problem (10) by solving:

V (xJ+1
k) = (14)

min
uk|k,...,uk+N−1|k,I,K

k+N−1∑
t=k

h(xt|k, ut|k) + v(xk+N |k)

s.t. xt+1|k = f(xt|k, ut|k, t),∀t ∈ [k, k +N − 1],

xt|k ∈ X , ut|k ∈ U , ∀t ∈ [k, k +N − 1],

xk|k = xjk,

xk+N |k ∈ CKI,K ∪ P,
which searches for an input sequence over a horizon N that
controls the system (1) to the state in a convex subtask
safe state set or task target set P with the lowest cost-to-go
(13). We use a receding horizon strategy:

u(xjk) = πILMPC(xjk) = u?k|k. (15)

At the first iteration of a new task, the ILMPC (14) re-
quires non-empty sets CK·,· containing at least one feasible

Fig. 1. Convex subtask safe sets contain states from which
the transition set can be reached in a certain number
of steps.

execution of the task. Next we present a computationally
efficient approach for creating such sets using data from
executions of a different, previous task. This new compu-
tationally efficient formulation of TDMPC for tasks with
piecewise linear, convex modes is the main contribution of
this work compared to Vallon and Borrelli (2019). We will
require the following definition of controllability.

Definition: For a given target set R ⊂ X , the N-step con-
trollable set KN (R) of a system (1) subject to constraints
(2) is defined recursively as:

Kj(R) = Pre(Kj−1(R)) ∩ X , K0(R) = R,
j ∈ {1, ..., N} ,

Pre(R) = {x : ∃u ∈ U : Akx+Bku ∈ R} .
For all states in the N -step controllable set to R there
exists a feasible input sequence such that the system will
be driven into R in N steps.

Proposition 1. In general, not all states belonging to the
convex hull of stored subtask executions are controllable
to the subtask transition set (6).

Proof. We refer to the full version of this paper at
https://arxiv.org/abs/2005.01673.

Proposition 2. All states in the time-indexed convex sub-
task safe sets (12) are controllable to the subtask transition
set (6).

Proof. Proof follows from Thm. 3 in Sec. 3.2.

Propositions 1 and 2 motivate the approach proposed
in this paper of storing task executions in time-indexed
convex subtask safe sets (12).

3. TASK DECOMPOSITION FOR ILMPC

Let Task 1 and Task 2 be different ordered sequences of
the same M subtasks:

T 1 = {Si}Mi=1, T 2 = {Sli}Mi=1, (16)

where the sequence [l1, l2, ..., lM] is a reordering of the
sequence [1, 2, ...,M]. Assume non-empty subtask safe sets
KS [1→M] (11) containing task data from Task 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4308

Our goal is to use stored subtask safe sets (11) from Task 1
in order to find convex subtask safe sets (12) for Task 2.
These sets can then be used to initalize a controller for
the new task. The key intuition of TDMPC is that all
successful subtask executions (7a) from Task 1 are also
successful subtask executions for Task 2, as this definition
only depends on properties (7b-7c) of each individual
subtask, not the subtask sequence. With this notion, Alg. 1
proceeds backwards through the new subtask sequence.

3.1 TDMPC Algorithm

The notation (lM , ·) or (i, ·) indicates that the described
action is undertaken for all appropriate second arguments.

Algorithm 1 TDMPC algorithm

1: input KS [1→M], KU [1→M], [l1, l2, ..., lM]
2: do CK[1→M] = convexify(KS [1→M]) (12)
3: do SGi = guard set clustering(KS [1→M]) (17)

4: initialize empty K̂S, K̂U , ĈK, ĈU
5: ĈKlM ,· ← CKlM ,·, ĈU lM ,· ← CU lM ,·
6: for i ∈ [lM−1 : −1 : l1] do
7: K̂Si,· ← KSi,·
8: K̂U i,· ← KU i,·
9: initialize empty K̂U i,0

10: for x ∈ SGi do
11: check (q?, u?) = Ctrb(x, ĈKi+1,·) (18)
12: if infeasible then
13: K̂Si,· ← K̂Si,·\trajectory(x)

14: K̂U i,· ← K̂U i,·\trajectory(u?)
15: else
16: K̂U i,0 ← u?

17: ĈKi,· ← convexify(K̂Si,·) (12)

18: ĈU i,· ← convexify(K̂U i,·) (12)

19: Return CK[l1→lM] ← ĈK, CU [l1→lM] ← ĈU

• Consider the last subtask, SlM . By definition, for any
state in CKlM ,· there exists a stored input sequence
in CU lM ,· that can be applied such that the system
evolves into RlM . (Algorithm 1, Lines 2-5).
• Prune the convex safe sets of the preceding subtask
SlM−1

to contain only states which can also be con-
trolled to RlM . We verify this property only for states
in the sampled guard set of SlM−1

, defined as:

SGlM−1
= KSlM−1,0. (17)

The sampled guard set for subtask lM−1 contains the
states in SlM−1

from which the system transitioned
into another subtask during a past execution of T 1
(Algorithm 1, Line 10).
• Determine which points in SGlM−1

are one-step con-
trollable to CKlM ,k for some time index k. This
problem can be solved using a variety of numerical
approaches. In the results presented in this paper, we
check controllability for each k, and choose the input
u to minimize the cost of the resulting state according
to (13). Specifically, for each point x ∈ SGlM−1

and

index k, we solve (q?, u?) = Ctrb(x, ĈKlM ,k), where:

u? = arg min
u

v(z) (18)

s.t. z = AlM−1
x+BlM−1

u

u ∈ UlM−1

z ∈ ĈKlM ,k,

q? = v(AlM−1
x+BlM−1

u?). (19)

If (18) is feasible, the previously stored T 1 cost-to-go
(13) from the state x is replaced by q?, the cost to
reach the goal set of T 2. (Algorithm 1, Line 11)
• For all states x in SGlM−1

not controllable to any
convex safe set in SlM , we remove the stored subtask
execution ending in x out of the set of subtask safe
sets for SlM . (Algorithm 1, Lines 12-16)

• After checking the entire sampled guard set, all re-
maining convex subtask safe sets for SlM−1

are con-
trollable to convex subtask safe sets in SlM , and
therefore also to RlM . (Algorithm 1, Lines 17-19)

Alg. 1 iterates backwards through the remaining subtasks,
verifying the controllability of points in sampled guard sets
to a convex subtask safe set in the following subtask. The
algorithm returns convex subtask safe sets for Task 2 that
can be used to initialize an ILMPC (14 - 15) for Task 2.

TDMPC offers a computationally efficient, data-driven
method of initializing an ILMPC for new tasks. In contrast
to multi-step or set-based methods that are common for
model-based or hybrid systems, Alg. 1 only solves con-
trollability problems from discrete points in the sampled
guard set to already verified feasible sets. Furthermore,
TDMPC directly provides a robust policy for solving the
task associated with the verified trajectories.

Note the reformulation of the stored Task 1 executions (8)
into convex sets (12). We can thus replace the point-to-
point controllability verification from Vallon and Borrelli
(2019) with point-to-set controllability in Alg. 1. This
allows for three major improvements to the procedure:

1. (18) is a convex optimization problem, which is, in
general, much faster to solve than the non-convex point-
to-point controllability.

2. By using the convex hull of stored states (12) as a
target set in (18), rather than individual states, more
points in the sampled guard sets (17) can potentially
be demonstrated to lead to feasible Task 2 executions.

3. We increase the number of points for which we know a
feasible Task 2 policy, since we implicitly consider all
points in the time-indexed convex hulls of Task 1 tra-
jectories (12), rather than only the Task 1 trajectories.

3.2 Feasibility

We prove the feasibility of ILMPC policies (15) initialized
using Alg. 1.

Assumption 2 : Task 1 and Task 2 are defined as in (16),
with each subtask defined by linear dynamics (4) and
convex constraints (5).

Theorem 3. Let Assumptions 1-2 hold. Assume Alg. 1
outputs non-empty sets CK0

[l1→lM] for Task 2. Then, if

x0 ∈ CK0
[l1→lM], the policy πILMPC

[l1→lM], as defined in (15),

produces a feasible execution of Task 2.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4309

Fig. 2. Topview of the path planning task. Each subtask
corresponds to a pair of upper and lower obstacles.

Proof. We refer to the full version of this paper at
https://arxiv.org/abs/2005.01673.

4. RESULTS: ROBOT PATH PLANNING

4.1 Task Formulation

We demonstrate the effectiveness of Alg. 1 in a robotic
path planning example. Consider a UR5e 1 robotic arm
tasked with maneuvering through six sets of obstacles
modeled as extruded disks of varying heights above and
below the robot. Here, each subtask Si corresponds to the
workspace between a pair of lower and upper obstacles.
Different subtask orderings correspond to a rearranging of
the obstacle locations, indicated by Θi in Fig. 2.

The UR5e has high end-effector reference tracking accu-
racy, allowing us to use a simplified end-effector model.
We solve the task in the reduced state space:

xk = [q0k q̇0k zk żk]>,

uk = [q̈0k z̈k]>,

where q0k is the angle of the robot’s base joint along
the Θ direction and zk is the height of the robot end-
effector at time step k, calculated from the six joint angles
via forward kinematics. q̇0k and żk are the corresponding
velocities. We control q̈0k and z̈k, the accelerations of q0
and z, respectively. We can now formulate the task as a
concatenation of M = 6 subtasks with piecewise linear
dynamics and convex constraints, according to (3).

Subtask Dynamics Ai, Bi We model the base-and-end-
effector system as a quadruple integrator:

xk+1 = Aixk +Biuk (21a)

Ai =

1 dt 0 0
0 1 0 0
0 0 1 dt
0 0 0 1

 , Bi =

 0 0
dt 0
0 0
0 dt

 , ∀i ∈ [1, 6] (21b)

where dt = 0.01 seconds is the sampling time. This
simplified model holds as long as we operate within the
region of high end-effector reference tracking accuracy,
characterized in previous experiments.

Subtask Constraints Xi

Xi =

 Θi−1 rad
−π rad/s
omin,i m
żmin,i m/s

 ≤
 q0q̇0kzk
żk

 ≤
 Θi rad

π rad/s
omax,i m
żmax,i m/s


1 https://www.universal-robots.com/products/ur5-robot/

where Θi−1 and Θi mark the cumulative angle to the
beginning and end of the i-th obstacle. The robot end-
effector is constrained to remain in the space between the
upper and lower obstacles, bounded by omin,i and omax,i.
The base’s rotational velocity q̇0k and żk are constrained to
the experimentally determined region of high end-effector
tracking accuracy.

Subtask Input Space Ui

Ui =

[
−π rad/s2

z̈min,i m/s2

]
≤
[
q̈0k
z̈k

]
≤
[
π rad/s2

z̈max,i m/s2

]
,

where q̈0k and z̈k are constrained to lie in experimentally
determined regions of high tracking accuracy.

Subtask Transition Set, Ri The transition set contains
states along the subtask obstacle border:

Ri = {x ∈ Xi : ∃u ∈ Ui, s.t. q+0 ≥ Θi },
where x+ = Aix+Biu (4). The task target set is the end
of the last mode:

R6 = {x : q0 = Θ6, omin,6 ≤ z ≤ omax,6} .
The goal is to reach the target set as quickly as possible:

h(xk, uk) =

{
0, xk ∈ R6

1, otherwise.

4.2 Experimental Results

We evaluate the efficiency of Alg. 1 by comparing its run-
time with the the run-time of the point-to-point control-
lability analysis introduced in Vallon and Borrelli (2019).

First, an ILMPC (14)-(15) is used to complete five execu-
tions of five different training tasks, where each training
task is a different reordering of the six obstacles. Each
ILMPC is initialized with a suboptimal state and input
trajectory that tracks the center-height of each subtask
while the robot arm rotates at a low base velocity q̇0.
In each task, the ILMPC tries to reach the target set as
quickly as possible while avoiding the obstacles. The new
task T 2 is configured from another new reshuffling of the
obstacles. Fig. 3 depicts the T 2 workspace in light blue,
along with the T 2 safe sets returned by the two versions
of the TDMPC algorithm: the top image plots the output
from the point-to-point controllability method from Vallon
and Borrelli (2019), and the bottom image from the point-
to-convex-set controllability method from Alg. 1.

Our improved method was an order of magnitude faster
at finding T 2 safe states than the point-to-point method,
requiring 246 seconds of processing instead of 2879 sec-
onds, using a 2017 Mac Book Pro with 2.8 GHz Quad-Core
Intel Core i7. The reformulation of Alg. 1 for linear systems
resulted in an average eleven fold speed-up for five different
trials of the described setup and testing procedure. In
Tab. 1, each trial corresponds to a newly shuffled T 2.

For each state in a subtask’s sampled guard set, the point-
to-point controllability method solves a mixed-integer pro-
gram to try to find an input that controls the system to
the last state of a subsequent subtask trajectory. Therefore
the complexity of both controllability methods depend on
the state dimension and number of trajectories through
the subsequent subtask (as this provides an upper bound

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4310

Fig. 3. Alg. 1 produces a significantly larger set of feasible
states for T 2 in 10% of the time. Sampled guard sets
for each subtask are plotted in black.

Table 1. Controllability Analysis Run-Time

Trial Convex Set Analysis Pointwise Analysis

1 246 s 2879 s
2 312 s 5561 s
3 219 s 1618 s
4 212 s 1810 s
5 264 s 2806 s

for the size of the subtask safe set). The efficiency improve-
ment results from replacing the mixed-integer constraint
in point-to-point controllability with a convex constraint
of equal complexity, which is typically easier to compute.

The convex set controllability analysis outputs a signifi-
cantly larger set of feasible states for T 2 than the pointwise
method. This results from two phenomena. First, the new
controllability analysis (18) considers a larger target set
than the pointwise analysis, so more points in the sampled
guard set can be shown to lead to feasible executions of T 2.
Second, while point-to-point analysis only checks for T 2
feasibility of the actual subtask trajectories from T 1, the
new convex set controllability analysis implicitly provides
a policy for the entire convex subtask safe sets. All safe
states found using point-to-point controllability are thus
also found using convex set controllability. Accordingly, an
ILMPC (14 - 15) initialized with safe sets returned from
Alg. 1 will also lead to a faster first execution of T 2.

REFERENCES

Berenson, D., Abbeel, P., and Goldberg, K. (2012). A
robot path planning framework that learns from ex-

perience. In 2012 IEEE International Conference on
Robotics and Automation, 3671–3678. IEEE.

Bristow, D.A., Tharayil, M., and Alleyne, A.G. (2006).
A survey of iterative learning control. IEEE Control
Systems Magazine, 26(3), 96–114.

Cobb, M.K., Barton, K., Fathy, H., and Vermillion, C.
(2019). Iterative learning-based path optimization for
repetitive path planning, with application to 3-d cross-
wind flight of airborne wind energy systems. IEEE
Transactions on Control Systems Technology, 1–13.

Dai, T. and Sznaier, M. (2018). A moments based
approach to designing mimo data driven controllers for
switched systems. In 2018 IEEE Conference on Decision
and Control (CDC), 5652–5657.

Fitzgerald, T., Short, E., Goel, A., and Thomaz, A. (2019).
Human-guided trajectory adaptation for tool transfer.
In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS
’19, 1350–1358.

Kabzan, J., Hewing, L., Liniger, A., and Zeilinger, M.N.
(2019). Learning-based model predictive control for
autonomous racing. IEEE Robotics and Automation
Letters, 4(4), 3363–3370.

Lee, J.H. and Lee, K.S. (2007). Iterative learning control
applied to batch processes: An overview. Control Engi-
neering Practice, 15(10), 1306–1318.

Nguyen, Q., Da, X., Grizzle, J., and Sreenath, K. (2016).
Dynamic walking on stepping stones with gait library
and control barrier functions. Arbor, 1001, 48109.

Paraschos, A., Neumann, G., and Peters, J. (2013). A
probabilistic approach to robot trajectory generation.
In 2013 13th IEEE-RAS International Conference on
Humanoid Robots (Humanoids), 477–483. IEEE.

Pereida, K., Helwa, M.K., and Schoellig, A.P. (2018).
Data-efficient multirobot, multitask transfer learning for
trajectory tracking. IEEE Robotics and Automation
Letters, 3(2), 1260–1267.

Rosolia, U. and Borrelli, F. (2017). Learning model
predictive control for iterative tasks: A computationally
efficient approach for linear system. In 20th IFAC World
Congress. IFAC.

Rosolia, U., Carvalho, A., and Borrelli, F. (2017). Au-
tonomous racing using learning model predictive con-
trol. In 2017 American Control Conference (ACC),
5115–5120. IEEE.

Stolle, M. and Atkeson, C. (2010). Finding and trans-
ferring policies using stored behaviors. Autonomous
Robots, 29(2), 169–200.

Vallon, C. and Borrelli, F. (2019). Task decomposition for
iterative learning model predictive control. [Submitted].
URL http://arxiv.org/abs/1903.07003.

Yang, X., Agrawal, A., Sreenath, K., and Michael, N.
(2019). Online adaptive teleoperation via motion prim-
itives for mobile robots. Autonomous Robots, 43(6),
1357–1373.

Zhi, W., Lai, T., Ott, L., Francis, G., and Ramos, F.
(2019). Octnet: Trajectory generation in new environ-
ments from past experiences.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4311

