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Abstract: The study of many biological, economic and other processes leads to its modeling
based on discrete equations. Currently, the need to develop a mathematical apparatus for the
qualitative analysis of discrete equations is caused by the creation of digital control systems,
processors and microprocessors as well as discrete methods of signal transmission in automatic
control systems and other theoretical and technical problems. One of the important areas of
the qualitative analysis of discrete equations is the stability problem. The main method for
studying the stability of nonlinear differential, discrete, and other types of equations is the
direct Lyapunov method. The aim of this paper is to develop the direct Lyapunov method in
the study of the limiting behavior and asymptotic stability of nonlinear nonstationary discrete
equations using the comparison principle. New theorems are proved that are applied in the
stability problem of the well-known epidemiological model as well as in solving the stabilization
problem of a nonlinear discrete controlled system. An example is shown illustrating a qualitative
difference in the conditions of stabilization of non-stationary and stationary discrete systems.

Keywords: Asymptotic stabilization, Lyapunov methods, Parameter-varying systems, Stability
of nonlinear systems, Systems biology, Passivity-based control.

1. INTRODUCTION

The latest active researches in fundamental and applied
control theory and design of new controlled systems are
stimulated by the rapid industrial robotics development as
well as high growth of introduction of controlled energy,
industrial and other complex processes.

For a quite long period the process of different con-
trolled systems modelling was studied on the basis of
time-continuous models. However, the creation of modern
digital controlled systems, processors and microprocessors
requires the development of an appropriate mathematical
and computing apparatus. One of the most accurate in
the methods of signal transmission and conversion are
discrete-time modelling. These problems include modeling
of continuous-time systems with discrete-time control and
the further researches on the stabilization of such systems.

This paper considers nonlinear controlled systems with
discrete control. The linearity and stationarity of the sys-
tems make it possible to apply linear equations for its
analysis which has been and still remains the subject of
numerous studies (Mickens, 2000). However, the wide class
consisting of non-linear systems includes both continuous
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and discrete parts. In addition, the solution to the control
problem of non-stationary systems involves extra complex-
ity in its analysis. The most effective method for studying
the stable functioning of such systems is the Lyapunov
method.

To analyze the continuous-discrete structure of an au-
tomatic control system, difference equations are used in
a reasonable way. This paper considers the problem of
developing the direct Lyapunov method for studying the
stability and stabilization of systems modeled by non-
linear difference equations.

The first results in this field were obtained in (Tsypkin,
1963a,b; Hurt, 1967; LaSalle, 1986a). Later numerous
studies have been devoted to this problem. We’d like to
sign out from the corresponding monographs the following
ones (Halanay and Wexler, 1968; Elaydi, 2004; LaSalle,
1976, 1977, 1986b), the review (Martynyuk, 2000) and
modern papers on related researches (Diblik et al., 2016;
Nam et al., 2016).

The development of the direct Lyapunov method is pre-
sented in the first section. It contains the application of
the vector Lyapunov functions and comparison equations.
Further, new theorems on the localization of a positive
limit set and on the study of stability using Lyapunov func-
tions are proposed. The novelty of the authors theorems
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consists in the weakening of the conditions sufficient to
determine the limiting properties of solutions of nonlinear
non-stationary discrete systems.

The absence of universal construction methods for Lya-
punov functions for solving stability and stabilization
problems stimulates intensive research on finding effective
algorithms for constructing them for certain classes of
systems. The very effective way for solving the problems of
trajectory tracking and position stabilization for nonlinear
systems is the algorithm for its passification. Among the
numerous works in this area, we sing out (Byrnes and
Isidori, 1991; Byrnes and Lin, 1993; Polushin et al., 2000)
which are directly related to the results of Section 3. In
this section the asymptotic stability theorems from Section
2 are applied to the problem of a discrete-time system
stabilization. Stabilization results are formulated which
are direct consequences of the mentioned theorems. New
results are obtained on the construction of a stabilizing
control for passive systems.

Throughout this paper the following mathematical nota-
tions are used. The symbol Z+ denotes the set of non-
negative integers. The symbol Rm denotes as usual, the
real linear space of the m−dimensional vectors x with
some norm ∥x∥. R+ = [0,+∞). A continuous function
a : R+ → R+ is said to be of class K, if a(0) = 0 and a
is strictly increasing. The function a ∈ K is said to be of
class K∞, if a(s) → ∞ as s → ∞.

2. STABILITY ANALYSIS OF NONLINEAR
NON-AUTONOMOUS DIFFERENCE EQUATIONS

Consider the non-autonomous system of nonlinear differ-
ence equations given by

x(n+ 1) = g(n, x(n)) (1)

where x ∈ Rm, n ∈ Z+, the function g : Z+ × Rm → Rm

is continuous in x for each n ∈ Z+ and g(n, 0) ≡ 0.

2.1 Preliminaries

We use the well-known definitions of stability and attrac-
tivity of the zero solution x = 0 of (1) (Lacshmikantham
and Trigiante, 2002; LaSalle, 1976, 1986b).

Definition 1. Vector function V : Z+×Rp → Rk is said to
be positive definite if there exists the function a1 of class
K such that the following inequality holds

V̄ (n, x) ≥ a1(∥x∥) (2)

where the scalar function V̄ (n, x) is defined as follows

V̄ (n, x) = max(V1(n, x), V2(n, x), . . . , Vk(n, x))or

V̄ (n, x) =
k∑

j=1

Vj(n, x).
(3)

Theorem 2. (Hurt, 1967) Let one can find the Lyapunov
vector function V : Z+ × Rp → Rk such that

V (n, x) = (V1(n, x), V2(n, x), . . . , Vk(n, x))
T

and the following inequalities hold

V̄ (n, x) ≥ a1(∥x∥), V (n+ 1, g(n, x)) ≤ Q(n, V (n, x))(4)

where the function a1 : R+ → R+ is such that a1 ∈ K, the
function Q(n, v), Q : Z+ × Rk → Rk is nondecreasing in
v ∈ Rk and Q(n, 0) = 0.

Let also the zero solution v = 0 of the comparison system

v(n+ 1) = Q(n, v(n)) (5)

be stable.

Then, the zero solution x = 0 of (1) is stable.

If in addition, the zero solution v = 0 of (5) is uniformly
stable and the Lyapunov vector function V (n, x) satisfies
the inequalities Vj(n, x) ≤ a2(∥x∥) ∀j ∈ 1, 2, . . . , k, then
the zero solution x = 0 of (1) is uniformly stable.

2.2 The Limiting Equations and Positive Limit Sets for
Non-Autonomous Systems of Difference Equations

Let G be the set of the functions g : Z+×Rm → Rm which
are continuous in x. Introduce the following convergence
on the set G.

Definition 3. The sequence {gi ∈ G}∞i=1 converges to g, if
∀ε > 0, ∀N ∈ Z+ and for each compact set S ⊂ Rm there
exists N0 ∈ Z+ such that for all i ≥ N0 the following holds

∥gi(n, x)− g(n, x)∥ < ε ∀(n, x) ∈ [0, N ]× S (6)

Note that the convergence defined in Definition 3 is metriz-
able, if one can introduce the following metric in G.

Let {Si}∞i=1 be a sequence of compact sets Si in Rm such
that

S1 ⊂ S2 ⊂ . . . ⊂ Si ⊂ . . . ,

∞∪
i=1

Si = Rm (7)

For all g(1), g(2) ∈ G define the metric:

ρ(g(1), g(2)) =

∞∑
i=1

2−i

×
sup(

∥∥g(1)(n, x)− g(2)(n, x)
∥∥ : (n, x) ∈ [0, i]× Si)

1 + sup(
∥∥g(1)(n, x)− g(2)(n, x)

∥∥ : (n, x) ∈ [0, i]× Si)

Assumption 4. Assume that the right-hand side of (1)
satisfies the following two conditions:

a) the function g(n, x) is uniformly bounded on the set
Z+ × S for each compact set S ⊂ Rm, i.e. the following
holds

∥g(n, x)∥ ≤ l = l(S) ∀(n, x) ∈ Z + × S; (8)

b) the function g(n, x) is uniformly continuous in x on each
compact set S ⊂ Rm, i.e. ∀S ⊂ Rm and ∀ε > 0 there exists
δ = δ(ε, S) > 0 such that for all n ∈ Z+ and x1, x2 ∈ S:
∥x2 − x1∥ < δ the following inequality holds

∥g(n, x2)− g(n, x1)∥ < ε. (9)

Lemma 5. Let Assumption 4 hold. Then, the family of
translates {gi(n, x) = g(i+ n, x), i ∈ Z+} is contained in
some compact set G0 ⊂ G.

Remark 6. Note that the properties (8) and (9) are the
precompactness conditions for the function g(n, x).

Definition 7. The function g∗ : Z+ × Rm → Rm is
said to be a limiting one to g, if there exists a se-
quence ni → ∞ such that the sequence of translates
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{gi(n, x) = g(ni + n, x)} converges to the function g∗ in
the metrizable space G. Accordingly, the system

x(n+ 1) = g∗(n, x(n)) (10)

is said to be a limiting one to (1).

Definition 8. Let the solution x = x(n, n0, x0) of (1) be
defined for all n ≥ n0. The vector q ∈ Rm is said to be
a positive limit point of that solution, if there exists the
sequence ni → ∞ such that x(ni, n0, x0) → q. The set of
all limit points of the solution x = x(n, n0, x0) is said to
be a positive limit set Ω+(n0, x0).

Note that since for each n0 ∈ Z+, the translate g0(n, x) =
g(n0 + n, x) is defined on the set [−n0,+∞) × Rm so
the definition domain of the limiting function g∗ can be
extended to the set Z−×Rm. Therefore, one can define the
solutions of the system (10) for all initial points (n0, x0) ∈
Z×Rm. Accordingly, one can define the following function
x∗(n, n0, x0), x

∗ : Z× Z× Rm → Rm.

Definition 9. The set D ⊂ Rm is said to be quasi-
invariant, if for each x0 ∈ D there exist both the limiting
system (10) and its solution x = x∗(n), x∗(0) = x0 such
that x∗(n) ∈ D ∀n ∈ Z.

Theorem 10. (LaSalle, 1976) Let the solution
x = x(n, n0, x0) of (1) be bounded for all n ∈ Z+.
Then, the positive limit set Ω+(n0, x0) is bounded and
quasi-invariant. Moreover, the solution x(n, n0, x0) of (1)
asymptotically tends to Ω+(n0, x0) as n → ∞.

2.3 The Nonlinear Variation-of-Constants Formula of
V.M. Alekseev for Nonlinear Difference Equations

Consider the nonlinear difference equation

y(n+ 1) = Q(n, y(n)) +R(n, y(n)), (11)

where the function Q : Z+ × Rk → Rk is continuously
differentiable in y ∈ Rk for each n ∈ Z+, and the function
R(n, y) is continuous in y ∈ Rk for each n ∈ Z+.

Let z = z(n, n0, z0) be a solution of the unperturbed
system

z(n+ 1) = Q(n, z(n)). (12)

The matrix defined as (Tsypkin, 1963a)

Φ(n, n0, z0) =
∂z(n, n0, z0)

∂z0
(13)

is a fundamental one of the linear variational system

Z(n+ 1) = H(n)Z(n), H(n) =
∂Q

∂z
(n, z)

∣∣∣∣
z=z(n,n0,z0)

.(14)

In other words, the matrix (13) satisfies the difference
equation (14) and Φ(n0, n0, z0) = E, where E is the
identity matrix.

Theorem 11. Let y = y(n, n0, y0) and z = z(n, n0, y0) be
the solutions of the systems (11) and (12) respectively,
defined for all n ≥ n0. Then, for these solutions one can
easily find the following relationship

y(n, n0, y0) = z(n, n0, y0) +

n−1∑
j=n0

1∫
0

Φ(n, j + 1, Q(j, y[j]) + sR(j, y[j]))ds R(j, y[j]),

(15)

where y[j] = y(j, n0, y0).

Proof. For each j = n0, n0+1, . . . , n− 1 one can find the
following

z(n, j + 1, y[j + 1])− z(n, j, y[j])
= z(n, j + 1, y[j + 1])− z(n, j + 1, z[j + 1]),

(16)

where z[j + 1] = z(j + 1, j, y[j]).

Applying the Mean Value Theorem, from (16) one can
obtain

z(n, j + 1, z[j + 1])− z(n, j, y[j])

=

1∫
0

Φ(n, j + 1, sy[j + 1]

+(1− s)z[j + 1])(y[j + 1]− z[j + 1])ds

=

1∫
0

Φ(n, j + 1, Q(j, y[j]) + sR(j, y[j]))ds R(j, y[j]).

(17)

Summarizing the equalities (17) for j from n0 to n, one
can get

z(n, n0, y[n])− z(n, n0, y[n0])

=
n∑

j=n0

1∫
0

Φ(n, j + 1, Q(j, y[j]) + sR(j, y[j]))dsR(j, y[j]).
(18)

Since z(n, n, y[n]) = y[n] = y(n, n0, y0) and z(n, n0, y[n0])
= z(n, n0, y0) so one can obtain the formula (15). This
completes the proof.

Remark 12. The relationship (15) represents V.M. Alek-
seev’s variation-of-constants formula (Alekseev, 1961) for
nonlinear difference equations. Note that (15) differs from
the other forms of the discrete version of V.M. Alekseev’s
formula obtained in (Allen, 1994; Drici and Dontha, 2004).

2.4 Asymptotic Stability problem for non-autonomous
systems of nonlinear difference equations

In this subsection, we give the solution to the asymptotic
stability problem for the system (1) using the formula (15)
in combination with a comparison method.

Assumption 13. Assume that there exists Lyapunov vec-
tor function candidate V = V (n, x), V : Z+ × Rm → Rk,
such that it is continuous in x for each n ∈ Z+ and the
following equality holds

V (n+ 1, x(n+ 1))
= Q(n, V (n, x(n))) +R(n, x(n), V (n, x(n))),

(19)

where x(n) = x(n, n0, x0) is a solution of (1), the functions
Q : Z+ × Rk → Rk and R : Z+ × Rm × Rk → Rk satisfy
the conditions:

(1) The function Q = Q(n,w) is quasi-monotonically
nondecreasing and continuously differentiable in w ∈
Rk.
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(2) The functions Q = Q(n,w) and R = R(n, x, w)
satisfy the precompactness criteria of Assumption 4
such as (8) and (9).

(3) The inequality R(n, x, w)≤0 holds for all (n, x,w) ∈
Z+ × Rm × Rk.

Using Assumption 13, one can easily obtain that V (n, x)
is a comparison vector function and (12) is a comparison
system (Martynyuk, 2000).

Lemma 14. Let Assumption 13 hold. Let also w(n) =
w(n, n0, V0) (V (n0, x0) = V0) be a solution of (12) defined
in the interval [n0, N ]. Then, for all n ∈ [n0, N ] one can
get the following estimation

V (n, x(n, n0, x0))≤w(n, n0, V0). (20)

Since the comparison system (12) satisfies the precom-
pactness criteria so one can find the family of limiting
comparison systems

w(n+ 1) = Q∗(n,w(n)), Q∗ ∈ GQ. (21)

Using the properties of the function Q = Q(n, x), one can
get that all the solutions w = w(n, n0, w0) of (12) are
differentiable in w0 ∈ Rk. Moreover, since the function
w(n, n0, w0) is nondecreasing in w0, one can easily obtain
that the matrix

Φ(n, n0, w0) =
∂w(n, n0, w0)

∂w0
(22)

is positive semi-definite and normalized, i.e. Φ(n0, n0, w0) ≥
0 and Φ(n0, n0, w0) = E. Besides, Φ(n0, n0, w0) is the
fundamental matrix for the linear variational system (14).

Assumption 15. Assume that for each compact set S ⊂ Rk

there exist positive reals M(S) and m(S) such that for all
(n, n0, w0) ∈ Z+×Z+×S the matrix Φ(n, n0, w0) satisfies
the following conditions

∥Φ(n, n0, w0)∥≤M(S), detΦ(n, n0, w0)≥m(S). (23)

In the following theorem, a so called quasi-invariance prin-
ciple for non-autonomous systems of difference equations
is proposed which is a generalization of a well-known
La-Salle’s invariance principle for autonomous systems
(LaSalle, 1986b).

Theorem 16. Let Assumptions 13 and 15 hold. Let also
the solutions x(n, n0, x0) and w(n) = w(n, n0, V0) (V0 =
V (n0, x0)) of the systems (1) and (12) respectively, be
bounded for all n ≥ n0. Then, for each positive limit point
q ∈ Ω+(n0, x0) there exists the set of the limiting functions
(g∗, V ∗, Q∗, R∗) such that for the solution x = x∗(n, q) of
the system (10) satisfying the initial condition x∗(0, q) = q,
∀n ∈ Z the following holds

x∗(n, q) ∈ Ω+(n0, x0),
x∗(n, q) ∈ {V ∗(n, x) = w∗(n)}∩{R∗(n, x, w∗(n)) = 0}, (24)

where w∗(n) is the solution of the limiting comparison
system (21) such that w∗(0) = V ∗(0, q).

Proof. Using the equality (19) and Alekseev’s nonlin-
ear variation of parameters formula (15), one can ob-
tain the following relationship between the functions
V [n] = V (n, x[n]) = V (n, x(n, n0, x0)) and w = w[n] =
w(n, n0, V0) (V0 = V (n0, x0)):

V (n, x[n]) = w[n] +

n−1∑
j=n0

1∫
0

Φ(n, j + 1, sV [j]

+(1− s)w[j])dsR(j, x[j], V [j]).

(25)

One can easily see that the function V (n, x(n)) is lower
bounded on the set Z+ ×D as well as the solution w[n] of
the system (12) is bounded for all n ≥ n0. Using (23), one
can obtain that there exist the positive reals α0 and β0

such that for each n ≥ n0 the following inequality holds

β0 ≥
k∑

i=1

(wi[n]− V i[n])

≥ −α0

k∑
j=1

n−1∑
r=n0

Rj(r, x[r], V [r]) ≥ 0.

(26)

In order to prove this, we consider the equality (25) which
can be written as follows

V i(n, x[n]) = wi[n] +
k∑

r=1

n−1∑
j=n0

1∫
0

Φir(n, j + 1, sV [j]

+(1− s)w[j])ds Rr(j, x[j], V [j]), i = 1, 2, . . . , k.

(27)

Summarizing the equalities (27) over i = 1, 2, . . . , k, one
can get

k∑
i=1

(wi[n]− V i[n])

= −
k∑

r=1

n−1∑
j=n0

1∫
0

k∑
i=1

Φir(n, j + 1, sV [j] + (1− s)w[j])ds

×Rr(j, x[j], V [j]).

(28)

Using the second inequality of (23), one can find that there
exists a positive real α0 such that for each n ≥ n0 and for
each j = 1, 2, . . . , k the following inequality holds

1∫
0

k∑
i=1

Φir(n, j + 1, sV [j] + (1− s)w[j])ds ≥ α0. (29)

Using Assumption 13, from (29) one can obtain that there
exists β0 > 0 such that the inequality (26) holds. So, each
function series constructed by the partial sums from (26)
converges. Therefore, the following holds

lim
n→+∞

R(n, x[n], V (n, x[n])) = 0. (30)

Let q ∈ w+(n0, x0) be a positive limit point defined by the
sequence nj → +∞, i.e. x(nj , n0, x0) → q as nj → +∞.
Choose the subsequence nji → +∞ such that g(nji +
n, x) → g∗(n, x), Q(nji + n, x) → Q∗(n, x) and R(nji +
n, x, w) → R∗(n, x,w) as nji → +∞. This implies that for
each β > 0 the following holds

x[nji + n] → x∗[n], w[nji + n] → w∗[n]
uniformly in n ∈ [−β, β] as nji → +∞,

(31)

where x∗[n] = x∗(n, 0, q) and w∗[n] = w∗(n, 0, q) (w∗ =
V ∗(0, q)) are the solutions of the systems (10) and (21)
respectively.
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From (26) and (30) one can obtain that for all t ∈ R the
following equalities hold

V ∗[n, x∗[n]] = w∗[n], R∗[n, x∗[n], V ∗[n]] = 0. (32)

This completes the proof.

Remark 17. Theorem 16 represents the solution to the
positive limit set localization problem for non-autonomous
systems of difference equations. The main feature of our
result in comparison with some known ones (Krabs, 2002;
Lacshmikantham and Trigiante, 2002) is that we use a
comparison method with Lyapunov vector functions which
is a generalization of the direct Lyapunov method with
scalar Lyapunov functions.

The following theorem represents the development of the
authors’s previous results obtained for non-autonomous
systems of differential equations (Andreyev and Peregu-
dova, 2006) to the non-autonomous systems of difference
equations.

Theorem 18. Assume that the Lyapunov vector function
candidate V = V (n, x) exists such that

(1) The function V (n, x) satisfies the conditions of As-
sumptions 4, 13, 15, where R = R(n, x);

(2) The scalar function V̄ (n, x) defined as (3) is positive
definite and radially unbounded;

(3) Vi(n, x) → 0 uniformly in n as ∥x∥ → 0, i =
1, 2, . . . , k;

(4) The zero solution w = 0 of comparison system (12) is
uniformly globally stable;

(5) For any limiting pair (g∗, R∗) there are no solutions
of (10) which stay forever in the set {R∗(n, x) = 0}
except for the zero solution x = 0.

Then, the zero solution x = 0 of (1) is uniformly globally
asymptotically stable.

Proof. Using the comparison principle, from the condi-
tions 1–4 of Theorem 18 one can obtain that the zero
solution x = 0 of (1) is uniformly globally stable.

The next step of our proof is to show the uniform global
attractiveness property of the solution of (1). In other
words, we have to prove that for each ε > 0 there exists
N = N(ε) ∈ Z+ such that ∀∆ > 0 and ∀n0 ∈ Z+ the
following inequality holds

∥x(n, n0, x0)∥ < ε ∀n ≥ n0 +N(ε), ∀∥x0∥ < ∆. (33)

To this end, let us suppose the contrary that there exists
ε0 > 0 such that ∀∆ > 0 and ∀{Nk → +∞} one can find
a sequence (nk, xk), k → ∞ (nk ≥ 0, ∥xk∥ < ∆) such that

∥x(nk +Nk, nk, xk)∥ ≥ ε0. (34)

Without loss of generality, we assume that nk → +∞ and
xk → x∗

0 as k → +∞ and the sequence nk → +∞ defines
the limiting pair (g∗, R∗) since otherwise we can take both
nk +Nk/2 and x(nk +Nk/2, nk, xk) instead of nk and xk,
respectively, and then pass to the convergent subsequences
if it is necessary.

Choose a real δ0 = δ0(ε) > 0 from the condition of the
global uniform stability of the zero solution x = 0 of (1).
One can easily see that ∀n ∈ Z+ the following inequality
holds

∥x(n+ nk, nk, xk)∥ ≥ δ0 > 0. (35)

If we pass to the limit in (35) as k → +∞, then we obtain
the following

∥x∗(n, 0, x∗
0)∥ ≥ δ0 > 0 ∀n ∈ Z+. (36)

For the solution x∗(n, 0, x∗
0) of (10) define a positive limit

point x∗∗
0 using some sequence nm → +∞. Without loss of

generality, we assume that the sequence nm → +∞ defines
a limiting pair (g∗∗, R∗∗). Let x∗∗(n, 0, x∗∗

0 ) be a solution
of x(n + 1) = g∗∗(n, x(n)). Using Theorem 16, one can
easily see that x∗∗(n, 0, x∗∗

0 ) ∈ {R∗∗(n, x) = 0} ∀n ∈ Z+.
Then, using the condition 5 of Theorem 18, we obtain the
following equality

x∗∗(n, 0, x∗∗
0 ) ≡ 0. (37)

It is obviously that the equality (37) contradicts the
inequality (36). This completes the proof.

Remark 19. The advantage of Theorem 18 over the well-
known results Lacshmikantham and Trigiante (2002) is
that in order to derive the asymptotic stability property
of the solutions of non-autonomous difference systems it is
not necessary that the corresponding comparison system
has the asymptotically stable zero solution.

2.5 Stability analysis of the discrete-time epidemic model

In this subsection, an epidemic model for the spread of
gonorrhea or chlamydia is investigated in discrete time.
The population is divided into two heterosexual groups,
females and males. The infected members of one group
can infect the healthy members of the other one. A discrete
model of the disease course is given by

I1(n+ 1) = (1− r1h)I1(n)

+
c12hM

W
I2(n)(1− I1(n)),

I2(n+ 1) = (1− r2h)I2(n)

+
c21hW

M
I1(n)(1− I2(n)),

(38)

where n ∈ Z+, I1 and I2 are the fractions of the in-
fected members of the groups, respectively; 0 ≤ I1 ≤ 1,
0 ≤ I2 ≤ 1; W and M are the sizes of the groups,
respectively; cjk (j, k = 1, 2, j ̸= k) and ri (i = 1, 2)
are the coefficients which characterize the process of the
infection spread (contact and recovery rates), for which
the following inequalities hold 0 ≤ cjkh ≤ W/M and
0 ≤ rih ≤ 1; the constant h > 0 is the unit time interval.

Assume that the contact and recovery rates can vary with
the season during the year, i.e. cjk = cjk(n) and ri = ri(n),
where j, k = 1, 2, j ̸= k and i = 1, 2.

It is easy to see that the set L = {0 ≤ I1 ≤ 1, 0 ≤ I2 ≤
1} is invariant with respect to the solutions I(n, n0, I0) ∈ L
of (38) for all initial points I(n0) = I0, where (n0, I0) ∈
Z+ × L and ∀n ≥ n0.

The system (38) satisfies the precompactness criteria (8)
and (9). Therefore, the following limiting system can be
obtained 

I1(n+ 1) = (1− r∗1(n)h)I1(n)

+
c∗12(n)hM

W
I2(n)(1− I1(n)),

I2(n+ 1) = (1− r∗2(n)h)I2(n)

+
c∗21(n)hW

M
I1(n)(1− I2(n)),

(39)
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where c∗ij(n) = limk→+∞ cij(nk + n) and r∗i (n) =
limk→+∞ ri(nk + n), i, j = 1, 2, i ̸= j.

Choose the Lyapunov vector function candidate such as
V = (I1, I2)

T . One can easily obtain the comparison
system

w1(n+ 1) = (1− r1(n)h)w1(n) +
c12(n)hM

W
w2(n),

w2(n+ 1) =
c21(n)hW

M
w1(n) + (1− r2(n)h)w2(n).

(40)

The vector R = (R1, R2)
T is given by

R1 = −c12(n)hM

W
I1I2, R2 = −c21(n)hW

M
I1I2. (41)

The limiting functions R∗
1 and R∗

2 are defined as follows

R∗
1 = −c∗12(n)hM

W
I1I2, R∗

2 = −c∗21(n)hW

M
I1I2. (42)

The zero solution w1 = w2 = 0 of the comparison system
(40) is uniformly stable if for each k0 ∈ Z+ and for all
k ≥ k0 the following holds

∥A(k0) ·A(k0 + 1) · . . . ·A(k)∥ ≤ a0 = constant, (43)

where the matrix A(j) ∈ R2×2 is defined as follows

A(j) =

 1− r1(j)h
c12(j)hM

W
c21(j)hW

M
1− r2(j)h

 . (44)

Since the comparison system (40) is linear so the uniform
stability of its zero solution w1 = w2 = 0 is global.

The set {R∗
1 = R∗

2 = 0} doesn’t contain the solutions
of (39) except for I1 = I2 = 0. Using Theorem 18, one
can obtain the uniform asymptotic stability ”in large”
property for the zero solution I1 = I2 = 0 of (38) if the
inequality (43) holds. Then, there is no epidemic and the
disease dies out.

Note that the inequality (43) is true if the following holds

max
i,j∈Z+

(c12(i)c21(j))/(r1(i)r2(j)) ≤ 1. (45)

Note that from (45) one can obtain the well-known in-
equality proposed by Martin et al. (1996) for autonomous
case of the system (38), which determines whether the in-
fection dies out. The extinction diseases condition consists
in introducing the basic reproduction number R0 which is
not more than one, i.e.

R0 = (c12c21)/(r1r2) ≤ 1.

3. DISCRETE-TIME CONTROLLERS FOR
CONTROLLED SYSTEMS

3.1 Solution to the Stabilization Problem of Passive
Systems

Consider a discrete-time controlled system given by

x(n+ 1) = f(n, x(n), u(n)), (46)

y(n) = h(n, x(n), u(n)), (47)

where x ∈ Rm, u ∈ Rp, y ∈ Rp are the state, input and
output vectors of the system respectively; f : Z+ × Rm ×

Rp → Rm and h : Z+ × Rm × Rp → Rp are continuous
functions in (x, u) satisfying the precompact conditions.

Assume that f(n, 0, 0) ≡ 0, h(n, 0, 0) ≡ 0 such that the
system (46) – (47) has the zero equilibrium state x = 0,
y = 0.

For (46) – (47), the limiting system can be defined in the
following form

x(n+ 1) = f∗(n, x(n), u(n)), (48)

y(n) = h∗(n, x(n), u(n)), (49)

where (f∗, h∗) is any limiting pair.

Definition 20. The system (46) – (47) is called strictly
observable in the zero state if for any limiting pair (f∗, h∗)
the set {h∗(n, x, 0) = 0} does not contain the solutions of
the limiting system (48), except for x = 0.

Definition 21. Any system of a type (46) is called passive,
if there exists a scalar function V = V (n, x) called a
storage function such that

V (n+ 1, f(n, x, u)) ≤ W (n, V (n, x)) + yTu, (50)

where W (n,w) ≥ 0, W (n, 0) ≡ 0 is a continuous, mono-
tonic in w function such that the zero solution of the
corresponding comparison equation

w(n+ 1) = W (n,w(n)) (51)

is uniformly stable.

Theorem 22. Let for the system (46) – (47) the following
conditions be hold:

(1) the system is passive with a positive definite margin-
tolerant storage function V (n, x);

(2) the system is strictly observable in the zero state.

Then, the controller u = u(n, y) such that yTu(n, y) ≤
−α(∥y∥), where α ∈ K solves the stabilization problem of
the zero state x = 0 of the system (46) – (47).

Proof. Let us use the storage function V (n, x) as the
Lyapunov function for the following closed-loop system:

x(n+ 1) = f(n, x, u(n, y)),
y = h(n, x).

(52)

Using (50) one can get

V (n+ 1, x(n+ 1)) = V (n+ 1, f(n, x(n), u(n, y)))
≤ W (n, V (n, x)) + y′u(n, y) ≤ W (n, V (n, x(n)))
−α(∥y∥).

(53)

From (53) one can obtain that for the function V (n, x)
there exists a comparison equation (51). Due to the strict
observability of (46) – (47), the set {α(∥y∥) = 0} = {y =
0} = {h∗(n, x) = 0} does not contain the solutions of (48),
except for the zero state x = 0. Accordingly to Theorem
22, one can get the proof.

Note that the scope of Theorem 22 can be expanded by
converting the non-passive systems to the passive ones.

Consider the special case of the system (48) as

x(n+ 1) = f(n, x(n)) +B(n, x(n))u. (54)

Assume that there exists a strictly positive definite
quadratic form V (x) of x such as
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V (x) = xTCx ≥ c0 ∥x∥2 , C ∈ Rm×m − constant matrix,

c0 = constant > 0, ∥x∥2 = x2
1 + . . .+ x2

m,
V (x(n+ 1)) = fT (n, x(n))Cf(n, x(n))
≤ W (n, V (n, x(n))),

where W is the function from the equation (51).

Assume that the following holds

y = 2BTCf +BTCBu. (55)

Then, one can get

V (f(n, x) +B(n, x)u) = (f +Bu)TC(f +Bu)
= fTCf + 2fTCBu+ uTBTCBu
= fT (n, x)Cf(n, x) + yTu ≤ W (n, V (n, x)) + yTu.

In such a way the system (54) with the output y defined
by (55) turns out to be passive. Therefore, the conditions
of Theorem 22 hold.

Note that the feedback can be used to ensure some system
to be passive. In this case, if for the system (54) there
exists a feedback change

u = u0(n, x) + u1(n, x)v (56)

and the output y = h(n, x) is such that the system

x(n+ 1) = f(n, x(n)) +B(n, x(n))u0(n, x)
+B(n, x(n))u1(n, x)v, y = h(n, x(n))

satisfies Theorem 22, then, the zero state x = 0 is
stabilizable by using the controller v = v(n, y).

The class of passifiable systems can be expanded to the
systems that are a cascade connection of two subsystems
one of which is passive and the second is characterized
by the fact that its origin is the equilibrium point of the
corresponding open system such as follows

z(n+ 1) = g(n, z(n)) +B2(n, z(n), y(n))y(n) (57)

x(n+ 1) = f(n, x(n)) +B1(n, x(n))u, (58)

y(n) = h(n, x(n)), (59)

where the functions g, f and h are such that g(n, 0) ≡ 0,
f(n, 0) ≡ 0, h(n, 0) ≡ 0, the matrices B1(n, x) and
B2(n, z, y) are continuous in x and (y, z) respectively, and
all the functions g, f and h and matrices B1(n, x) and
B2(n, z, y) satisfy the precompact conditions.

System (57)-(59) can be considered as a cascade connec-
tion of the first subsystem (58), (59) and the second one
(57).

Let’s assume that the first subsystem (58), (59) is passive
with the storage function V1 = V1(n, x) such that the
following holds

V1(n+ 1, x(n+ 1)) ≤ µ(n)V1(n, x(n)) + yTu, (60)

where µ(n) is a function satisfying the following condition
n∏

j=n0

µ(j) ≤ µ0 = constant ∀n ≥ n0. (61)

Assume also that for the system z(n+1) = g(n, z(n)) there
exists a positive definite quadratic form

V2(z) = zTCz (62)

such that

V2(g(n, z)) ≤ µ(n)V2(z). (63)

One can easily obtain that for the system (57) – (59) there
exists a storage function V (n, x, z) = V1(n, x)+V2(z) such
that
V (n+ 1, x(n+ 1), z(n+ 1)) = V1(n+ 1, x(n+ 1))
+V2(g(n, z(n))) +B2(n, z(n), y(n))y(n))
≤ µ(n)V1(n, x(n)) + yT (n)u+ V2(g(n, z(n)))
+2gT (n, z(n))CB2(n, z(n), y(n))y(n)
+yT (n)BT

2 (n, z(n), y(n))CB2(n, z(n), y(n))y(n)
≤ µ(V1 + V2) + yT (u+ 2BT

2 Cg +BT
2 CB2y).

(64)

With the following change of feedback

u = −BT
2 (n, z, y)C(2g(n, z) +B2(n, z, y)y) + v (65)

one can get the estimation

V (n+ 1, x(n+ 1), z(n+ 1))
≤ µ(n)V (n, x(n), z(n)) + yT (n)v.

(66)

From (66), one can obtain that the system (57) – (59),
(65) is passive with the storage function V .

3.2 An Output Feedback Stabilization Problem of a One
Second-Order Discrete-Time System

Consider a second-order system with a scalar controller{
x1(n+ 1) = ν(n)(−x2(n) + x2

1(n)u(n)),

x2(n+ 1) = ν(n)(x1(n)−
√
2x2(n)),

(67)

u(n) = x1(n)/
√
1 + x4

1(n), (68)

where the function ν(n) satisfies the conditions:

(1) for any sequence nk → ∞ such that 0 < nk+1 −
nk ≤ N0 > 0 the following holds

limk→∞ν(nk) = ν0 > 0

(2) there exists a function µ(n) = ν2(n) satisfying (61).

For ν(n) ≡ 1, the linear approximation system is given by{
x1(n+ 1) = −x2(n),

x2(n+ 1) = x1(n)−
√
2x2(n).

Note that the roots of the associated characteristic equa-
tion, λ1,2 = (

√
2 ±

√
2i)/2, are such that |λ1| = |λ2| = 1,

so for ν(n) ≡ 1 there exists a critical case.

It is easy to show that the output feedback controller (68)
globally stabilizes the zero state x1 = x2 = 0 of (67), (68).

Consider the Lyapunov function candidate as V (x1, x2) =

((x1−x2/
√
2)2+x2

2/2)/2. Note that the function V (x1, x2)
is positive definite and radially unbounded.

One can easily obtain the following

V (n+ 1) = ν2(n)V (n)

− ν2(n)x4
1(n)

2
√
1 + x4

1(n)

(
√
2− x2

1(n)√
1 + x4

1(n)

)
.

(69)

From (69), one can obtain the estimation

V (n+ 1) ≤ ν2(n)V (n). (70)
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Fig. 1. The solution x1(n) and x2(n) of (67),(68)

The zero solution w = 0 of the comparison equation

w(n+ 1) = ν2(n)w(n) (71)

is uniformly stable.

One can easily see that the set{
ν2∗(n)x4

1

2
√

1 + x4
1

(
√
2− x2

1√
1 + x4

1

)
= 0

}

doesn’t contain the solutions of the equation limiting to
(67), (68), except for x1 = x2 = 0. Using Theorem 18,
one can obtain the uniform global asymptotic stability
property for the zero solution x1 = x2 = 0 of (67), (68).

From Fig. 1 one can see the numerical results of modelling
the system (67), (68), where ν(n) = 5/6 ∀n = 2k + 1,
k ∈ Z+ and ν(n) = 6/5 ∀n = 2k, k ∈ Z+.

4. CONCLUSION

In this paper, the global asymptotic stability problem for
non-autonomous systems of nonlinear difference equations
has been considered using both the comparison method
and the theory of limiting equations. We have proposed
a so called quasi-invariance principle which is the gener-
alization of the well-known La-Salle invariance principle
to the non-autonomous systems of difference equations.
The theorem on the limiting behavior of the solutions has
been proved by using the variation-of-constants formula
of V.M. Alekseev. Then we have proved the theorem on
the uniform global asymptotic stability property without
the requirement of this property for the zero solution of
the comparison system. The stabilization problem of a
nonlinear nonstationary discrete system has been solved
using the theoretical results obtained in the paper.
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