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Abstract: Patients with type 2 diabetes mellitus (T2DM) typically take blood glucose level
lowering oral or injectable therapeutic agents to treat their condition. Titration and timing
of administration of these agents can be difficult under optimal conditions. Largely because
of these challenging tasks, less than half of patients with T2DM under therapy are reaching
desired glycemic targets. Computer simulations have been shown in both types of diabetes
to be powerful tools to design and test optimal therapies. However, the diversity of available
therapeutic agents makes the construction of such a platform challenging. In this manuscript,
we present a methodology to integrate pharmacokinetics (PK) and pharmacodynamics (PD) of
anti-diabetic drugs into an existing T2DM population simulation platform to optimize therapy
dosage and timing, and inform clinical trial designs; the mixture of insulin glargine and a
glucagon-like peptide 1 receptor agonist (GLP1-RA) was used as an example. The platform was
augmented with several drug-specific new/modified sub-models and the associated parameter
distributions were derived from various blood measurements collected during clinical studies.
The joint model parameter distribution of the augmented platform was obtained by fitting
simulated glucose profiles on 2000 days of glucose sensor data in a novel Bayesian framework.
The resulting platform was then validated by reproducing glucose distributions from a large
clinical study, originally excluded from the training data. Finally, simulation experiments of
optimal administration timing of the studied mixture were run.
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1. INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a disease character-
ized by resistance of body cells to the action of insulin -
a pancreatic secreted hormone responsible for enhancing
glucose entering the cells - resulting in high blood glu-
cose (BG) values or hyperglycemia, whose consequences
has been shown in previous studies to be long term
micro- and macrovascular complications such as neuropa-
thy, nephropathy, and retinopathy Nathan DM (1993).
A wide range of therapeutic options aiming at reducing
glycemia is available for T2DM treatment. Typically, pa-
tients with advanced T2DM start with oral agents and
a daily long-acting exogenous insulin injection. However,
low BG levels or hypoglycemia can be induced by thera-
pies if overdosed, putting patients at risk for seizure and
death. This condition prevents patients with T2DM from
intensifying therapies which, coupled with postmeal hyper-
glycemic excursions forbid American diabetes association
(ADA) recommended glycemic targets to be reached in
50% to 60% of cases Raccah D (2007).

Glucagon-like peptide 1 (GLP1) receptor agonist (GLP1-
RA) is a category of injectable therapeutic agents, recently
receiving significant attention. These agents bind to the

? This work was supported by Sanofi

receptors of a gut-derived hormone called GLP1, which
stimulates insulin secretion in a glucose-dependent fashion,
inhibits gastric emptying, reduces appetite and suppresses
the secretion of glucagon, a pancreatic hormone promot-
ing the increase of glycemia Drucker DJ (2006), without
impacting its natural secretion response to hypoglycemia.
Through these mechanisms, they dampen postmeal hy-
perglycemia without inducing hypoglycemia and thus, are
good candidates to overcome the aforementioned obsta-
cles. In the present study, we will specifically focus on
an injectable fixed-ratio combination of GLP1-RA lixisen-
atide and long-acting insulin glargine (iGlar). The mixture
has been shown to be safe and efficacious in the treatment
of patients with T2DM Riddle MC (2013), Rosenstock J
(2016).

Dosing glucose-lowering agents is a challenging task. Over-
dosing leads to the life-threatening condition of hypo-
glycemia and the underdosing to hyperglycemia and its
aforementioned consequences. The timing of injection has
also proven to be difficult. As those agents have prolonged
actions with peaks, adequate injection timing would match
action peaks with hyperglycemia zones and nadirs with
hypoglycemia ones, which in practice is hardly feasible
without extensive knowledge on the mechanism of action.
Simulation platforms were used broadly to help with this
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Table 1. Lixisenatide Pharmacokinetic Param-
eter Estimates

Average value Units

k1 0.0045 min−1

k2 8.3 · 10−4 min−1

k3 0.0024 min−1

kd 1 pg/ml/min
kp 0.018 ml/pg
k 18.4 ml−1

difficult task. In this context, the UVA/Padova type 1
diabetic simulation platform was approved by the FDA
for testing insulin dosing algorithms as a substitute for
animal trials Kovatchev BP (2009).

The present study describes the augmentation of a previ-
ously published type 2 diabetic simulation platform Dalla
Man C (2007) with new drug sub-models to enable sim-
ulation scenarios, with an application on determining the
best injecting time for the combination drug.

2. METHODS

2.1 Constructing Dynamic Models Modules from Pharmaco-
kinetics and Pharmacodynamics Experiments

In this section, new sub-models incorporated into the
existing simulation platform are discussed. All models
presented below are built on data from two previously
published studies Becker RH (2014), Becker RH (2015),
providing measurements of blood hormonal and glucose
responses to respectively intravenous and oral glucose chal-
lenges. These measurements were used to fit the built mod-
els on or as input forcing functions. Linear models with
one compartment or linearized pre-existing ones (if avail-
able) were first considered. They were then augmented
by up to 2 compartments after which non-linearities were
considered and were selected or rejected based on the fit
residuals and coefficient of variation (CV) of the associated
parameter estimates. Residuals were used to assess the
accuracy and the CV the posteriori identifiability and
over-fitting risks. Parameter CV were required to be less
than 100% and residuals to have the x-axis (0) within the
interval mean ± standard deviation (SD).

The three following models were built on blood concentra-
tion data from a study where 22 subjects with T2DM were
given an intravenous glucose dose two hours following the
injection of lixisenatide or placebo Becker RH (2014).

GLP1-RA Model A non-linear triangular shaped three
compartment model was selected to describe the evolu-
tion of lixisenatide in blood from a subcutaneous injec-
tion Eqs.(1)-(4). Depletion rate of the 3rd compartment
was modeled with a second order Michaelis-Menten like
formula Eq.(4) to obtain satisfactory residuals. Average
model fit and average data is shown Fig. 1 and parameter
estimates are listed Table 1.

L̇sc1(t) = −(k1 + k3)Lsc1(t) + SCI(t) (1)

L̇sc2(t) = −k2Lsc2(t) + k3Lsc1 (2)

Ralixi(t) = k1Lsc1 + k2Lsc2 (3)

L̇p(t) = −kd
(kp · Lp(t))2

1 + (kp · Lp(t))2
+ k ·Ralixi (4)

Fig. 1. Lixisenatide average model fit on blood measure-
ments following a subcutaneous injection of 20 µg
Becker RH (2014).

Fig. 2. Insulin secretion model fit on insulin secretion
rates derived from c-peptide measurements following
an intravenous glucose injection Becker RH (2014).

with, SCI(µg/min) the lixisenatide injection rate; Lsc1

and Lsc2(µg), states describing lixisenatide mass evolution
in rapidly and slowly equilibrating tissues respectively;
k(ml−1), the gain term accounting for volume of distribu-
tion and change of units; Lp(pg/ml), lixisenatide plasma
concentration; k1, k2, and k3(min−1), rates of exchange
between compartments; kd(pg/ml/min), maximum deple-
tion rate and kp(ml/pg), a Michaelis-Menten constant like
parameter.

Insulin Model A modified version of the insulin secre-
tion model presented in Dalla Man C (2007) with addi-
tional compartments to obtain satisfactory residuals was
selected. Glucose stimulated insulin secretion Eq.(5) is the
sum of the 1st phase dynamic response Eq.(6) and the
2nd phase static response Eq.(8). Fit with and without
lixisenatide are shown Fig. 2. Table 2 lists the obtained
parameter estimates.

Spo = YI(t) + YII(t) + Sb (5)

where Spo(t)(pmol/kg) is the insulin secretion; Sb, the
basal secretion; YI(t) and YII(t) are 1st and 2nd phase
secretion responses.

ẎI(t) =

{
−q · [YI(t) −K · Z(t)] for Z > 0

−q · YI(t) otherwise
(6)

Ż(t) = −p · [Z(t) − Ġ(t)]. (7)
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Table 2. Insulin Secretory Parameter Esti-
mates

Baseline With lixisenatide Units

Sb 0.16 0.28 pmol/kg/min
K 0.08 0.53 pmol · dl/mg/kg
q 0.71 0.61 min−1

p 0.30 0.30 min−1

α1 0.07 0.10 min−1

α2 0.01 0.02 min−1

αd 0.06 0.33 min−1

β 0.29 0.90 pmol · dl/mg/kg/min

Fig. 3. Glucagon secretion model fit on blood glucagon
concentration measurements following an intravenous
glucose injection Becker RH (2014).

here, K(pmol · dl/mg/kg) is the pancreatic sensitivity

to glucose rate-of-change Ġ(t); q and p(min−1), delays
between glucose rate-of-change and 1st phase response.

YII(t) = α1 · Y1(t) + α2 · Y2(t) (8)

Ẏ1(t) =


−(α1 + αd) · [Y1(t) − β · (G(t) −Gb)]

if β · (G(t) −Gb) ≥ −Sb

−(α1 + αd) · [Y1(t) + Sb] otherwise,

(9)

Ẏ2(t) = αd · Y1(t) − α2 · Y2(t). (10)

here, α1, α2 and αd(min−1) are the delays between glucose
signal and insulin secretion; β(pmol · dl/mg/kg/min),
pancreatic sensitivity to glucose G(t) and Gb(mg/dl),
basal glucose concentration.

Glucagon Model Glucagon models were proposed in a
previously published paper Man CD (2014), the non-
linear version was selected. As with the insulin model, a
dynamic Eq.(12) and a static secretion Eq.(11) component
are described, sensitive to both insulin and glucose blood
concentrations. A one-compartment model was used to
represent the pharmacokinetics Eq.(13). This model is fit
on measurements from the same study Becker RH (2014).
Model fits are shown in Fig. 3, and associated parameters
listed in Table 3.

˙SR
s
H(t) = −ρ

[
SRs

H(t) −max

(
σ

Gb −G(t)

max(I(t) − Ib, 1)
+ SRb

H , 0

)]
(11)

where SRs
H(pmol/l/min) represent the static secretion

component; SRb
H(pmol/l/min), basal secretion; I(pmol/l),

blood insulin concentration; Ib(pmol/l), basal insulin
value; ρ(min−1) delay of the static secretion compo-
nent; σ(pmol2/mg/l/min) and σ2 (pmol/mg/min), the

Table 3. Glucagon Secretory Parameter Esti-
mates

Baseline With lixisenatide Units

SRb
H 8.82 9.60 pmol/l/min

Ib 7.40 12.92 pmol/l
ρ 0.54 0.45 min−1

σ 1.23 2.21 pmol2/mg/l/min
δ 0.21 0.16 pmol/mg
n 0.13 0.15 min−1

Fig. 4. Gastric emptying model fit on acetaminophen blood
concentration measurements following a meal and
subcutaneous injection dose of lixisenatide or placebo
Becker RH (2015).

Table 4. Gastric Emptying Parameter Esti-
mates

Baseline With lixisenatide (20 µg) Units

kempt 0.048 0.0084 min−1

kabs 0.048 0.0085 min−1

kdep 0.0013 0.0013 min−1

K 0.051 0.051 µmol/mg/l

glucagon static secretory sensitivities to insulin and/or
glucose concentration.

SRd
H(t) = δ ·max

(
−Ġ(t), 0

)
(12)

where SRd
H(pmol/l/min) is the dynamic secretion com-

ponent and δ(pmol/mg), glucagon dynamic secretory sen-
sitivity to glucose rate-of-change.

Ḣ(t) = −n ·H(t) + SRd
H(t) + SRs

H(t) (13)

here, H(pmol/l−1) is blood glucagon concentration and
n(min−1), its depletion rate.

Gastric Emptying Model A linearized version Eqs.(14)-
(16) of the pre-existing platform meal model Dalla Man C
(2007) was selected and fitted on data from the oral
challenge study Becker RH (2015). In this study, subjects
underwent subcutaneous injections of lixisenatide in dif-
ferent doses (0, 5, 15 and 20 µg) two hours prior to the
ingestion of a meal mixed with acetaminophen. Glucose
appearance in blood from the ingested meal was assessed
through acetaminophen blood concentrations. Fitted ac-
etaminophen concentrations are shown in Fig. 4, and the
associated parameters are given in Table. 4.

Q̇sto(t) = −kempt ·Qsto(t) +ACT (t) (14)

Q̇gut(t) = −kabs ·Qgut(t) + kempt ·Qsto(t) (15)

Ȧcetp(t) = −kdep ·Acetp(t) +K · kabs ·Qgut(t) (16)
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Fig. 5. Average evolution of kabs with lixisenatide dose

where, ACT (mg/min) represents the acetaminophen in-
gestion; Qsto and Qgut(mg) the acetaminophen mass in
stomach and gut; Acetp(µmol/l), acetaminophen blood
concentration; kempt, kabs, kdep(min−1), exchange and
depletion rates and K(µmol/mg/l), a gain representing
volume of distribution and change of unit.

2.2 Sub-Models Integration into the pre-existing Platform

Sub-model Parameter dependence on Lixisenatide In all
models presented above, estimated parameters were as-
sumed to be distributed either normally or log-normally,
making the estimated averages and covariance matrices
sufficient to completely describe their distributions. They
are determined for with and without lixisenatide and for
different lixisenatide doses. Any significant differences in
parameters between with and without lixisenatide are as-
sumed to follow a drift depending on lixisenatide concen-
tration described by the relationship given in Eq.(17) and
shown Fig. 5. Parameter p1 is estimated from the extent of
the drift and p2 is identified using data from the multi-dose
study Becker RH (2015).

e% = 1 + p1
p2 · Lp

1 + p2 · Lp
(17)

where e% is the multiplicative drift; p1 (%), the saturated
change; p2(mL/pg), the Michaelis-Menten parameter and
Lp(µg) the lixisenatide dose. Described sub-models were
integrated into the simulation platform presented in Dalla
Man C (2007) as illustrated by Fig. 6. Although the aug-
mented platform models are all determined, before run-
ning experimental studies, different covariance matrices
from identified sub-models and the pre-existing simulation
platform must be merged.

Estimating Joint Parameter Distribution The joint pa-
rameter distribution is determined by fitting simulated
traces to continuous glucose measurements (CGM) from
Bergenstal RM (2017) while imposing Bayesian priors
derived from sub-models and original platform parameter
distributions. The 24-week study allowed the collection of
14 days of CGM data both before and after introducing
lixisenatide in 69 subjects with T2DM. In the study data,
no information on mealtime and amount was available.
As a result, meals were detected from CGM traces with
a threshold-based method using first and second CGM
derivatives. Meal amounts are further optimized, concur-
rently with the parameter joint distribution, imposing
tight Bayesian priors on total daily meal size reported in
Saslow LR (2014). Parameters and meals were estimated

Fig. 6. Augmented simulation platform. Modified from
Dalla Man C (2007).

using a multi-initialization optimization process, sampling
from the prior distributions. Maximum a posterior estima-
tor was obtained by minimizing the following cost function:

J(p) = (Gmes −G(p)) ·W−1 · (Gmes −G(p))

+(p− pprior) ·R−1 · (p− pprior)
(18)

here, Gmes(mg/dl) is a vector of CGM measurements;
G(p)(mg/dl), a vector of simulated glucose; W , the co-
variance matrix of CGM measurements; p, the vector of
estimated parameters of both models and meals; pprior
and R, the average and covariance matrix from prior
distributions. A trust reflective region algorithm was used
for the optimization procedure. For each patient, the best
fit of each day is kept to build a personalized parameter
distribution (assumed normal or log-normal). The fitting
process is then repeated, using the personalized parameter
distribution as a prior and its average as initial condition
for all days. Meal amounts are simultaneously estimated
in both of these optimization steps. A representative result
of this fitting procedure by day is given in Fig. 7.

The rationale behind a two-step optimization using per-
sonalized priors is to account for variability in individual
patients’ responses to therapy and behaviors across days.
Imposing a personalized prior will allow some, although
limited variance within-subject (across days) compared
to variance within population (across subjects). These
personalized parameter distributions then form the joint
parameter distribution matrices, allowing for some corre-
lation between parameters originating from independently
identified models. We refer to this joint distribution as in-
silico population.

2.3 Validation of the new Simulation Platform using Drug
Efficacy Trials

The in-silico population was validated on an indepen-
dent data set previously unseen by the built models.
The data were collected in a large study of 736 insulin-
treated patients randomized 1:1 to insulin iGlar/GLP1-
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Fig. 7. A representative example of one day CGM data fit
to type 2 diabetes simulator generated trace.

RA combination or iGlar only, administered once daily
in the morning within an hour before breakfast Aroda VR
(2016). To assess the quality of glucose control, seven-point
self-monitored BG (SMBG) profiles - BG measurements
performed prior to, and two hours after, each main meal
(breakfast, lunch, and dinner) and at bedtime - were ob-
tained at baseline (before the studied intervention) and
after 26 weeks of intervention (endpoint).

A cohort of 100 virtual subjects was constructed by
sampling from the in-silico population. Simulated subjects
were randomized 1:1 to receive either insulin glargine
or the combination during the simulated trial; to match
the previous protocol, injections were simulated within
an hour of breakfast every day and titrated to match
average doses of the study Aroda VR (2016). As no meal
information was available in the collected dataset, we built
a probabilistic meal-generator from Bergenstal RM (2017)
to construct the meal sequence in the simulated trial. From
the simulation BG output, baseline and endpoint seven-
point profiles were extracted and compared against the
ones given by the validation study data Aroda VR (2016)
with a two-sample χ2 test and the null hypothesis H0 : the
two samples are from the same distribution.

2.4 In-silico Study of the Optimal iGlar & GLP1-RA
combination Administration Time

A cohort of 100 subjects with T2DM was sampled from the
in-silico population. Daily administration of the combina-
tion drug was simulated after titration. The same cohort
underwent two different studies: one with pre-breakfast
injections and one with pre-dinner ones. Identical meals,
generated by the probabilistic meal generator were given
across studies.

3. RESULTS AND DISCUSSIONS

3.1 Sub-Models Identification

Fits of identified sub-models on average data and as-
sociated parameters have already been presented above.
All measurement errors were assumed independent, nor-
mally distributed with 10% coefficient of variation. Av-
erage weighted squared residuals for all fits were < 1
and all contained the x-axis in the interval mean ± SD,
which was considered satisfactory. In addition, all CV of

Fig. 8. Validation of the built platform against the Lixilan-
L study Aroda VR (2016). Top panel displays SMBG
distributions at baseline, and bottom panel, SMBG
distributions after stabilisation of combination treat-
ment.

parameter estimates were below 100%. Evolution of the
parameter estimates with and without lixisenatide are
in line with what is found in the literature: lixisenatide
increases glucagon inhibition (reflected as increase in σ in
Table 3); augments insulin secretion both in a glucose-
dependent fashion (reflected as an increase in β and K in
Table 2); and slows gastric emptying (reflected as decreases
in kempt and kabs in Table 4) Drucker DJ (2006).

The use of acetaminophen as a marker of gastric emptying
has been criticized for its lack of accuracy in the following
papers Bartholomé R (2015). This and the fact that in the
gastric emptying study, concentration measurements stop
300 min after the food intake (too early to observe the de-
cay in acetaminophen concentration) should be noted as a
limitation of the presented research. Additionally, the rela-
tionship between parameter distributions and lixisenatide
concentrations were all assumed to be the same as Eq.
17, as observed in the multi-dose study Becker RH (2015).
However, no published study on lixisenatide dynamics are
available for more precise modeling.

3.2 Validation of In-silico Population

Clinical and in-silico SMBG histograms are compared
in Fig. 8. In both cases, the variances of distributions
decrease between baselines and endpoints, with an average
shift towards lower (healthier) glycemic values (≈ 100
mg/dl). Two sample χ2 test between clinical and in-
silico SMBG distributions for both baseline and endpoint
did not reject the null hypothesis at 95% confidence
level, demonstrating the similarity in glucose profiles and
validating the ability of the built platform to accurately
predict clinical glucose outcomes. Although the potential
interaction between iGlar and lixisenatide was neglected,
it does not seem to hurt the glucose prediction.

3.3 Optimal Administration Time

In-silico population median, quartiles, 10th and 90th per-
centiles of simulated BG with the combination being ad-
ministrated before breakfast vs before dinner is shown
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Fig. 9. Daily in-silico population simulated blood glucose
median, quartiles, 10th and 90th percentiles. The 70
- 180 mg/dl range bounded by dashed black lines is
considered healthy.

Fig. 9. Decrease of post-breakfast and post-lunch hyper-
glycemia is achieved by the breakfast group compared
to the dinner group while a further decrease of post-
dinner hyperglycemia is achieved by the dinner group.
No important increase in hypoglycemia is seen in either
group. Understandably, these results are dependent on
meal eating habit, and further investigation is required
to quantify its impact.

4. CONCLUSION

A methodology for integrating pharmacokinetics (PK) and
pharmacodynamics (PD) models of new drugs into a pre-
existing type 2 diabetes simulation platform for the de-
termination of optimal therapy dosing and timing was
proposed. The PK-PD models of the GLP1-RA lixisen-
atide were built and identified using multiple data sets
derived from blood samples collected during clinical tri-
als on a limited amount of subjects Becker RH (2014),
Becker RH (2015). These sub-models were then integrated
into the pre-existing type 2 diabetic simulation platform
Dalla Man C (2007), and the joint in-silico population
parameter distributions of the unified model was tuned
fitting CGM data Bergenstal RM (2017) with Bayesian
priors. The resulting platform was validated with sparse
BG measurements from an independent larger study Ar-
oda VR (2016). In-silico subjects, sampled from the newly
identified in-silico population, underwent the same study
design as Aroda VR (2016). Resulting distributions of sim-
ulated glycemic outcomes were non-significantly different
from the ones of the clinical study both for baseline and
endpoint. The augmented type 2 diabetes simulation plat-
form was then used to determine the best administration
time of the combination drug. In this in-silico experiment,
it appears that administration before breakfast is bene-
ficial for post-breakfast and lunch hyperglycemia control
compared to an evening administration.
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