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Abstract: Motion control of mobile manipulators (a robotic arm mounted on a mobile base)
can be challenging for complex tasks such as material and package handling. In this paper,
a task-space stabilization controller based on Nonlinear Model Predictive Control (NMPC) is
designed and implemented to a 10 Degrees of Freedom (DOF) mobile manipulator which consists
of a 7-DOF robotic arm and a 3-DOF mobile base. The system model is based on kinematic
models where the end-effector orientation is parameterized directly by a rotation matrix. The
state and control constraints as well as singularity constraints are explicitly included in the
NMPC formulation. The controller is tested using real-time simulations, which demonstrate
high positioning accuracy with tractable computational cost.
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1. INTRODUCTION

The use of mobile manipulators in industry has increased
drastically over the past decade. Mobile manipulators com-
bine the advantages of both wheeled robots and robotic
arms; thus, they have an expandable workspace and opera-
tional versatility through perception, object manipulation,
and mobility. Such robots can be used in material han-
dling, wall painting, as well as inspection and repairs, see,
e.g. (Bostelman et al., 2016) for a survey. Operating such
systems requires safe navigation in possibly dynamic envi-
ronments and precise object manipulation. In this paper,
we focus on stabilizing the end-effector of a 10-DOF mobile
manipulator shown in Fig. 1. The mobile manipulator is
built by integrating the Summit-XLS mobile robot with
meccanum wheels manufactured by Robotnik and the 7-
DOF Barrett WAM robotic arm.

The separate control of mobile robots and robotic arms
is studied extensively in the literature. The consid-
ered control problems can be categorized under point-
stabilization, trajectory tracking, and path following. The
commonly used control techniques include feedback lin-
earization (d’Andréa Novel et al., 1995), robust con-
trol (Koubaa et al., 2013), fuzzy based feedback lineariza-
tion (Piltan et al., 2013), adaptive control (Pourboghrat
and Karlsson, 2002; Slotine and Weiping, 1988), and model
predictive control (MPC) (Faulwasser et al., 2016; Mehrez
et al., 2020).

Several studies that consider controlling mobile manipula-
tors as a combined system also exist. For example, Silva
and Adorno (2016) designed a whole-body controller based
on feedback linearization controlling the end-effector pose
of a mobile manipulator. The controller was tested on a 7-

Fig. 1. The synthesized mobile manipulator. Left: the real robot.
Right: the simulated robot.

DOF mobile manipulator. Patel et al. (2017) proposed an
adaptive backstepping control for the trajectory tracking
of mobile manipulators. Mishra et al. (2018) developed a
robust nonlinear controller with uncertainty estimator; the
controller was validated through simulations for a 7-DOF
mobile manipulator. Furthermore, Avanzini et al. (2016)
used linear MPC for developing a reactive constrained
controller of an omnidirectional mobile base with a 5-DOF
robotic arm. All the aforementioned studies considered
mobile manipulators with non-redundant arms. This sim-
plifies the problem due to the presence of a closed-form
inverse kinematics solutions for such arms. Thus, the con-
trol of the mobile manipulator end-effector can be designed
in the configuration (joint) space by utilizing a separate
closed-form inverse kinematics module, see, e.g. (Avanzini
et al., 2016).
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MPC is popular in the field of controls because of its
ability to handle constrained possibly nonlinear mutli-
input-multi-output (MIMO) systems. In MPC, a cost
function characterizing the control objective is minimized
using an open-loop control sequence or function while state
and control constraints are considered. The first part of the
resulting open-loop control is then applied to the system.
Finally, the process is repeated every decision instant, see,
e.g. (Allgöwer and Zheng, 2012).

In this paper, we use a nonlinear model predictive control
(NMPC) scheme to stabilize the end-effector of a 10-DOF
mobile manipulator; here, we first formulate the task-space
kinematic model, where the overall system rotations are
expressed using the 3D special orthogonal SO(3) repre-
sentation. Then, this model is used for state prediction in
the NMPC formulation, which considers state and control
constraints as well as kinematic singularity constraints.
The proposed NMPC controller is implemented using
Robot Operating System (ROS) (Quigley et al., 2009)
and the efficacy of the proposed controller is demonstrated
through a series of real-time simulations using Gazebo dy-
namic simulator (Koenig and Howard, 2004). The results
show highly-accurate and smooth stabilization of the end-
effector as well as computational cost, which meets the
real-time requirements.

The remainder of the paper is organized as follows: the
model used to implement the NMPC is explained in Sec-
tion 2 followed by the optimal control (OCP) problem for-
mulation in Section 3. In Section 4, the simulation testbed
used to validate the proposed controller is introduced and
then the acquired results are shown in Section 5. Finally,
in Section 6 conclusions are stated and the future work is
summarized.

2. MOBILE MANIPULATOR MODELING

In this section, we, first, show the notations used in
the paper. Then, we present the kinematic model of the
synthesized mobile manipulator.

2.1 Notations

N and R denote the sets of natural and real numbers,
respectively, ||x||∞ is the l∞ norm defined as ||x||∞ :=
maxi∈[1:n] |xi|, ||x||2A is the squared l2 norm weighted by

A and is calculated as x>Ax, the matrix trace operator is
denoted by Tr, A � 0 denotes that A is a positive definite
matrix, In×n is the n × n identity matrix, 0n×k denotes
an n × k matrix with all entries of zeros, and SO(3) and
SE(3) denote the special orthogonal and special Euclidean
groups, respectively.

2.2 Kinematic Model of the holonomic Mobile Base

The mobile base of the considered mobile manipulator is
a holonomic mobile robot with meccanum wheels. Holo-
nomic mobile robots possess an extra degree of maneuver-
ability when compared to the non-holonomic robots (Sieg-
wart et al., 2011).

The discrete-time kinematic model of the mobile base is
given by

xbk+1 = fmr(x
b
k,uk)

=

xbkybk
γk

+ τ

[
cos γk − sin γk 0
sin γk cos γk 0

0 0 1

]
︸ ︷︷ ︸

RI
b

[
u1,k

u2,k

u3,k

]
, (1)

where xb = (x, y, γ)> ∈ Xmr ⊂ R3 is the pose of the
mobile base in the inertial frame, (xb, yb) are the two
Cartesian planar coordinates and γ is the yaw angle of
the mobile base. u = (u1, u2, u3)> ∈ Umr ⊂ R3 is the
robot input speeds, fmr : R3 × R3 → R3 is a nonlinear
mapping, RIb ∈ SO(3) is the z-axis rotation matrix, and
τ > 0 is the sampling time.

The state constraint set Xmr is a compact set defined as

Xmr := [
¯
xb, x̄b]× [

¯
yb, ȳb]× [−π, π],

where
¯
xb,

¯
yb, x̄b, ȳb are the lower and upper bounds of the

Cartesian coordinates xb and yb, respectively.

The relation between the robot input speeds u and wheel
speeds V = (ω1, ω2, ω3, ω4)>, for meccanum wheels robots,
can be stated as (Lynch and Park, 2017)

V :=

ω1

ω2

ω3

ω4

 = Hu =
1

r

1 −1 −l − w
1 1 l + w
1 −1 l + w
1 1 −l − w

u, (2)

where r is the mecanum wheel radius, l and w are half
of the wheelbase and the trackwidth, respectively. Conse-
quently, the control constraint set Umr is a compact set
defined as

Umr := {u ∈ R3| ||Hu||∞ ≤ ωmax}, (3)

where ωmax is the rated speed of the wheel motors.

2.3 Kinematic Model of the Robotic Arm

The robotic arm mounted on the aforementioned mobile
base is a 7-DOF WAM arm by Barrett Technology (Bar-
rett, 2018a). The end-effector pose of the robotic arm is
denoted by xa := [pa>, θa>]>, where pa ∈ R3 is the
end-effector position in the robotic arm base frame rep-
resented in the Cartesian coordinates and θa is the end-
effector orientation. The end-effector orientation can be
represented using several methods as discussed in (Campa
and De La Torre, 2009). Here, we use the SO(3) group
to avoid representation singularities and error definition
discontinuities. To do so, we define the mapping function
f : SO(3) → F ⊂ R9, such that, for a rotation matrix
R ∈ SO(3),

f(R) =
[
[R]>1 [R]>2 [R]>3

]>
, (4)

where [R]i, i ∈ {1, 2, 3}, is the i-th column vector of
the rotation matrix R. Thus, the orientation vector θa is
θa = f(RbE) ∈ F , and RbE is the rotation matrix of the
end-effector in the base frame of the robotic arm.

Using such a representation, the kinematic model of the
robotic arm can be described using the analytical Jacobian
Ja of the forward kinematics transformation matrix T ∈
SE(3) derived using the DH-parameters of the robotic
arm, (see Barrett (2018b) for the DH-parameters of the
considered robotic arm), as

xak+1 = fra(xak,qk, q̇k) = xak + τJa(qk)q̇k, (5)
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where xa = [pa>, θa>]> ∈ Xra ⊂ R12 is the state vector
defined using θa from (4), q = [q1, q2, q3, q4, q5, q6, q7]> ∈
Q ⊂ R7 is the joint angles vector, q̇ ∈ Ω ⊂ R7 is the joint
velocities vector, and, the analytical Jacobian Ja is given
by Ja := ∂T/∂q.

The constraint sets for the end-effector Xra, joint angles
Q, and joint velocities Ω are defined by

Xra := [
¯
xa, x̄a]× [

¯
ya, ȳa]× [

¯
za, z̄a]×F ,

Q := {q ∈ R7|
¯
qi ≤ qi ≤ q̄i,∀i ∈ {1, ..., 7}},

Ω := {q̇ ∈ R7| ||q̇||∞ ≤ q̇max},
where

¯
qi and q̄i denote the lower and upper limits of the

joint angles, respectively.

In order to be able to keep track of the joint angles and
consider joint constraints, we extend system (5) to[

xak+1
qk+1

]
=

[
xak
qk

]
+ τ

[
Ja(q)
I7×7

]
q̇k, (6)

where [xa>,q>]> ∈ X̄ra ⊂ R19 is the concatenated state
vector, and X̄ra is the state constraint set for the new
augmented model and is defined as X̄ra := Xra ×Q.

2.4 Mobile Manipulator Kinematic Model

The model of the mobile manipulator can now be derived
using the model of the mobile base and the robotic arm.
First, we map the velocity components of the mobile base
to the end-effector linear speeds in the inertial frame, i.e.
we have

ṗb = [RIb ]2×2

[
u1

u2

]
+ [RIb ]2×2

[
−ybE
xbE

]
︸ ︷︷ ︸

ψ

u3 (7)

where ṗb = [ẋb, ẏb] is the linear velocity of the end-
effector caused by the mobile base in the inertial frame,
and [RIb ]2×2 is the upper left 2×2 sub-matrix of RIb shown
in Eq. (1). Note that RIb is the orientation of the mobile
robot, which can be determined through the localization
feedback. xbE , y

b
E are the position of the end-effector in the

mobile base frame and can be determined from the forward
kinematics transformation matrix T.

Second, to calculate the angular velocity of the mobile
robot in SO(3), we need to calculate the derivative of
the rotation matrix RIb . As mentioned in (Campa and
De La Torre, 2009), the derivative of a rotation matrix
R can be calculated as

Ṙ = S(ω)R, (8)

where S(ω) is the skew symmetric matrix form of the
angular velocity vector ω = [ωx, ωy, ωz]

>, where ωx, ωy
and ωz are the three angular velocities around the principle
axes x, y and z, respectively. Using the properties of the
skew-symmetric matrix, Eq. (8) can be written as

θ̇b :=

[Ṙ]1
[Ṙ]2
[Ṙ]3

 = −

[
S([R]1)
S([R]2)
S([R]3)

]
︸ ︷︷ ︸
=:Θ∈R9×3

ω, (9)

where θ̇b is the rate of change of the end-effector orienta-
tion due to the mobile base rotation. Moreover, S([R]n) is
the n-th column vector of R in the skew symmetric form.

Since we do not consider any other angular velocities than
wz for the mobile base, the first two columns of Θ in (9)

will be zeros. Consequently, θ̇b reads

θ̇b :=

[ṘIb ]1

[ṘIb ]2

[ṘIb ]3

 = −

S([RIb ]1)
S([RIb ]2)
S([RIb ]3)


3︸ ︷︷ ︸

=:Θ3∈R9×1

u3, (10)

where we exploit the fact that wz for an omnidirectional
mobile robot is the control action u3 shown in Eq. (1).

Using Eq. (7) and (10), in addition to the kinematic
model in Eq. (6), the kinematic model of the whole mobile
manipulator can be written as[

xk+1

qk+1

]
=

[
xk
qk

]
+ τJmm(xk,qk)

[
uk
q̇k

]
(11)

=

[
xk
qk

]
+ τ

 [RIb ]2×2
ψ
0

010×2 −Θ3

Ja(qk)

07×3 I7×7

[ukq̇k
]

︸ ︷︷ ︸
fmm(xk,qk,uk,q̇k)

,

where [x>,q>]> ∈ X ⊂ R19 is the concatenated state
vector of the mobile manipulator, [u, q̇>]> ∈ U ⊂ R10 is
the concatenated control vector. Here, x := [p>, θ>]> is
the end-effector pose vector in the inertial frame.

The model stated in (11) is the complete kinematic model
of the considered 10-DOF mobile manipulator consisting
of a 3-DOF holonomic mobile base and a 7-DOF robotic
arm. The constraints over the developed kinematic model
can now be defined as

X := [
¯
x, x̄]× [

¯
y, ȳ]× [

¯
z, z̄]×F ×Q, and (12)

U := Umr × Ω.

Finally, the end-effector pose feedback can be determined
by the pose of the mobile robot determined through the
use of a localization algorithm (Osman et al., 2019) and
the forward kinematic equations of the robotic arm T.

3. NONLINEAR MODEL PREDICTIVE CONTROL

In this section, we formulate an NMPC scheme for the
end-effector pose stabilization of the mobile manipulator.
To this end, we define

UN :=

([
uk
q̇k

]
,

[
uk+1

q̇k+1

]
, . . . ,

[
uk+N−1

q̇k+N−1

])
and

XN := (xk,xk+1, . . . ,xk+N )

as the sequences of controls and states over the prediction
horizon N ∈ N, respectively. As standard in NMPC, these
sequences are used to form the quadratic cost function

J(UN ,XN ) = ||EpN ||
2
Sp + ||EθN ||2Sθ︸ ︷︷ ︸

Jf

+

k+N−1∑
i=k

||Epk ||
2
Qp + ||Eθk ||2Qθ +

∥∥∥∥uiq̇i
∥∥∥∥2

R
, (13)

where Sp ∈ R3×3 � 0,Sθ ∈ R9×9 � 0,Qp ∈ R3×3 �
0,Qθ ∈ R9×9 � 0 and R ∈ R10×10 � 0 are the
weighting matrices of the quadratic cost function, and
Jf is the terminal cost of the cost function. Ep ∈ R3 is
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the translational error of the end-effector pose defined as
Ep := p − pr, where pr is the reference position, and
Eθ ∈ R9 is the orientation error of the end-effector pose
defined as

Eθ :=

[
[I3×3]1
[I3×3]2
[I3×3]3

]
−

[(RIE)>Rr]1
[(RIE)>Rr]2
[(RIE)>Rr]3

 , (14)

where Rr is the reference orientation, and RIE is the orien-
tation of the end-effector in the inertial frame calculated
as RIE = RIbR

b
E . RIb is determined using a localization

algorithm of the mobile robot and RbE is the rotation
matrix from the mobile robot to the end-effector and is
calculated from the forward kinematics of the robotic arm,
i.e. T.

Using the cost function in Eq. (13), the NMPC optimal
control problem can be formulated as:

(U∗N ,X ∗N ) = arg min
UN∈U,XN∈X

J(UN ,XN ) (15a)

subject to [xk+1 qk+1]
> − fmm(xk,qk,uk, q̇k) = 0,

(15b)

XN ∈ X ⊆ R19, (15c)

UN ∈ U ⊆ R10, (15d)

|det(JaJTa )| > ε (15e)

where ε is a threshold for avoiding singular configurations
of the robotic arm.

OCP (15) is converted to a nonlinear programming prob-
lem (NLP) using the direct multiple-shooting method (Al-
bersmeyer and Diehl, 2010). Here, both the control se-
quence UN as well as the state sequence XN are consid-
ered as decision variables in the optimization problem.
Moreover, the system model is considered as an opti-
mization constraint as formulated by Eq. (15b). Multiple-
shooting discretization technique provides a more compu-
tationally efficient solution to OCP (15) when compared
with other discretization techniques, e.g. single-shooting,
see (Albersmeyer and Diehl, 2010) for more details. Fi-
nally, state and control constrains are considered by means
of Eq. (15c) and (15d). Note that the inequality con-
straint (15e) is added to avoid kinematic singularities of
the robotic arm through operation. This is accomplished
through ensuring that the pseudo-inverse of the robot arm
Jacobian matrix is always invertible and, thus, singular
configurations are avoided.

The feedback control law can now be stated as

[u∗k q̇∗k]
>

:= U∗N (0),

i.e. the feedback control is the first element in the optimal
control sequence U∗N . Moreover, the resulting feedback
system can be stated as

[xk+1 qk+1]
>

= fmm(xk,qk,u
∗
k, q̇
∗
k).

4. REAL-TIME SIMULATION TESTBED AND
SIMULATION SCENARIOS

The simulation testbed of the considered mobile manip-
ulator is created by synthesizing the “urdf” models of
both the Barret WAM arm and the Summit XLS mobile
robot in a ROS/Gazebo simulation environment 1 . Here,

1 urdf: universal robotic description format.

Fig. 2. Block-diagram of ROS/Gazebo dynamic simulation environ-
ment used to validate the proposed controller.

the transformation and the constraints between the two
models are defined based on the actual physical system,
see Fig. 1. Moreover, the proposed NMPC controller is
programmed in python programming language and in-
tegrated with the simulation environment via a ROS-
node. Here, OCP (15) is formulated symbolically using the
numerical optimization software tool CasADi (Andersson
et al., 2018). Additionally, OCP (15) is solved using the
interior-point optimization method via the open source
solver IPOPT (Wächter and Biegler, 2006). The overall
block-diagram of the ROS/Gazebo real-time simulation
environment is illustrated in Fig. 2.

The scenarios shown in Table 1 were used to validate the
proposed controller. Initial and set-point references shown
are presented using the Z-Y-X Euler angles to simplify
the presentation. In all scenarios, the sampling time is
τ = 0.15 sec, the prediction horizon is N = 5, and the
weighting matrices are Sp,Qp = 2I3×3, Sθ,Qθ = 15I9×9

Table 1. Real-time simulation scenarios

Scenario Initial States Reference Pose

1 [2, 0, 1.42, 0, 0, 0]> [0, 0, 0.5, π, 0, 0]>

2 [2, 2, 1.42, 0, 0, 0]> [0, 0, 0.5, π/2, 0, 0]>

3 [0, 2, 1.42, 0, 0, 0]> [0, 0, 0.5, 0, π/2, 0]>

4 [−2, 2, 1.42, 0, 0, 0]> [0, 0, 0.5, 0, π, 0]>

5 [−2, 0, 1.42, 0, 0, 0]> [0, 0, 0.5, 0, 0, π/2]>

6 [−2,−2, 1.42, 0, 0, 0]> [0, 0, 0.5, 0, 0, π]>

7 [0,−2, 1.42, 0, 0, 0]> [0, 0, 0.5, 0, 0, 0]>

8 [2,−2, 1.42, 0, 0, 0]> [0, 0, 0.5, π, 0, 0]>
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and R = I10×10. Furthermore, the constraints set X
defined in (12) is chosen as

X = [−3, 3]× [−3, 3]× [0.4, 1.43]×F ×Q,
where the arm joint angles limits set Q is given by

Q =





−2, 6
−1.985
−2.8
−0.9
−4.55
−1.5707
−3.0

 ≤ q ≤



2.6
1.985
2.8
π

1.25
π/2
3.0




.

Here, the joint angle limits are adapted from the arm
specifications (Barrett, 2018a). Finally, the limit of the
joints speeds is chosen as q̇max = 0.5 rad/sec and the
angular speed limit of the mobile robot wheels is chosen
as ωmax = 0.6 rad/sec.

5. RESULTS AND DISCUSSION

In this section, we show the closed-loop results of the
mobile manipulator under the NMPC controller for all the
scenarios stated in Table 1. Fig. 3 shows the trajectory of
the end-effector through each simulation case. As shown
in the figure, the controller successfully stabilized the end-
effector of the mobile manipulator to the desired position.
The performance of the NMPC controller is evaluated by
both position and orientation errors of the end-effector
with respect to the reference pose. The positional error
is measured by the Euclidean distance between the end-
effector position and the reference position, while the
orientation error is measured by the evaluation metric

Eθ = 3− Tr(RIER
>
r ), (16)

where the trace of the error rotation matrix is used. In
essence, Eq. (16) indicates that the orientation error Eθ

converges to zero as the the end-effector orientation RIE
converges to the reference orientation Rr.
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Fig. 3. The position trajectories of the end-effector for all the
scenarios. Bottom: 3D visualization of the trajectories taken
by th end-effector. Top: The three projected views of the end-
effector trajectories.
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Fig. 5. Orientation error of the end-effector for all scenarios.

As shown in Fig. 4, the positional error converges to zero
for all scenarios considered. Note that in scenarios 6 and 7,
the settling time of the controller is relatively larger than
that for the other scenarios due to the joints limits. In these
two cases, the mobile manipulator had to take a longer
maneuver to reach the required position and orientation
without violating any joint limits. In Fig. 5, the orientation
error of the end-effector, i.e. Eθ, is shown. The error is
calculated using the evaluation metric stated in (16). As
can be seen in the figure, the controller managed to quickly
achieve all the required orientations.

All the real-time simulations were executed using an Intel
Core i7 CPU with 2.10 GHz processor. The average com-
putation time of OCP (15) throughout all the simulation
scenarios was 61 ms with a maximum computation time of
130 ms and a standard deviation of 23.9 ms. Considering
that the sampling time used is τ = 150 ms, the computa-
tional results suggest that the proposed NMPC algorithm
meets the real-time implementation requirements while
generating feasible solutions.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed an NMPC controller for end-
effector stabilization of a 10-DOF mobile manipulator. We
used the kinematic models for both the mobile base and
the robot arm to realize a task-space control for the end-
effector of the mobile manipulator. Required constraints
were directly considered, which include the joint limits
and the manipulator singularity. We remark that using
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the developed model along with NMPC, the stabilization
of the end-effector was achieved without the need of
any inverse kinematics solvers. Therefore, the proposed
controller is a stand-alone high level controller, which only
requires the localization feedback of the mobile base and
the joint positions feedback of the robotic arm to operate
on the mobile manipulator.

The controller was validated through real-time dynamic
simulation scenarios. The results showed efficacy and effi-
ciency of the proposed NMPC controller. Throughout all
the designed scenarios, the controller managed to smoothly
stabilize the end-effector to the required pose.

As for the future work, experiments using the real platform
in Fig. 1 will be designed and performed to further validate
the controller.

ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC), [fund-
ing reference numbers PDF-532957-2019 (M.W. Mehrez),
STPGP 506987 (S. Jeon)].

REFERENCES

Albersmeyer, J. and Diehl, M. (2010). The lifted newton
method and its application in optimization. SIAM
Journal on Optimization, 20(3), 1655–1684.
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