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Abstract: In this paper, the stability of a class of marginally stable SISO systems is studied
by applying a single one delay block as a feedback controller. More precisely, we consider an
open-loop system with no zeros and whose poles are located exactly on the imaginary axis.
Furthermore, a control law formed uniquely by a proportional gain and a delayed behavior
is proposed for its closed-loop stabilization. The main ideas are based on a detailed analysis
of the characteristic quasi-polynomial of the closed-loop system as the controller parameters
(gain, delay) are varied. More precisely, by using the Mikhailov stability criterion, for a fixed
delay value, we compute some gain margin guaranteeing the closed-loop stability. The particular
case when the characteristic roots of the open-loop system are equidistantly distributed on the
imaginary axis is also addressed. Finally, an illustrative example shows the effectiveness of the
approach.
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1. INTRODUCTION

It is well recognized that low-order controllers are one
of the most widely applied strategies to control indus-
trial processes (see, e.g., Aström and Hägglund (2001);
O’Dwyer (2009)). Probably, the most important reasons
for such a “popularity” are the simplicity and the ease of
implementation. Among these control schemes, PID-type
controllers are known to be able to overcome parametric
uncertainties and disturbances, also to achieve elimination
of steady-state errors and transient response manipula-
tion (Aström and Hägglund (1995); Méndez-Barrios et al.
(2008); Ramı́rez et al. (2016)). Nonetheless, as reported in
Aström and Hägglund (1995), there are some scenarios
in which its implementation may encounter some diffi-
culties. Probably the most common drawback lies in the
tuning of the derivative term, which may amplify high-
frequency noise in the control loop. In fact, as mentioned
by Aström and Hägglund (2001); O’Dwyer (2009) the
above arguments suggest to avoid the derivative action
in most applications.

In order to overcome such a problem, the Euler approxi-
mation of the derivative:

y′ (t) ≈ y (t)− y (t− ε)
ε

,

for small ε > 0, seems to be the simplest way to replace
the derivative action by using its delay-difference approxi-

mation counterpart (Niculescu and Michiels (2004)). How-
ever, on one hand, it is important to point out that the
presence of a delay in the feedback loop of continuous-time
systems may induce, in some cases, oscillations, instabil-
ity and bandwidth sensitivity (see for instance Niculescu
(2001); Michiels and Niculescu (2014))). On the other
hand, it has also been reported that there exist situations
where an appropriate selection of the delay parameter
may improve the behavior of the corresponding dynamical
system (see for instance, Abdallah et al. (1993); Chen
(1987); Sipahi et al. (2011)). Inspired by the above ob-
servations, the design of low-order controllers with delay
as a control parameter has been addressed in several works
and represent an interesting idea not sufficiently exploited
in the literature (for further insights, see, e.g. Sipahi et al.
(2011)).

In particular, one may cite two classical problems - the
stabilization of chains of integrators and oscillators con-
trolled by using delays in the feedback laws. For instance,
in the case of the chain of integrators, such a problem
has been studied in Niculescu and Michiels (2004) 1 and
Mazenc et al. (2003) 2 . Next, the idea that inducing a
delay in the control feedback may improve the stability
was discussed in Abdallah et al. (1993) and Niculescu et al.
(2010), where one oscillator is stabilized by using only

1 controller represented by some chains of delay blocks
2 considering some bounded and delayed input
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one delay “block”: (gain, delay) (K, τ) ∈ R × R+. Such a
controller may find some applications in robotics Abdallah
et al. (1991) and flexible structures Robinett et al. (1998).

In this context, it is worthy to recall that, surprisingly,
one delay block may stabilize a whole chain of oscillators
Kharitonov et al. (2005). In fact, the authors of Kharitonov
et al. (2005) developed appropriate sufficient conditions
guaranteeing the stability of the chain of oscillators in
closed-loop. More precisely, they have proved that if some
conditions on the oscillators’ frequencies and the delay
are verified, such a controller may exist, but without any
attempt to explicitly construct the corresponding delay
“block”: (gain, delay).

Inspired by these results, the proposed work further inves-
tigates explicit conditions on the delay block parameters
guaranteeing the stabilization of the chain of oscillators by
using the so-called Mikhailov criterion 3 . More precisely,
for a fixed delay value τs, we compute the corresponding
(positive) gain margin Ks, guaranteeing the closed-loop
stability for all gain values K ∈ (0,Ks).

The remaining of the paper is organized as follows: The
problem formulation is stated in Section 2. Section 3 in-
cludes some discussions on the critical characteristic roots
of the closed-loop system and the root crossing behavior
with respect to the gain parameter. Next, Section 4 is
devoted to the main results as well as to some illustrative
example in the case characteristic roots equidistantly dis-
tributed on the imaginary axis. Finally, some concluding
remarks end the paper.

2. PROBLEM FORMULATION

Consider the class of strictly proper single-input single-
output (SISO) marginally stable open-loop systems given
by the transfer function:

G(s) =
Y (s)

U(s)
=

1

Q(s)
, Q(s) :=

N∏
m=1

(s2 + ω2
m), (1)

where 0 < ω1 < ω2 < · · · < ωN . In other words, (1) simply
represents a chain of oscillators.

Consider the transfer function (1) and the one delay block
controller:

C(s) = −Ke−τs, (2)
where K ∈ R and τ is a positive fixed delay value. We aim
to find explicit conditions on the controller parameters pair
(K, τ) such that the closed-loop system is asymptotically
stable. In other words, to find the set of parameters (K, τ)
such that the characteristic function ∆ of the closed-loop
system:

∆(s) = Ke−τs +Q(s), (3)
has all of its zeros on the left-half plane (LHP) of the
complex plane.

3. CRITICAL CHARACTERISTIC ROOTS AND
CROSSING ROOTS ANALYSIS

In the sequel, we focus on deriving the particular controller
parametric settings such that at least one root of the char-
acteristic quasi-polynomial (3) is located on the imaginary

3 a criterion derived by using the well-known Cauchy’s argument
principle

axis and, subsequently, its behavior with respect to the
change of parameters. Such a root will be called critical or
crossing characteristic root.

For the sake of brevity, we make the assumption that
the crossing characteristic roots on the imaginary axis are
simple (see, for instance, Michiels and Niculescu (2014)
and the references therein). Since we are interested in
constructing explicitly some gain intervals guaranteeing
the stability in closed-loop such an assumption is not
necessarily restrictive.

Finally, it is important to remark that, for all real ω, Q(iω)
is a real-valued function and Q′(iω) is a purely imaginary
valued function. The necessary computations supporting
such an argument are left to the reader.

3.1 Stability Crossing Frequencies

Consider s = iω in (3) and solve for K as follows:

K = −Q(iω)

[
cos(τω) + i sin(τω)

]
.

Some simple computations show that there exists a real
solution of K for this last expression only in two cases:

- first, if ω = ωm then Q(iω) = 0, and therefore
K = 0 4 ;

- second, given that Q(iω) is a real-valued function of
ω, a real solution of K 6= 0 exists iff ω = ω̃n(τ) := nπτ
for some n ∈ Z 5 .

To summarize, we have the following result:

Proposition 1. Let τ be some fixed positive delay value.
Then the characteristic function of the closed-loop system
(3) has at least one critical characteristic root s = iω, iff:

− K = 0, being ω = ωm for any m ∈ {1, 2, . . . , N},

− K = K(τ, n), being ω = nπτ for some n ∈ Z,

where:

K(τ, n) = (−1)n+1Q
(
in
π

τ

)
.

Remark 1. As discussed in the literature (see, for instance,
Niculescu (2001) and the references therein), the roots of
a quasi-polynomial move continuously against continuous
variation of its parameters (gain, coefficients). Let τ > 0
be a fixed delay value, and since K = 0 or K = K(τ, n)
implies root crossing, then, these values define an appropri-
ate partition of the real K-axis in several intervals having
a constant number of unstable characteristic roots inside
each interval. If the number of unstable characteristic
roots is 0, then the corresponding closed-loop system is
asymptotically stable.

3.2 Stability Crossing Directions

We focus now on the characterization of the crossing roots
deviation tendency of (3) under the assumption that the
crossing characteristic roots on the imaginary axis are

4 The frequencies ωm correspond to the open-loop (system) crossing
characteristic roots iωm located on the imaginary axis.
5 The frequencies ω̃n(τ) correspond to the closed-loop (system)
crossing characteristic roots iω̃n(τ) located on the imaginary axis.
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simple. In this case, a direct application of the implicit
function theorem leads to:[

ds

dK

]−1
= τK −Q′(s)eτs. (4)

We have the following result:

Proposition 2. Let τ be a fixed delay value and n ∈ Z.
If K increases (decreases) around K = K(τ, n), then, at
least one pair of critical characteristic roots moves to the
RHP (LHP) of the complex plane iff K(τ, n) > 0(< 0).

Proof 1. Consider the closed-loop crossing characteristic
roots s = iω̃n(τ) and let K = K(τ, n). Since eiτω̃n(τ) =
(−1)n, one gets:[

ds

dK

]−1∣∣∣∣∣
s=iω̃n

= τK(τ, n) + (−1)n+1Q′(iω̃n).

Recall that Q′(iω) is a purely complex function of ω. Then
its crossing direction is given by:

R̃(τ, n) := <

{[
ds

dK

]−1∣∣∣∣∣
s=iω̃n

}
= τK(τ, n).

Since τ > 0, then sgn
{
R̃(τ, n)

}
= sgn {K(τ, n)} and the

conclusions of the Proposition follow straightforwardly.

For fixed values of τ and n, compute all values of K(τ, n),
arranged in such a way that: . . . < K−2 < K−1 < 0 <
K+

1 < K+
2 < . . . , where the super-index is used to

observe the sign of such values on the real K-axis. As
mentioned in Remark 1, these values partition the real
K-axis in intervals in which the characteristic equation
has a constant number of roots located on the RHP
of the complex plane. Let us focus now on some small
neighborhood of K = 0 and we will analyze how the
characteristic roots behave for positive, but sufficiently
small K. More precisely, we have the following result:

Proposition 3. Let τ be a fixed delay value and m ∈
{1, 2, . . . , N}. If K increases from K = 0, then, the pair
of open-loop crossing roots s = ±iωm move to the LHP
(RHP) of the complex plane iff:

(−1)m−1 sin(τωm) < 0 (> 0).

Proof 2. Consider the open-loop crossing roots, that is
s = iωm when K = 0. By using (4), it follows that:[

ds

dK

]−1∣∣∣∣∣
s=iωm

= −Q′(iωm)

[
cos(τωm) + i sin(τωm)

]
.

Since Q′(iω) is a purely complex function, then its crossing
direction is given by:

Rm := <

{[
ds

dK

]−1∣∣∣∣∣
s=iωm

}
= −iQ(iωm) sin(τωm),

that can be rewritten as:

Rm = 2ωm sin(τωm)
∏
6̀=m

(ω2
` − ω2

m),

where ` ∈ {1, 2, . . . , N}. Since:

sgn

∏
` 6=m

(ω2
` − ω2

m)

 = (−1)m−1,

the sign of Rm can be expressed as:

sgn {Rm} = (−1)m−1 sgn {sin(τωm)} ,

this last expression concludes the proof.

Bearing in mind Proposition 3 shown above, it is clear that
if there exists a fixed value τ such that:

(−1)m−1 sin(τωm) < 0, ∀m ∈ {1, 2, . . . , N} , (5)

then, all open-loop crossing roots cross to the LHP of the
complex plane as K is varied increasingly from zero. Such
conditions may imply closed-loop asymptotic stability for
some positive values of the gain K. It is worthy to mention
that since the parameter τ is assumed to be chosen in
advance, then we drop its notation on the closed-roots
crossing frequencies ω̃n(τ).

4. VECTOR INTERPRETATION AND MAIN
RESULTS

In this section, we develop a stability analysis based on the
Mikhailov criterion (see Appendix A) for the characteristic
quasi-polynomial (3). As shown in Fig. 1a, the vector
interpretation of ∆(iω) consists in the addition of a purely
real vector Q(iω) with the complex vector Ke−iτω.

On one hand, Ke−iτω is a rotatory vector describing a
path on a circle with radius K centered in Q(iω) with
a clockwise direction. More precisely, let n ∈ Z and
K > 0. As illustrated in Fig. 1d, Ke−iτω has the following
behavior:

• It stays on the real axis with positive direction for any
value ω = ω̃2n (even closed-loop cross frequencies).
• It moves in a clockwise direction through the lower

half-plane of the complex plane for ω ∈ (ω̃2n, ω̃2n+1).
• It stays on the real axis with negative direction for any

value ω = ω̃2n+1 (odd closed-loop cross frequencies).
• It moves in a clockwise direction through the up-

per half plane of the complex plane for ω ∈
(ω̃2n+1, ω̃2n+2).

On the other hand, since Q(iω) is a polynomial on ω
of degree 2N which changes sign as ω varies through
the open-loop crossing frequencies ωm. More precisely, let
ω0 := 0, if ω ∈ (ωm, ωm+1), then sgn {Q(iω)} = (−1)m

and let ω ≥ ωN then sgn {Q(iω)} = (−1)N .

4.1 General Case

In this section, we establish stabilizing conditions on
the gain K such that τ satisfies the conditions (5). In
other words, such a value of τ implies that the following
inequalities hold simultaneously:

sin(τωm) < 0, for odd m, sin(τωm) > 0, for even m.

Subsequently, there exist natural numbers nm odd (even)
if m is odd (even) such that:

nmπ < τωm < (nm + 1)π, nm =
⌊
ωm

τ

π

⌋
,

straightforwardly, it is clear that:

nm
π

τ
< ωm < (nm + 1)

π

τ
→ ω̃nm

< ωm < ω̃nm+1. (6)

It is worth mentioning that this last argument shows a
particular interlacing condition between the open- and
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closed-loop crossing roots frequencies. Such an observation
is used in the proof of the following Proposition. Next, note
that (6) can be rewritten as follows:

nm < ωm
τ

π
< (nm + 1).

Then, by means of the definition of the floor and ceiling
functions, it is clear that the computation of such up-
per/lower integer bounds can be done as:

nm =
⌊
ωm

τ

π

⌋
, nm + 1 =

⌈
ωm

τ

π

⌉
.

Proposition 4. Consider the open-loop system (1) with N
distinct simple roots on the imaginary axis and the one
delay block controller (2). Let τ = τs > 0 be a fixed delay
value such that:

(−1)m−1 sin(τsωm) < 0, ∀m ∈ {1, 2, . . . , N} , (7)

andK be a positive real gain. Then, the closed-loop system
is asymptotically stable if:

K ∈ (0,Ks) .

where the gain margin Ks is given by:

Ks := min
m∈{1,2,...,N}

{∣∣∣Q(i ⌊ωm τ
π

⌋ π
τ

)∣∣∣ , ∣∣∣Q(i ⌈ωm τ
π

⌉ π
τ

)∣∣∣} .
Proof 3. The proof is based in the geometric vector anal-
ysis schematically presented in Fig. 1 by means of the
Mikhailov criterion. As mentioned in Appendix A, this
result establishes that the asymptotic stability is achieved
iff the complex vector ∆(iω) has an accumulative phase
of Nπ as ω ∈ [0,∞). Assume that K < |Q(iω̃n)| for all
n ∈ Z.

Consider now the intervals ω ∈ (ωm, ωm+1) for any m ∈
{0, 1, . . . , N − 1}. Recall that ω0 := 0. First, consider
m even, then sgn {Q(iω)} = 1 and Q(iω) is a positive
real vector. As illustrated in Fig. 1b, since Ke−iτω is a
rotatory vector with a clockwise direction, ∆(iω) has a
tendency to encircle the origin with a clockwise direction
(negative accumulated phase). More precisely, it achieves
it if K > |Q(iω̃n)| for some odd n. Second, consider m odd,
then sgn {Q(iω)} = −1 and Q(iω) is a negative real vector.
Similarly, as illustrated in Fig. 1c, ∆(iω) encircles the
origin with a clockwise direction (negative accumulated
phase) if K > |Q(iω̃n)| for some even n. Finally, consider
ω ∈ (ωN ,∞) then sgn {Q(iω)} = (−1N ), depending on the
number N this match any of the two scenarios presented
above. In general, since K < |Q(iω̃n)| for any n then
∆(iω) does not encircle the origin if ω ∈ (ωm, ωm+1) for
m ∈ {0, 1, . . . , N − 1} or ω ∈ (ωN ,∞).

We now study the behavior of ∆(iω) as ω varies through
the open-loop crossing frequencies ωm. To this end, we
analyze the intervals ω ∈ [ω̃nm

, ω̃nm+1]. First ,consider
m odd, for this case nm is an odd number and, as
illustrated in Fig. 1c, Q(iω) changes its sign from positive
to negative and Ke−iτω rotates in a clockwise direction
through the upper half-plane. Since K < |Q(iω̃nm

)| and
K < |Q(iω̃nm+1)|, this behavior starts in the positive real
axis and traverses the upper half-plane describing a path
accumulating its phase in π radians. Second, consider m
even, for this case nm is an even number and as illustrated
in Fig. 1f, Q(iω) changes sign from negative to positive and
Ke−iτω rotates in a clockwise direction through the lower
half-plane. Similarly, this behavior starts in the negative

real axis and traverses the lower half-plane describing a
path accumulating its phase in π radians. In general, we
can state that:

θ arg ∆(iω)
ω∈[ω̃nm ,ω̃nm+1]

= π,

and bearing in mind the above observations, then:

θ arg ∆(iω)
ω∈[0,∞)

=

N∑
m=1

[
θ arg ∆(iω)

ω∈[ω̃nm ,ω̃nm+1]

]
= Nπ,

if K < |Q(iω̃n)| for all n ∈ N ∪ {0}, which implies
asymptotic stability according to the Mikhailov Theorem.

4.2 Equidistant Distribution

Consider the particular case of an equidistant distribution
of the open-loop crossing roots (located on the imaginary
axis). More precisely, such a case implies that ωm =
mωb for some base frequency ωb ∈ R and for all m ∈
{1, 2, . . . ,m}.
We have the following result:

Corollary 1. Consider the open-loop system (1) with N
distinct single roots on the imaginary axis such that ωm =
mωb, where ωb > 0 and for all m ∈ {1, 2, . . . ,m}. Let
τ = τs be a fixed delay value:

τs ∈
(
π

ωb
,
N + 1

N

π

ωb

)
,

for some j ∈ N, and K be a positive real gain. Then, the
chain of oscillators can be stabilized by one delay block
controller (2) for all gains K, where

K ∈ (0,Ks) .

and the gain margin Ks is given by:

Ks := min
m∈{1,2,...,N}

{∣∣∣∣Q(im π

τs

)∣∣∣∣ , ∣∣∣∣Q(i (m+ 1)
π

τs

)∣∣∣∣} .
Proof 4. The proof of this result makes use of Proposition
4. First, in order to construct a solution τ for conditions
(7) we propose the following distribution of the values
ωm=mωb:

mπ < τmωb < (m+ 1)π, ∀m ∈ {1, 2, . . . , N}

It is clear that a solution τ for these inequalities can be
computed as:

π

ωb
< τ <

m+ 1

m

π

ωb
, ∀m ∈ {1, 2, . . . , N} , (8)

since m ≤ N it follows directly:
1

m
≥ 1

N
→ 1 +

1

m
≥ 1 +

1

N
→ m+ 1

m
≥ N + 1

N
,

then, the intersection of all intervals solving (8) can be
computed explicitly as:

π

ωb
< τ <

N + 1

N

π

ωb
.

The following step is to compute the proper stabilizing
value of K defined by Proposition 4. Since it is evident
that: ⌊

ωm
τ

π

⌋
=
⌊mωbτ

π

⌋
= m,⌈

ωm
τ

π

⌉
=
⌈mωbτ

π

⌉
= m+ 1,

then, accordingly to Proposition 4, the conclusion follows
straightforwardly.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4442



 

 

Im

Re

∆(iω)

Ke−iτω

Q(iω)

(a) Vector Interpretation of ∆(iω).
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K

K> |d(iω̃2n−1)|

< |d(iω̃2n−1)|

Q(iω)

m - even

ω ∈ (ωm, ωm+1)

(b) ω ∈ (ωm, ωm+1) for m even.
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Re
Ke−iτω

K

Ke−iτω
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∆(iω̃nm+1)

∆(iωm)

∆(iω̃nm
)

∆(iω̃nm
)

Q(iω)

ω ∈ [ω̃nm
, ωm)

< |d(iω̃nn+1)|

ω ∈ (ωm, ω̃nm+1]
∆(iωm) = Ke−iτωm

ω ∈ [ω̃nm
, ω̃nm+1]

Re

(c) ω ∈ [ω̃nm , ω̃nm+1] for m even.

Ke−iτω

K

ω = ω̃0 = 0

ω = ω̃2nω = ω̃2n+1

ω = ω̃1

ω = 1
2 ω̃2

ω = 1
2 ω̃2n

ω = 1
2 ω̃1

ω = 1
2 ω̃2n+1

Q(iω)

(d) Vector Interpretation of Ke−τω .

 

 

Re

Im

Ke−iτω

K< |d(iω̃2n)|

K> |d(iω̃2n)|

Q(iω)

ω ∈ (ωm, ωm+1)
m - odd

(e) ω ∈ (ωm, ωm+1) for m odd.

 

 

Re

Ke−iτω

K

Ke−iτω

Re

Im

ω ∈ [ω̃nm
, ω̃nm+1]

m - odd

∆(iωm) = Ke−iτωm

∆(iω̃nm
)

ω ∈ (ωm, ω̃nm+1]

ω ∈ [ω̃nm
, ωm)

∆(iω̃nm
) ∆(iω̃nm+1)

< |d(iω̃nm+1)|
Q(iω)

(f) ω ∈ [ω̃nm , ω̃nm+1] for m odd.

Fig. 1. Accumulative argument analysis of the complex vector ∆(iω).

Remark 2. It is worth mentioning that the results in
Corollary 1 concern the construction of the gain Ks if τs
belongs to some predefined delay interval not including
the origin (in fact, the first one). The results above can be
extended to cover other delay intervals of the form:

τs ∈
(

(2`− 1)
π

ωb
,

(2`− 1)N + 1

N

π

ωb

)
,

for some ` ∈ N such that the interval above is well-defined.
Then, for appropriate positive integers `, the chain of
oscillators can be stabilized by one delay block controller
(2) for all gains K, where

K ∈ (0,Ks) .

and the gain margin Ks is given by:

Ks := min
m∈{1,2,...,N}

{∣∣∣∣Q(i(2`− 1)m
π

τs

)∣∣∣∣ ,∣∣∣∣Q(i ((2`− 1)m+ 1)
π

τs

)∣∣∣∣} .
4.3 Illustrative Example - Equidistant Distribution

In this section, we present an illustrative example of an
equidistant distribution of the open-loop crossing roots.

For the simplicity, consider ωb = π and N = 3. In other
words, a sixth order open-loop system with poles located
exactly in s = ±iπ,±i2π,±i3π. Using the results above
and the Remark 2, we construct the stability regions shown
in Fig 2a, particularly for ` = 1, 2, 3, 4. Let us take a look at
the case ` = 2 correspondent to the stability region shown

in Fig. 2b. According to Corollary 1, its stabilizing interval
of τ is directly computed as τs ∈ (3, 3N+1

N ) = (3, 103 ).

Consider, for instance, τ = 3.31 a value of the interval
(3, 3.333). Then, the corresponding gain margin Ks =
0.446 defines the stabilizing gain interval (0, 4460). We test
this scenario by using DDE-BIFTOOL, a Matlab package
for bifurcation analysis of delay-differential equations (se
for instance, Engelborhs et al. (2002)).The results pre-
sented in Fig. 2c illustrate the way the characteristic roots
move as the controller parameters are varied.

5. CONCLUDING REMARKS

To summarize,this paper presented some insights in the
computation of the parameters of one delay block (gain,
delay) able stabilizes a chain of oscillators. More precisely,
for a fixed delay value, and for a positive gain, we com-
puted some lower bounds of the gain margin, such that the
closed-loop system is asymptotically stable. Such an idea
was further exploited in the case when the characteristic
roots of the open-loop system are equidistant on the imag-
inary case. In this case, the method allowed to compute
several delay intervals for which the closed-loop stability
can be guaranteed as well as the corresponding gain inter-
vals. This last result was illustrated by an example.
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(a) Stability Regions (b) Parametrical Variation Test
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Fig. 2. Illustrative example.

Appendix A. MIKHAILOV STABILITY CRITERION

Theorem 1. (Mikhailov Stability Criterion, Pekar et al.
(2010); Gorecki et al. (1989)) Consider the retarded quasi-
polynomial with single delay:

∆r(s) = P (s) +Q(s)e−τs,

where τ > 0 and k := deg {P (s)} > deg {Q(s)}. The
characteristic quasi-polynomial has all of its zeros located
on the LHP of the complex plane) iff:

θ arg
ω∈[0,∞)

{∆r(iω)} = k
π

2
.

Remark 3. Consider the particular quasi-polynomial (3)
which corresponds to the closed-loop system of a chain
of oscillators subject to one delay block. It is evident
that Theorem 1 implies that the asymptotic stability is
achieved iff:

θ arg
ω∈[0,∞)

{∆(iω)} = Nπ.
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