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Abstract: A second-order sliding mode control, the generalized super-twisting algorithm
(GSTA), is used for attitude control of a spacecraft actuated by reaction wheels for pointing and
a slewing maneuver. Magnetorquers are used for reaction wheel momentum dumping. Simulation
results are based on a typical CubeSat. The results produced by using the GSTA are compared
to sliding mode control (SMC) and a proportional–derivative (PD) controller. The simulation
shows that the GSTA performs better than the SMC for the pointing and slewing maneuvers
when it comes to settling time and accuracy due to reduced chattering. Compared to the PD
controller, the GSTA performs similarly under the chosen conditions, with a shorter settling time
for pointing, and longer settling time for slewing. The GSTA applies a torque to the reaction
wheels with lower spikes and less chattering than the PD controller.
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1. INTRODUCTION

The spacecraft attitude control problem is a well-studied
topic (Wen and Kreutz-Delgado (1991), (Shrivastava and
Modi, 1983), (Kristiansen et al., 2009)). Various control
laws for attitude control have been proposed such as
the sliding mode control (SMC) (Crassidis and Markley,
1996), (McDuffie and Shtessel, 1997), which has robustness
towards modeling uncertainties and disturbances. How-
ever, an issue with SMC is chattering, which is an effect
due to the signum term of the control algorithm causing
a zig-zag effect in the controlled channels. A method for
attenuating this effect is to hide the discontinuous signum
function behind an integrator (Shtessel et al., 2014). An
example of this is the super-twisting algorithm (Levant,
1993), a second-order sliding mode algorithm. The super-
twisting algorithm was studied for attitude control of a
spacecraft actuated by magnetorquers in (Janardhanan
et al., 2012). This algorithm was further developed in into
the generalized super-twisting algorithm (GSTA), which is
proven to be robust to bounded time-varying disturbances
(Castillo et al., 2018). In practice, the GSTA has success-
fully been applied for attitude control of other vehicles
such as articulated intervention AUVs (Borlaug et al.,
2019).

? The work is partly sponsored by the Research Council of Norway
through the Centre of Excellence funding scheme, project number
223254, AMOS, and the MASSIVE project with project number
270959.

In this paper we present a nonlinear spacecraft model with
a control law based on GSTA. Simulation results are shown
for two attitude maneuvers, pointing and slewing, of a
spacecraft actuated by reaction wheels using the GSTA.
These extend on the case studies presented in (Grøtte
et al., 2020). While (Grøtte et al., 2020) investigates time-
varying attitude control strategies using an augmented
proportional-derivative controller with feedforward terms
and requirements for magnetorquer control law, the con-
tributions of this paper are to compare SMC and PD with
GSTA for a slewing and pointing spacecraft using state
feedback.

This paper is organized as follows: In Section 2 describes
the model of the dynamics used for the simulations. The
model includes attitude parameterized by unit quater-
nions, a dynamical model for the reaction wheels, and
model of perturbations. Section 3 introduces the momen-
tum dumping control law which is used on the magnetor-
quers, as well as the GSTA and the SMC that we use for
attitude control with the reaction wheels. We present the
simulation results using parameters for a 6U CubeSat in
Section 4, while conclusions are provided in Section 5.

2. SPACECRAFT MODEL

In this section, we present the model of an internally
actuated spacecraft.
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2.1 Coordinate frames

Earth-centered inertial (ECI) The earth-centered iner-
tial frame {i} has origin at the Earth’s center of mass,
with the z-axis pointing through the North Pole, the x-axis
pointing towards vernal equinox, and the y-axis complet-
ing the right-handed system. Vectors and derivatives with
respect to the ECI frame are denoted with a superscript i.

Orbit frame The Vehicle Velocity, Local Horizontal
(VVLH) frame, or the orbit frame {o}, has superscript
o for vectors represented in the frame. The orbit frame
is centered in the center of mass of the spacecraft. The
z-, x-, and y-axis point in the direction of the Earth’s
center of mass, the orbit velocity vector, and in a direc-
tion that completes the right-handed coordinate system,
respectively. The unit vectors of the frame are given by

ẑo = − ri

‖ri‖2
, x̂o =

vi

‖vi‖2
, ŷo =

ẑo × x̂o

‖ẑo × x̂o‖2
, (1)

where ri is the distance between the spacecraft and the
center of the Earth, and vi is the inertial velocity of the
spacecraft.

Body frame The axes of the body frame {b} follow
the spacecraft structure, and its origin is centered in the
spacecraft’s center of mass. Vectors represented in this
frame have superscript b.

Wheel frame The wheel frame {w} is a frame used to
specify vectors directly related to the reaction wheels.
The two vectors that are represented in this frame are
the wheel angular velocity, ωwbw, and the torque applied
to each wheel, τwu . The dimension of these vectors equals
the number of reaction wheels, where each channel of the
vectors specifies the angular velocity or torque applied
about each wheel’s axis of rotation. The mapping of the
wheel frames to the body frame is represented by the
matrix A ∈ R3xn, as

τ bu = Aτwu ⇒ τwu = A+τ bu, (2)

where A+ is the pseudo-inverse of A. Note that A is a
constant mapping between the wheel frame and the body
frame due to a fixed reaction wheel configuration.

2.2 Attitude representation

Unit quaternions, represented as q = [η ε]
ᵀ

= [η ε1 ε2 ε3]
ᵀ
,

are used to describe the attitude of the spacecraft, where
η is the scalar part of the quaternion, ε is the vector part
of the quaternion and satisfies the condition η2 + εᵀε = 1.
qob is denoted as the attitude of the body frame relative
to the orbit frame. Similarly, the rotation matrix between
the two frames is given as (Egeland and Gravdahl, 2002)

Ro
b = I3×3 + 2ηobS(εob) + 2S2(εob), (3)

where I3×3 is the three-dimensional identity matrix, and
S(·) is a skew-symmetric matrix. The time derivative of

a rotation matrix Rb
o is Ṙb

o = −S(ωbob)R
b
o, where ωbob

denotes the angular velocity of {b} relative to {o}.
The kinematic differential equation for qob is given by

q̇ob =

[
η̇ob
ε̇ob

]
=

1

2

[
−εᵀob

ηobI3x3 + S(εob)

]
ωbob =

1

2
T(qe)ωbob.

(4)
where T(·) is the angular velocity transformation matrix.

2.3 Angular velocity

The angular velocity of the spacecraft’s body frame rela-
tive to the orbit frame is given as

ωbob = ωbib − ωbio = ωbib −Rb
oω

o
io, (5)

where ωbio is the angular velocity of the {o} relative to the
{i}, and ωbib is the angular velocity of the {b} relative to
the {i}.
The angular velocity of the {o} frame relative to {i},
denoted ωoio, is defined in Oland and Schlanbusch (2009)
as

ωoio = Ro
i

S(r
i
)v
i

(ri)ᵀri
. (6)

2.4 Attitude dynamics

The total system inertia of the spacecraft rigid body is
given by J ∈ R3x3, such that

J = Js + AJwAᵀ, (7)

where the inertia of the rigid body excluding the inertia
about the spinning axis of the reaction wheels is Js ∈ R3x3,
and the inertia matrix of the reaction wheels about the
spinning axes is Jw ∈ Rnxn.

The total angular momentum of the spacecraft is given as
(Krogstad and Gravdahl, 2006)

Hb
s = Jωbib + AJwω

w
bw. (8)

Using Euler’s second axiom, the rigid body dynamics is

J
bd

dt
ωbib + AJw

wd

dt
ωwbw + S(ωbib)H

b
s = τ bmtq + τ bext, (9)

where τ bmtq is the torque produced by the magnetorquers
and τext is the external perturbation torque acting on the
spacecraft.

2.5 Perturbations

The total perturbing torque is given by

τ bext = τ bdrag + τ bsrp + τ bgrav + τ bmag, (10)

where τ bdrag is the torque due to aerodynamic drag, τ bsrp
is the torque due to solar radiation pressure, τ bgrav is

the torque due to the gravity gradient, and τ bmag is the
torque due to the interaction between internal spacecraft
electronics and the Earth’s magnetic field.

Aerodynamic drag Aerodynamic drag is given by

Fbdrag = −1

2
ρAdrag‖vb‖2CD

vb

‖vb‖
, (11)

where ρ is the density of the atmosphere at a given
altitude, CD is the drag coefficient, and Adrag is the surface
area affected by the contact force. For simplicity, the
surface area of the largest face of the spacecraft is chosen.

We use a simplified version of the torque produced by the
aerodynamic drag

τ bdrag = (xbCP − xbCG)× Fbdrag, (12)

where xbCP is the center of pressure and xbCG is the center
of gravity. The vectors are chosen such that the distance
between the centers are as large as possible but limited by
the spacecraft structure size.
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Gravity gradient The gravity gradient torque is due to
the spacecraft not being a point mass when modeling the
rigid body dynamics. It is given in Hughes (2004) as

τ bgrav = 3
µ

‖ri‖3
S(c3)Jc3, (13)

where c3 is the third column vector of Rb
o.

Solar radiation pressure We use a simplified model for
the solar radiation pressure, where the sun’s position is
constant in the inertial frame, and the surface area that
is affected by the sunlight is assumed to be the largest
face of the spacecraft. Another simplification made is that
the solar radiation pressure is constantly applied. Together
these eliminate the need to model the sun’s actual position.
These simplifications do not represent an accurate model
of the sun’s effect on the system, but they are sufficient in
order to simulate the worst-case effect of solar radiation
with respect to attitude control in a relatively brief time.
The force is given by (Gravdahl et al., 2003)

Fbsrp = Rb
i

Fsrp

c
Asrp(1 + l)cos(α) [0 1 0]

ᵀ
, (14)

where Fsrp is the solar constant, c is the speed of light
in vacuum, Asrp represent the maximum exposed surface
area, l is the reflectance, and α is the incidence angle of the
incoming light. The values for Asrp, α, and the direction
vector are chosen to maximize the absolute value of the
force.

The corresponding torque is given as

τ bsrp = (xbCP − xbCG)× Fbsrp. (15)

The center of pressure and the center of gravity are chosen
in the same manner as they were for the aerodynamic drag
torque.

Magnetic torque The magnetic torque is created due
to the spacecraft’s electronics setting up a dipole that
interacts with the Earth’s magnetic field. The magnetic
torque is given by

τ bmag = (D

√
1

3
· [1, 1, 1]ᵀ)×Bb, (16)

where D is a constant representing the size of the residual
magnetic dipole, and Bb is the body frame vector of the
Earth’s magnetic field. The latter is represented by the
IGRF (International Geomagnetic Reference Field) model
in the simulations.

2.6 Reaction wheel dynamics

The angular momentum of the reaction wheels is given as
(Krogstad and Gravdahl, 2006)

Hb
w = AJwAᵀ(ωbib + Aωwbw) = AJwω

w
iw = AJwAᵀωbiw.

(17)
We find the reaction wheel dynamics by applying Euler’s
second axiom,
id

dt
Hb
w =

bd

dt
(AJwAᵀωbiw) + S(ωbiw)Hb

w

= AJwAᵀ
bd

dt
ωbiw + S(Aωwiw)(AJwω

w
iw) = AJwAᵀ

bd

dt
ωbiw

= AJwAᵀ(
bd

dt
ωbib + A

wd

dt
ωwbw) = τ bu = Aτwu ,

(18)

where we have used that

S(Aωwiw)(AJwω
w
iw) = 0 (19)

when the inertia of the reaction wheels are equal.

2.7 Attitude error dynamics

The attitude error variables are defined as

qe = q−1
d ⊗ qob =

[
ηd εᵀd
−εd ηdI3x3 − S(εd)

]
qob (20)

where ηd and εd are the scalar and vector part of the
desired quaternion qd, respectively, and

ωbe = ωbob − ωbd = ωbib −Rb
oω

o
io − ωbd, (21)

where ωbd represents the desired angular velocity. We
find the angular velocity error dynamics by differentiating
Equation (21) with respect to time. Specifically,

bd

dt
(Rb

oω
o
ib) =

bd

dt
(Rb

o)ω
o
io + Rb

o

bd

dt
(ωoio)

= −S(ωbob)R
b
oω

o
io −Rb

oS(ωoob)ω
o
io,

(22)

where we have used that the orbit is constant over time.
Equation (18) can be used to rewrite (9) by taking advan-
tage of (7),

Js
bd

dt
ωbib = −(AJsA

ᵀ
bd

dt
ωbib + AJw

wd

dt
ωwbw)− S(ωbib)H

b
s

+τ bmtq + τ bext = −Aτwu − S(ωbib)H
b
s + τ bmtq + τ bext

(23)
From (20), (21), (22), and (23), the error dynamics become

q̇e =
1

2
T(qe)ω

b
e, (24)

Js
bd

dt
ωbe = −S(ωbib)H

b
s −Aτwu + τ bmtq + τ bext

+JsS(ωbob)R
b
oω

o
io + JsR

b
oS(Rb

oω
o
ob)ω

o
io − Js

bd

dt
ωbd.

(25)

3. CONTROL DESIGN

In this section, we present the control algorithms we
use on the spacecraft’s actuators. The main actuator for
attitude control will in this paper be the reaction wheels.
A momentum dumping controller is used to counteract
momentum building up in the reaction wheels. We use the
magnetorquers to provide the external torque required for
the momentum dumping.

3.1 Momentum dumping controller

The momentum dumping control law is given as (Markley
and Crassidis, 2014)

τmtq = mb ×Bb = (
km
‖Bb‖2

(hbe ×Bb))×Bb, (26)

where mb is the magnetic moment, km is a positive
constant, and hbe is the error in angular momentum for
the reaction wheels, given as

hbe = AJw(ωwbw − ωwbw,ref), (27)

where ωwbw,ref is the reference speed of the reaction wheels.
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3.2 Generalized super-twisting algorithm (GSTA)

The generalized super-twisting algorithm is proposed here
to control the attitude with the reaction wheels. The
GSTA is a second order sliding mode control algorithm
which is robust to bounded time-varying disturbances,
such as the environmental torques τ bext. The GSTA is given
as

τ bu = (−1) · (−k1φ(σ)1 + z),

ż = −k2φ(σ)2,

φ1(σ) = bσe 1
2 + βσ,

φ2(σ) =
1

2
bσe0 +

3

2
βbσe 1

2 + β2σ,

(28)

where k1,k2, and β are positive and constant positive
controller gain vectors that are applied element-wise, σ
is the sliding surface, and the function b·ex is defined as
baeb = |a|bsign(a), which is applied element-wise when the
argument a is a vector.

Surface for pointing For pointing, we propose the sliding
surface

σp = ε̇be + Kεbe,K > 0, (29)

where εbe is the vector part of the error quaternion. On
the sliding surface, σp = 0, such that ε̇be = −Kεbe, and
thus the origin εbe = 0 is asymptotically stable. As the
unit quaternion is defined to have a length equal to one,
the surface will have two asymptotically stable equilibrium
points in εe = 0, ηe = ±1.

Surface for slewing We use a sliding surface based on
Fjellstad and Fossen (1994) for slewing, given as

σs = ωbe − 2c1
∂W

∂ηe
εe, (30)

where c1 is a positive constant, and W is a Lyapunov
function candidate (LFC) chosen to be W = 1−|ηe|. From
this choice, the surface becomes

σs = ωbe + 2c1 sgn(ηe)εe. (31)

Note that the signum function is defined to be positive
when evaluated at zero. Based on the proof in Fjellstad and
Fossen (1994), a sketch of the proof showing asymptotic
stability for the chosen sliding surface is as follows:

Differentiating the general LFC W(ηe) yields

d

dt
W (ηe) =

∂W

∂ηe

∂ηe
∂t

=
∂W

∂ηe
(−1

2
εᵀeω

b
e) = −c1(

∂W

∂ηe
)2εᵀeεe,

(32)
where Equation (30) set to zero has been used to define
ωbe. The time derivative of the LFC is negative definite for
all εe 6= 0 as long as W(ηe) is chosen such that ∂W

∂ηe
is

always non-zero. The LFC

W (ηe) = 1− |ηe|, (33)

satisfies this constraint since ∂W
∂ηe

= −sgn(ηe). The LFC is

positive definite and the time derivative

d

dt
W (ηe) = −c1(

∂W

∂ηe
)2εᵀeεe = −c1εᵀeεe, (34)

is negative definite, and from this we can use Lyapunov’s
second method to conclude that the two equilibrium points
of the quaternion representation (ηe = ±1, εe = 0) are
asymptotically stable. This conclusion only holds when the
signum function is defined as non-zero.

3.3 Sliding mode control (SMC)

Sliding mode control (SMC) is given as

τ bu = k sgn(σ), (35)

where σ is the sliding surface, defined as for the GSTA,
and k is a constant (positive) controller gain vector that
is applied element-wise.

3.4 Proportional–derivative controller (PD)

The PD controller is given as (Wen and Kreutz-Delgado,
1991)

τ bu = Kdω
b
e + Kpεe (36)

where Kd and Kp are constant (positive definite) con-
troller gain matrices, with numerical values to be chosen
when tuning the controller.

4. SIMULATION

In this section, we present the numerical simulations based
on spacecraft attitude control scenarios with two maneu-
vers: pointing and slewing. We compare the response of the
controlled variables with GSTA, SMC, and PD controller.

4.1 Setup

A 6U CubeSat model is chosen as the spacecraft rigid
body in this simulation. It has magnetorquers on all three
body axes and four reaction wheels. Three reaction wheels
are separately fixed on each of the three body axes,
and a fourth is tilted such that the resulting torque has
equal components in each axis in body frame. The torque
distribution matrix is given as

A =
1

3

3 0 0
√

3

0 3 0
√

3

0 0 3
√

3

 . (37)

The total inertia matrix and the reaction wheel inertia
matrix are given as

J =

[
0.0775 0.0002 −0.0002
0.0002 0.1067 0.0005
−0.0002 0.0005 0.0389

]
kg m2, Jw = IwI4x4,

(38)
where Iw = 2.1 · 10−4 kg m2 is the inertia of a single
reaction wheel, which are all set to be identical. Js is found
by combining (37) and (38) with (7).

Parameters used in simulations are shown in Tables 1-5.

Table 1. Orbital elements of initial orbit

Orbital element Value

Semimajor axis 6852.2 km
Eccentricity 0.002
Inclination 97◦

Right ascension of the ascending node 280◦

Argument of periapsis 0◦

True anomaly 90◦

The orbit represented by the parameters in Table 1 is
a commonly chosen Low-Earth-Orbit (LEO) for remote
sensing. In Table 4, the reaction wheel jittering is modeled
based on friction and speed resolution in the reaction
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Table 2. Physical parameters

Physical parameter Value

CubeSat mass 7 kg
CubeSat surface area (Asrp, Adrag) 0.06 m2

Earth Radius 6.371 · 106 m
Standard grav. parameter, Earth (µ) 3.986 · 1014 m3/s2

Atmospheric density (ρ) 1.7741 · 10−12 kg/m3

Drag coefficient (CD) 2.1
Solar constant (Fsrp) 1367 W/m2

Speed of light in vacuum (c) 3·108 m/s
Reflectance, satellite (l) 0.2
Angle of sunlight on the satellite (α) 0◦

Residual magnetic dipole (D) 1·10−2

Table 3. Saturation bounds

Saturation bounds Value

Reaction wheel angular velocity ± 5000 RPM

Reaction wheel angular velocity, rate ± 4.5 · 103 rad/s2

Reaction wheel input torque ± 3 · 10−3 Nm
Magnetorquer magnetic moment ± 5 · 10−1 Am2

Table 4. Noise

Noise Value

Reaction wheel jittering 3 RPM
ωb

ib noise 6.9813·10−8 rad/s

Table 5. Controller gains

Controller gain Value

km (mtq) 1.5·10−2

K (surface) 0.15 · I3x3
k1 (GSTA) 2.5

1000
Js · 13x1

k2 (GSTA) (2 · 10−8)13x1

β (GSTA) 15 · 13x1

Kp (PD, point) Js

Kp (PD, slew) 0.01Js

Kd (PD) 2.7Js

k (SMC, point) 0.01Js · 13x1

k (SMC, slew) 2
1250

Js · 13x1

c1 (GSTA, slew) 2
c1 (SMC, slew) 2 · 10−3

wheels, while the ωbib noise is due to unwanted thermal and
structural effects. Perfect attitude knowledge is assumed.

For the momentum dumping controller, the reference reac-
tion wheel speed ωwbw,ref is set to 2000·

[
1 1 1 −

√
3
]ᵀ

RPM.
At this point, the angular momentum created by the
reaction wheels will be net zero about the axes in {b}.

4.2 Performance measures

The performance is measured using root-mean-square er-
ror (RMSE) of stationary signals. We define the signal
to be stationary when it has settled, meaning when it
stays inside a given error band around the target value.
The error band is defined to be ±0.5◦ for pointing, and
±4 · 10−4 rad/s for slewing. The settling time is the time
it takes from applying the desired reference value to the
error band being reached and stays within the error band.
The steady-state error (SSE) for each channel is measured
at the end of each simulation.

Fig. 1. Pointing: Plot of the vector part of q and qd.

Fig. 2. Pointing: Plot of the vector part of qe.

4.3 Pointing

Pointing is a fixed-vector orientation towards a desired
attitude. Both the GSTA and the SMC use the surface
defined in Equation (29).

Table 6. Pointing performance

Settling time RMSE SSE

GSTA [15.9, 15.7, 15.2]s [4.80, 3.14, 2.43]* [0.5, 0.0, 0.0]*
PD [21, 20, 18.4]s [4.24, 4.22, 4.24]* [0.5, 0.0, 0.1]*
SMC [29.1, 27.2, 25.8]s [4.93, 4.91, 4.88]* [0.6, 0.0, 0.1]*

The star (*) in Table 6 denotes 10−2 angular degrees (◦).
Figures 1, 2, and 3 are centered around the transient
period of the control. Figures 4, 5, and 6 are plots over
a longer time to show the effects of attitude control
and momentum dumping controller on the reaction wheel
speed. For pointing, the objective is illustrated in Figure 1,
where a slight overshoot can be seen in the GSTA response.
In the the error variables shown in Figure 2, it can be seen
that this overshoot does not result in the signal escaping
the error band and indicating that the performance of
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Fig. 3. Pointing: Plot of ωbob.

Fig. 4. Pointing: Plot of ωwbw − ωwbw,ref.

GSTA is better than that of PD controller and SMC. It is
also performing better with respect to settling time across
all channels: between four and five seconds for the PD
controller, and over 10 seconds for the SMC.

As seen in Figure 2, the PD controller is converges fastest
initially, but the GSTA tracks the desired attitude better
it when the signals approach the desired state. The RMSE
values are slightly better for GSTA than PD and SMC
along the second and third channel, while the PD is the
best along the first. The SSE values are similar for all three
controllers.

The angular velocity response shown in Figure 3 also
highlights the performance difference between the PD
controller and GSTA, where the curve of the latter follows
a gentler slope. The angular velocity of the reaction wheels,
as shown in Figure 4, are returned to their initial values
after the reference changes at 30 seconds, except when
using the PD controller. The magnetorquer response is
similar for all three control laws, as seen in figure 6. The
torque applied by the GSTA has a sharper slope than the

Fig. 5. Pointing: Plot of τwu .

Fig. 6. Pointing: Plot of τ bmtq.

SMC, as seen in Figure 5, causing a lot more torque to be
applied to the reaction wheels after the system has settled.
The PD controller has a higher peak and varies more than
GSTA both before and after the transient period.

4.4 Slewing

When the spacecraft is performing a slew maneuver, the
angular velocity of the {b} relative to {o} is non-zero and
constant. In this simulation, we choose a desired angular
velocity about the y-axis. For slewing, the GSTA and the
SMC use the surface defined in Equation (31).

The star (*) in Table 7 denotes 10−5 rad/s, and -1 indicates
channels which start inside the error band and never leave,
and therefore are always settled.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15021



Fig. 7. Slewing: Plot of ωbob.

Fig. 8. Slewing: Plot of ωwbw − ωwbw,ref.

Table 7. Slewing performance

Settling time RMSE SSE

GSTA [-1, 3.63, -1]s [3.91, 4.93, 4.95]* [5.05, 0.30, 4.40]*
PD [-1, 1.3, -1]s [4.78, 5.32, 5.33]* [3.73, 0.66, 5.08]*
SMC [-1, 7.28, -1]s [7.88, 11.1, 8.21]* [5.99, 5.30, 11.7]*

The slew maneuver objective is shown in Figure 7. In
general, the GSTA outperforms the SMC when considering
settling time. However, the PD controller performs better
as shown clearly in Figure 7 and Table 7. The GSTA uses
3.63 seconds, while the SMC uses 7.28 seconds to settle
about the y-axis. For comparison, the PD controller uses
just 1.3 seconds. Note that the inclination of the sliding
surface used for slewing, the positive definite constant c1
from Equation (31), is different for the GSTA and the SMC
algorithm, as specified in Table 5. This is due to the SMC
algorithm overshooting the reference if the chosen value is

Fig. 9. Slewing: Plot of τwu .

Fig. 10. Slewing: Plot of τ bmtq.

too high. By decreasing c1 from the value set for GSTA,
the SMC manages to control the system. Furthermore, the
GSTA performs well with both of the given c1 values.

It is possible to increase the SMC gain to lower the settling
time, but this would increase the RMSE values, and the
SMC might be unable to settle within the error band in
a chosen time period. Even with the current values, the
SMC has a significantly higher RMSE than GSTA and
PD controller for slewing.

Increasing the gain for the GSTA to lower the settling time
would increase the RMSE value as well, which are slightly
better than those of the PD controller with the current
parameters.
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For reaction wheel speed, it can be seen in Figure 8
that the momentum dumping controller uses longer time
to reach the initial speed values compared pointing, as
seen in Figure 4. To improve this, the reference angular
momentum must be updated in a slew maneuver as
shown in (Grøtte et al., 2020). Figure 10 shows that
the magnetorquers produce high frequency signals as in
pointing, but of a different shape than those in Figure 6
as it counteracts a different change in wheel speed. The
torque plot for the attitude control algorithms, Figure 9,
show that the GSTA has a spike around the change in
reference at 60 seconds, while the amplitude of the SMC
signal has a fixed maximum value. Note that the peak
value of the PD controller is significantly higher than the
peak of the GSTA, and the signal is more contaminated
by noise for the PD controller, as shown in Figure 5.

5. CONCLUSION

In this paper we have studied the performance of three
different control algorithms applied to attitude control of a
spacecraft actuated with reaction wheels: the GSTA, SMC,
and PD controller. The simulation results show that the
GSTA control chatter is greatly reduced when compared
to SMC. Overall attitude control performance is improved
when comparing GSTA to SMC in a slew maneuver. GSTA
displays similar accuracy as the PD controller under the
given conditions, but with lower spikes and less chatter
in the torque applied to the reaction wheels. The settling
time for the GSTA is shorter for pointing, but longer for
slewing when compared to a well-tuned PD controller.
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