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Abstract: Order picking is one of the most critical activities in the warehousing process. In order to
obtain high profits, e-commerce retailers have focused on dedicated and accurate order picking methods.
Zone picking is a picking approach commonly used for retail order picking where small-sized items have
to be collected. Nevertheless, to become more efficient, it requires a scheduling policy for managing the
bins flow which avoids blocking and mitigates order pickers unproductive times. This paper studies a
specific variant of the Non-Permutation Flow-Shop (NPFS) scheduling problem with missing operations,
transportation times and limited capacity constraints. A mathematical formulation of this new problem
is proposed to minimize the total elapsed time for all machines. We study an illustrative example to
analyze the differences between the optimal solution of the proposed model and a naive solution.

Keywords: Order picking, Scheduling, Non-Permutation Flow-Shop, Missing operations, Limited
buffer capacity, Mixed integer linear programming.

1. INTRODUCTION

Order picking is one of the costly warehouse activities consist-
ing of retrieving products or items that need to be retrieved from
storage locations in order to fulfill a given customer’s order.
The most common order picking deployed in traditional ware-
housing systems is the manual picking, also denoted as "pick-
by-order" or "picker-to-parts". Thereby, the order picker must
travel between shelves to collect items until the completion
of the order. Therefore, the efficiency of this process depends
intrinsically on the order picker performance and may lead to
several critical problems. The first problem is centered around
routing issues in which an optimal route sequence is required
to minimize the pickers travelling time (De Santis et al., 2018).
The second problem, often identified as a batching problem,
consists of regrouping clients’ orders into batches before the
collect activity (Hong et al., 2012). Hence, the aim is to find
the best combination of orders to allocate to each batch. The
third problem is assigning items to storage locations in the
warehouse before the picking process in order to balance the
workload between pickers (Scholz et al., 2017).

In the past decade, online ordering has emerged rapidly in
the field of e-commerce. Based on the concept of retail order
picking where items are small and delivery dates are tight,
online retailers faced new challenges not only to satisfy final
customers’ requirements but also to ensure the efficiency of the
order picking process (Boysen et al., 2019). Hence, one of the
alternatives is to change the warehousing policies by switching
to new order picking methods such as semi-automated or fully
automated order picking. This method integrates technological
systems to facilitate the order picking process and to reduce the
amount of time a picker spends searching for the next pick.

Zone picking, which is the main focus of this paper, is one
example of the semi-automated order picking methods. This
method consists of dividing the warehouse into several zones
that are interconnected with a conveyor system. One order
picker is assigned to each zone. The picker’s travel times are
reduced thanks to the proximity of the items within his zone.
This allows the pickers to focus more on the picking process
rather than optimizing unnecessary travel.

Zone picking problems have been tackled from several perspec-
tives: from strategic and tactical viewpoints such as storage
location assignment and control decisions (Petersen, 2002),
from an operational standpoint by integrating the zone picking
problem with other order picking problems like routing (Ying-
Chin and Jian-Wei, 2017) and batching (Le-Duc et al., 2005), or
even focusing on the organisational issues, for example, (Huang
et al., 2018) solved an order batch scheduling problem under
zoning conditions.
Despite the efficiency of zoning configuration, the orders flow
is rather complex to manage in practice since it may generate
unproductive times (the order pickers may wait too long for the
bins arrival) or cause a blocking of the conveyor system.
In this paper, we propose a new optimization problem corre-
sponding to an emerging industrial issue related to the field
of retail order picking, with the aim of handling the flow of
a large number of small orders. Thus, the problem is modeled
as a scheduling problem in which specific real conditions of
the zone picking process are considered: zone skipping, buffers
storage constraints and transportation times between the zones.

The remainder of this paper is organized as follows. The next
section describes the considered problem. Section 3 will be
dedicated to the literature reviews of related works. Section 4
presents the mathematical model and provides a linear formula-
tion. An illustrative example is discussed in Section 5. Finally,
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Section 6 presents the conclusions of this work and outlines
future research directions.

2. PROBLEM DEFINITION

In this work, we consider a retail order picking line organized as
a zone picking with sequential zoning. As shown in Fig. 1, the
picking area is divided into several zones (also called stations),
and one order picker is assigned to each station. The stations
are connected by a conveyor allowing the bins transportation
through the picking zones.

Reconfiguring a warehouse by reorganizing the picking zones
or allocating the items to the stations according to the daily cus-
tomers orders is not operationally feasible. Thus, we consider in
this work that the items are already assigned to the stations. The
items composing the orders are given, thus we can deduce the
picking stations to visit. The bins have different stations to visit
and may skip some zones which do not contain any ordered
items. Hence, even if the bins are processed in the order of
arrival in the stations, their order can differ from a station to
another, since they can stop on different stations.
Once the order picker collects all the items needed for a bin on
his station, he pushes back the bin on the conveyor in order to be
transported to the next station. The picker can either deal with
the bin immediately or let it wait in the buffer. The order picker
prepares the bins in the order of their arrival in the machines
buffer, thereby, the bins are actually handled in the first position
in the buffers. We assume that virtually the first position of
the buffer constitutes the picking station as depicted in Fig. 1.
Nevertheless, the buffers’ capacity is limited. If a bin arrives
when the buffer is full, it remains on the conveyor belt while the
machines buffer is saturated and hence hamper the bins flow.
To avoid such congestion, overtaking the buffers’ capacity is
forbidden in our study. Moreover, we consider that the order
picker must remain at his picking station from the moment he
begins the preparation of the first bin until the completion of the
last prepared bin. In other words, we aim to regroup as much
as possible the working time periods in order to minimize the
times spent by the order pickers at their picking stations. In such
labor organisation, pickers can be assigned to other value-added
activities in the warehouse, outside order picking.

From the problem definition, the factors that must be taken
into account are the missing operations, the transportation times
between the zones and the limited buffer capacities.
Since bins skip some machines, the bins processing sequence
differs from one machine to another. This work employs the
concept of job scheduling in the Non-Permutation Flow-Shop
(NPFS) structure where the jobs order changes on different
machines. We will henceforth consider the bin as a job and the
picking station or the order-picker as a machine.

3. LITERATURE REVIEW

The Non-Permutation Flow-Shop (NPFS) scheduling problem
(Tandon et al., 1991) is a generalization of the traditional
Permutation Flow-Shop (PFS) scheduling problem (Johnson,
1954). In the PFS scheduling, the job sequence is identical for
all machines whereas in a NPFS the sequence of jobs can be
different on subsequent machines.

PFS and NPFS have similar constraints. Each machine can
handle only one job at a time and each job has a fixed processing
time on each machine. The change in the order of the jobs on a

machine comes generally from the presence of buffers between
machines (the order being changed in these buffers) or the
presence of missing operations inducing different paths for the
jobs and thus different permutations of jobs in the processing
sequence.
In real-world case studies, NPFS gives more flexibility. For
instance, jobs are not required to visit all machines or can
be interchanged in a buffer. Rossit et al. (2018) reviewed and
classified the NPFS problem in terms of objective functions
for different variants and presented the optimization techniques
used for solving NPFS.

Over the past decades, PFS and NPFS have received large
attention, considering several optimization criteria and different
types of constraints. In the literature, several surveys addressed
the NPFS problem in a comparative context with the PFS ap-
proach in order to outline the performance of each configura-
tion. The main objective functions considered in their studies
are completion-time based objectives (Potts et al., 1991; Na-
garajan and Sviridenko, 2009) and due dates based objectives
(maximum tardiness and total tardiness in Liao and Huang
(2010)). Liao et al. (2006) investigated all of those aforemen-
tioned criteria.

NPFS generally requires the existence of a buffer to generate
feasible schedules. Nevertheless, to the best of our knowledge,
most of the surveys studying flow-shop problems with capac-
ity constraints consider a PFS configuration rather than the
NPFS’s one. Leisten (1990) studied PFS and NPFS scheduling
problems by taking into account a finite buffer capacity and it
also investigated the cases in which no buffer and unlimited
capacity are considered. Brucker et al. (2003) tackled a PFS
problem with the consideration of buffers with a limited ca-
pacity between every two consecutive machines, minimizing
the makespan. The authors proved a relationship between stock
size and the difficulty of solving the problem. Moslehi and Kho-
rasanian (2014) investigated the limited buffer PFS scheduling
problem optimizing makespan.

Only a few studies considered a limited buffer for NPFS and
even fewer gave a nonlinear mathematical formulation. For
example, Rossi and Lanzetta (2013) modeled the scheduling
of a NPFS with buffers minimizing the makespan. The authors
solved the problem by applying heuristic and meta-heuristic
methods.

In recent decades, the presence of the missing operations in
flow-shop scheduling problems gained interest. It allows con-
sidering situations in which some or all jobs skip some ma-
chines. Pugazhendhi et al. (2003) studied the NPFS problem
with missing operations. They presented a simple heuristic
procedure to optimize makespan and total time. Sadjadi et al.
(2008) investigated three NPFS problems with missing oper-
ations by taking into account some specific constraints. They
examined the constraints of time lags for the first problem and
the sequence-depend setup time in the second one. In these first
two problems, the authors considered the minimization of the
makespan. In the third problem, they studied the minimization
of the total weighted tardiness. Ramezanian et al. (2011) ad-
dressed the NPFS problem with missing operations, and solved
it with a Genetic Algorithm and Tabu Search methods.

The consideration of the transportation times in the NPFS
scheduling problem has received less attention. Most of the
works considered that the transportation times between ma-
chines is negligible. However, when transportation times are
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Fig. 1. A schematic illustration of a zone picking system

taken into consideration, generally the resources associated
with transportation have limited capacity (Lamoudan et al.,
2012; Chung-Yee and Zhi-Long, 2001).
Several studies in the literature address mathematical formu-
lations for flow-shop scheduling. The authors consider several
types of formulations based on different approaches. The as-
signment and positional approach consists of assigning jobs
to positions in a permutation (Fang et al. (2013) for the PFS,
Vahedi-Nouri et al. (2013); Rossi and Lanzetta (2013); Sadjadi
et al. (2008) for the NPFS). The disjunctive approach uses
decision variables on the precedence between each pair of jobs
(Fang et al. (2013) for PFS). Finally, the time-indexed approach
(Avella et al. (2017) for FPS). As far as we know, there is no
formulation yet for NPFS scheduling problems based on the
disjunctive approach and time indexed approach.

In summary, the problem studied in this paper is a new variant
of the NPFS scheduling problem in which limited buffer ca-
pacity constraints, missing operations and transportation times
are simultaneously taken into consideration. To the best of
our knowledge, the integration of these features has not been
tackled yet. Thus, we present a formalization of the problem
and propose a linear mathematical optimization model.

4. MATHEMATICAL MODEL

We consider a set of n jobs J = {1,2, . . . ,n} to be processed
on a set of m machines M = {1,2, . . . ,m}. The set of machines
visited by each job is given by ai j (ai j is equal to 1 if job j
visits machine i, 0 otherwise). The machines are arranged in an
ordered sequence. Thus, by considering ai j, we can define for
each job j the sequence of machines visited, which is presented
by a set Pj of ordered pairs of successive machines, i.e. (i, i′).
Note that i never takes the value m and similarly i′ never
takes the value 0. ki defines for each machine i the number
of jobs that visit it. Furthermore, m upstream buffers Bi are
associated with each machine i with a capacity of bi units. We
decided to add an additional machine at the beginning of the
line, seen as a launching point, in order to consider a modeling
with intermediate buffers configuration. This will facilitate the
modeling of the limited buffers constraints. Hence, from now
on, a new set of machines will be considered in the problem,
including this fictitious machine, denoted M ∗ = M ∪{0}. The
processing time of the job j ∈J in machine i ∈M is given by
pi j. For machine 0, all jobs have a processing time equal to 0.
Transportation times to carry jobs between two machines i and
i′ are taken into account (Ti,i′ ).

Inspired by the formulation of Fang et al. (2013), we propose
a mixed integer program that uses binary variables to directly
assign jobs to positions on machines. Thus, we assign an index
k to determine the processing order of job j in machine i.

The decision variables are the following :

• xi, j,k = 1, if the job j is assigned to machine i in the kth

position of its sequence, 0 otherwise.
• si, j is the starting time of job j on machine i.
• Si,k is the starting time of the job scheduled in the kth

position on machine i.

The aim of this paper is to minimize the total elapsed time
for all machines which corresponds to the minimization of the
order pickers cumulative presence time in our study context.

The mixed-integer linear programming model for this NPFS
problem is:

min
m

∑
i=1

(
Si,ki +

n

∑
j=1

pi, j xi, j,ki −Si,1

)
, (1)

subject to:
ki

∑
k=1

xi, j,k = ai, j ∀i∈M ∗; ∀ j∈J ; (2)

n

∑
j=1

xi, j,k = 1 ∀i∈M ∗; ∀k=1, . . . ,ki; (3)

si, j + pi, j +Ti,i′≤ si′, j,∀ j∈J ;∀i, i′ ∈M ∗, (i, i′)∈Pj; (4)

Si,k +
n

∑
j=1

pi, j xi, j,k≤Si,k+1,∀i∈M ∗;∀k=1, . . . ,ki−1; (5)

Si,k ≤ si, j +
(
1− xi, j,k

)
H ∀i∈M ∗; ∀ j∈J ; ∀k=1, . . . ,ki; (6)

si, j ≤ Si,k +
(
1− xi, j,k

)
H ∀i ∈M ∗;∀ j ∈J ;∀k=1, . . . ,ki; (7)

Si′,(k′−bi′ )
+

n

∑
j′=1

pi′, j′ xi′, j′,(k′−bi′ )

≤ Si,k + pi, j +Ti,i′ +
(
2− xi, j,k− xi′, j,k′

)
H (8)

∀ j∈J ; ∀i∈M ∗, i′∈M , (i, i′)∈Pj, ∀k=1, . . . ,ki;
∀k′=bi′+1, . . . ,ki′ .

S0,k +δ ≤ S0,k+1,∀k=1, . . . ,n−1; (9)
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Si′,k′+pi′,q+Ti′,i′′+δ ≤ Si,k+pi, j+Ti,i′′

+
(
4−xi′,q,k′−xi′′,q,k′′−1−xi, j,k−xi′′, j,k′′

)
H, (10)

∀ j,q∈J , j 6=q;∀i, i′∈M ∗, i′′∈M ,(i, i′′)∈Pj,(i′, i′′)∈Pq;
∀ k=1, . . . ,ki;∀k′=1, . . . ,ki′ ;∀k′′=2, . . . ,ki′′ .

xi, j,k ∈ {0,1} ∀i∈M ∗; ∀ j∈J , ∀k=1, . . . ,ki. (11)

si, j ≥ 0 ∀i∈M ∗; ∀ j∈J ; (12)

Si,k ≥ 0 ∀i∈M ∗; ∀k=1, . . . ,ki; (13)

The equation (1) presents the objective function (the cumulative
presence time of operators), i.e. the sum on all machines of
the difference between the end of the processing of the job
scheduled last, and the starting time of the first job scheduled on
the same machine. Constraints (2) ensure that the assignment of
jobs in the processing sequence of a machine includes the jobs
visiting it. Constraints (3) specify that exactly one job is sched-
uled to each position k of the processing sequence of machine
i. Constraints (4) guarantee that each job is processed entirely
on a machine and has the time to arrive to the next machine
before its starting time on this next machine. Constraint set (5)
ensures that a machine cannot start processing a job until the
completion of the previous job in the sequence. Constraints (6)
and (7) state linking constraints between the starting times si, j
and Si,k, H is an arbitrarily large number. Constraints (8) insure
that the capacity of the buffer is never exceeded. The left-hand
side is the completion time of the job in the (k′−bi′)

th position
in the machine’s processing sequence. The right-hand side is
the arrival time of the job occupying the k′th position in the
same processing sequence. If the k′th job and the (k′−bi′)

th job
are simultaneously in the buffer, then it means that the buffer
is saturated. Hence, the constraints (8) insure that the job at
position k′th arrives in the machine’s buffer after the job in the
(k′−bi′)

th position has left the machine. Constraints (9) ensure
that jobs are not launched at the same moment on the machine
0, which implies that jobs visiting the same machine will not
arrive at the same time. δ defines a minimum time between the
arrival of two successive jobs at the same machine. Constraints
(10) guarantee that jobs are processed in the order of their
arrival at the buffer. Constraints (11) to (13) are the domain of
the decision variables.

5. A NUMERICAL ILLUSTRATION

For a better understanding of the problem’s specificities, an il-
lustrative instance will be presented and analyzed. We compare
a naive solution (NS), which could be applied in a company
that does not integrate optimization techniques, to the optimal
solution (OS) of the mathematical problem presented in the
previous section and obtained using the commercial solver IBM
ILOG Cplex Optimization Studio.

5.1 Description of the illustrative instance

We consider an industrial problem involving 4 machines and
10 jobs to be scheduled. Processing times are given in Table 1
in which each missing operation is represented by a dash (i.e.
when a job skips a machine). According to the mathematical
formulation in section 4, and in order to determine the jobs

Table 1. Processing times (in s)

Machine
Job

1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0
1 64 96 - 9 17 19 52 - 54 -
2 - - 16 39 - - 18 35 - -
3 48 - 34 22 12 78 - 24 - 10
4 - 16 11 73 - 16 - 14 - 93

Table 2. Transportation times (in s)

Machine 1 2 3 4
0 94 96 98 99
1 53 64 83
2 50 52
3 46

launching time in the flow (i.e. the launching time of each bin
in the conveyor system), we add a fictitious machine denoted
machine M0 which will be visited by all jobs with a processing
time of 0. Hence, the sequence of machines to visit by each job
can be deduced from the processing times given in Table 1.
Table 2 presents the transportation times between machines. We
recall that machines are visited in the order of their index. We
consider that the capacity of every buffer is equal to 2 (including
the machine’s capacity). The minimum time between the arrival
of two jobs at the same machine is δ = 1s.

5.2 Solutions comparison

To generate the naive solution, jobs are launched on the con-
veyor in increasing order of their index. Furthermore, their
processing in a machine respects the order of their arrival in the
buffer. The departure time of a bin from a machine is computed
such that the buffer of the next machine to visit is not saturated
at the time of the bin’s arrival. This can induce a waiting time
for a bin in a station even after the processing completion in
this station. The bin is considered to be in the buffer during this
waiting time. This solution is represented by a Gantt chart in
Fig. 2. We represented the job processing in a machine by a box.
The jobs stored in buffers are depicted by lines. Two parallel
lines mean that two jobs are stored in a machine’s buffer while
another job is processed in this machine. In addition, when a
job is processed in a machine, at most one job could be stored
in a buffer, since the processing of the job is done in the buffer.

The job sequence is different for each machine even if we
consider the jobs in their order of arrival in the machines
which shows that the mere presence of missing operations
implies an NPFS. We remind that we aim to minimize the total
elapsed time for all machines (the cumulative presence time of
operators), i.e. minimizing the unproductive times between the
beginning of the first process in a machine and the end of the
process of the last job in the same machine.

The Gantt chart of the NS shows that the adopted approach
generated considerable non-activity times on machines M2, M3
and M4. Indeed, the NS makes sure that each job is processed
without delay (when the job arrives at the buffer it is processed
as soon as the machine is available). Nevertheless, this naive
approach may generate a flow block. For instance, if job J4 had
left directly the machine M2 after being processed to visit the
next machine M3 then 3 jobs would be at its upstream buffer.
Therefore, the system’s flow will be blocked. To avoid this
issue, when the buffer of the next machine to visit is full, the
job will be held in the buffer of the current machine, thereby
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Fig. 2. Gantt chart of the naive solution
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Fig. 3. Gantt chart of the optimal solution without makespan constraint
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Fig. 4. Gantt chart of the optimal solution with makespan constraint

allowing the processing of the next job (see Fig. 2). We recall
that the job is physically in the buffer area during its processing.
During the waiting time, it stays in the same position in the
buffer. In practice, the order picker will tend to send the bins as
soon as the order picking is finished.
Fig. 3 illustrates the Gantt chart of the optimal solution ob-
tained by minimizing the cumulative presence time of operators
according to our model’s constraints. In order to avoid unpro-
ductive times, the model delays the processing of the job even
though the machine to visit is available. As shown in Fig. 3, the
job J3 is held in the upstream buffers of machines B2 despite
the arrival of another job J8, the jobs J5 and J2 remained
also in buffers B3 and B4 respectively. This highlights that the
solution regroups the processing of jobs on the machines to
avoid unproductive times.
The studied instance shows that with 40% of missing oper-
ations, the mathematical model provided an optimal solution
reducing the operators cumulative presence time from 1346s for
the NS to 870s for OS (yielding a 54.72% reduction in unpro-
ductive times). Although, it can be seen that the optimization of
the unproductive times may seem like it comes at the expense
of other economic performance criteria such as the makespan

which is slightly larger (623s for the OS and 606s for the NS).
The reason why OS has greater makespan than the NS is that
for this illustrative example, the scheduling is not constrained
by a deadline.
Neverthless, with minor changes by adding additional con-
straints in the mathematical model, (forcing the makespan to
be less than the makespan of NS, i.e. 606s), we can gener-
ate schedules without degrading the cumulative presence time
of operators. The OS obtained by this model has a cumula-
tive presence time of operators of 870s (which is the same
value obtained without considering makespan constraint) and
a makespan value of 598s. This new solution is illustrated in
Fig. 4.

6. CONCLUSION & PERSPECTIVES

This work defines a specific retail order picking scheduling
problem. The problem is widely spread in the e-commerce
retailing field in which retailers seek to minimize the order
pickers unproductive times.
We have proposed a linear mathematical formulation of the
problem handled as a non-permutation flow-shop scheduling
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problem in which missing operations, transportation times and
limited buffer capacities have been considered simultaneously.
The optimization approach presented by our model is illus-
trated by a small instance. The optimal solution obtained with
the model formulation is compared to a solution generated by
a naive approach. The model presented a significantly better
performance enabling efficient scheduling with respect to the
aforementioned constraints.
Our mathematical formulation models a larger set of problems.
Indeed it can be used for problems with intermediate buffers
and a first machine that each job has to visit (for instance, this
first machine could be a labeling machine and the rest of ma-
chines could be production ones). Comprehensive benchmark
tests, composed of larger instances, are needed to evaluate the
performance of the model.

For future research, it would be interesting to develop other
mathematical formulations based on the disjunctive and in-
dexed time approaches to evaluate and validate the performance
of the models. We think that the model is not capable of solving
large instances of an industrial problem. One approach is to
consider heuristic and meta-heuristic methods to solve large-
scale instances.
As mentioned in Section 1, order picking for e-commerce is
a time-critical process, especially when facing tight delivery
schedules. Hence, scheduling under due-dates constraints is an
interesting and challenging problem since it takes explicitly
into consideration one of the clients requirements. Moreover, in
zone picking, the picking process is done by workers. Thus, the
processing time of the bins depends on the picker performance.
It would be interesting if we study the concept of stochastic pro-
cessing by taking into consideration the variability of picking
times rather than assuming deterministic processing conditions.
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