
Deterministic Global Nonlinear Model
Predictive Control with Neural Networks

Embedded

Danimir T. Doncevic ∗∗,∗ Artur M. Schweidtmann ∗

Yannic Vaupel ∗ Pascal Schäfer ∗ Adrian Caspari ∗

Alexander Mitsos ∗∗∗,∗,∗∗

∗ Aachener Verfahrenstechnik - Process Systems Engineering, RWTH
Aachen University, Aachen, Germany (e-mail:

amitsos@alum.mit.edu).
∗∗ Institute of Energy and Climate Research - Energy Systems

Engineering (IEK-10), Forschungszentrum Jülich GmbH,
Wilhelm-Johnen-Straße, 52425 Jülich, Germany.

∗∗∗ JARA - Jülich Aachen Research Alliance, Center for Simulation
and Data Science

Abstract: Nonlinear model predictive control requires the solution of nonlinear programs with
potentially multiple local solutions. Here, deterministic global optimization can guarantee to find
a global optimum. However, its application is currently severely limited by computational cost
and requires further developments in problem formulation, optimization solvers, and computing
architectures. In this work, we propose a reduced-space formulation for the global optimization
of problems with recurrent neural networks (RNN) embedded, based on our recent work on
feed-forward artificial neural networks embedded. The method reduces the dimensionality of
the optimization problem significantly, lowering the computational cost. We implement the
NMPC problem in our open-source solver MAiNGO and solve it using parallel computing on 40
cores. We demonstrate real-time capability for the illustrative van de Vusse CSTR case study.
We further propose two alternatives to reduce computational time: i) reformulate the RNN
model by exposing a selected state variable to the optimizer; ii) replace the RNN with a neural
multi-model. In our numerical case studies each proposal results in a reduction of computational
time by an order of magnitude.

Keywords: Nonlinear process control; Model predictive and optimization-based control; Global
optimization; Recurrent neural networks; Neural networks in process control.

1. INTRODUCTION

Dynamic operation of processes is becoming increasingly
relevant as the shift to renewable energy supply and feed-
stocks introduces additional variability and motivates the
use of nonlinear models (Mitsos et al. (2018)). For this,
data-driven models constitute a popular choice due to
recent advances in machine learning and increasing avail-
ability of process data (Lee et al. (2018)).
Among the variety of data-driven models, artificial neu-
ral networks (ANN) are very promising for control due
to their capability to learn highly nonlinear multivariate
relationships. For instance, they can constitute the nonlin-
ear block of a Hammerstein-Wiener process model (e.g.,
 Lawryńczuk (2013)) or be used to learn the control law in
explicit MPC (e.g., Lucia and Karg (2018)). RNNs (Wer-
bos (1988)) are a special type of ANN capable to represent
sequential data thanks to preserving internal memory by
feeding back the network outputs to the input layer. As
such, they are suited to learn the input-output behavior
of dynamic systems. In literature RNNs are commonly
applied to model a plant and embedded in MPC. Wu
et al. (2019) provide some mathematical background on

MPC with RNNs regarding the stability of the controller
assuming bounded prediction errors of the network.
As the activation function of RNNs is usually nonlinear,
their use in MPC leads to nonlinear model predictive
control (NMPC) problems. NMPC problems potentially
exhibit multiple local optima. Finding the global optimum
is thus desired. In contrast to local and stochastic global
solvers, only deterministic global optimization methods
can guarantee to identify global optima up to arbitrary tol-
erance within finite time. In previous literature, global dy-
namic optimization was examined, e.g., by Chachuat et al.
(2006), but NMPC problems have rarely been solved with
deterministic global optimization methods: Sriniwas and
Arkun (1997) have proposed global NMPC for a system
with two inputs and two outputs governed by a polynomial
auto-regressive model with exogenous inputs (ARX) and
solved the embedded problems with a primal-relaxed dual
approach. Long et al. (2006) and Čižniar et al. (2008)
examined global NMPC of the isothermal van de Vusse
CSTR, a SISO system. The authors solved the resulting
nonlinear nonconvex programs (NLP) using a branch-and-
bound algorithm. Long et al. (2007) applied global NMPC
to a system with hybrid models leading to mixed-integer

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5347

NLPs and solved them with a decomposition-based algo-
rithm. Finally, Wang et al. (2017) suggested global solution
of NLPs within NMPC by normalized multiparametric
disaggregation and applied the method to two variants of
the van de Vusse CSTR. These studies found the compu-
tational effort of global NMPC to be prohibitive for real
time applications to larger systems. Further, the longest
horizons employed were a control horizon of 2 with a
prediction horizon of 5 or a control horizon of 1 with a
prediction horizon of 30 respectively. The highest number
of manipulated variables used was 2. The authors reported
solution times in the order of seconds.
A speed-up of global NMPC would facilitate the utilization
of longer control and prediction horizons and the applica-
tion to bigger systems. In order to achieve this speed-up,
we propose a deterministic global NMPC framework based
on RNN process models. In our previous research, we have
demonstrated that feed-forward ANNs can be efficiently
optimized using a reduced-space formulation (Schweidt-
mann and Mitsos (2019)).
In this work, we extend the reduced-space optimization
to RNNs and solve the NMPC problem with our open-
source deterministic global solver MAiNGO (Bongartz
et al. (2018)). We put emphasis on improving the computa-
tional cost of global optimization in NMPC with surrogate
models embedded. In particular, we train RNNs on sim-
ulated process data and implement the NMPC controller
with the RNN as a system model. Then, we propose a
neural multi-model (Lawryńczuk and Tatjewski (2010)) as
an alternative surrogate model. It is a collection of ANNs,
where each ANN predicts one output of a sequence of out-
puts. We compare the solution time for global optimization
of a test problem using the two surrogate models. Finally,
we show that the computational cost of the problem using
the RNN model can further be reduced by a reformulation
of the problem, i.e., the exposition of a state variable to
the optimizer. The remainder of this article is structured
as follows: Section 2 introduces the isothermal van de
Vusse case study. Section 3 describes the methods used
for data generation, training of neural networks, and the
implementation of the NMPC controller. The results of the
in silico study are discussed in Section 4. First, the efficacy
of the controller is validated and then the computational
cost of applying global optimization is analyzed. Finally,
Section 5 draws a conclusion.

2. CASE STUDY

In this work, we study the isothermal van de Vusse
CSTR (Kravaris and Daoutidis (1990)). Herein, a reactant
A is converted into product B with side reactions taking
place. The CSTR is described by the following ODE-
system:

dCA

dt
= −k1CA − k3C2

A +
V̇

Vr
(CA0 − CA) , (1a)

dCB

dt
= k1CA − k2CB −

V̇

Vr
CB . (1b)

The system exhibits input multiplicity and inverse re-
sponse making its control a challenging task. The ma-
nipulated variable u is the dimensionless flow rate V̇ /Vr
and the controlled variable y corresponds to the con-
centration of product B, CB . The reaction rates are

k1 = 50 h−1 for the main reaction, and k2 = 100 h−1,
k3 = 10 L/mol · h−1, for a first-order and second-order side
reaction respectively. The feed concentration of substrate
is CA0 = 10 mol/L. Initially, the CSTR is at steady-

state with V̇ /Vr = 180 h−1, CA = 6.1706 mol/L, and
CB = 1.1019 mol/L. Full state feedback is assumed and
no delays are taken into account. The control objective
is to drive CB along a given setpoint trajectory yref .
Ultimately, a discretized optimal control problem (OCP)
of the following form has to be solved in every control step:

min
uk

Np∑
k=1

(
yk − yref

k

)T
Qk

(
yk − yref

k

)
(2a)

+

Nu−1∑
k=0

∆uk
TRk∆uk

s.t. yk = f
(
yk−1, . . . ,yk−Ly ,uk−1, . . . ,uk−Lu

)
, (2b)

∀k = 1, . . . , Np,

uL � uk � uU, ∀k = 0, . . . , Nu − 1, (2c)

y0 = yinit. (2d)

The system equations (2b) model the plant output as an
explicit function of the previous Lu inputs and the previ-
ous Ly outputs of the system. The manipulated variable is

restricted by the following bounds: 10 ≤ V̇ /Vr ≤ 200.
Nu and Np denote the control and prediction horizons
respectively.

3. METHODOLOGY

In this section, the implementation of the NMPC con-
troller and the employed optimizer are described. Then,
the data generation and subsequent training of RNNs is
outlined. For clarity, we distinguish the output predicted
by the surrogate model, ŷ, from the actual plant output y.
Furthermore, it is now assumed that k is the fixed current
timestep and m denotes a sample within the prediction
horizon: m ∈ {1, . . . , Np}. An overline denotes the full se-
quence of controls or states within the prediction horizon,
e.g., uk = {uk+m} with m = {1, . . . , Np}.

3.1 NMPC Framework

Fig. 1 shows the developed global NMPC framework. At
each sample k, the optimizer computes an optimal control
sequence u?

k. The plant model (Equation (2b)) is repre-
sented by a RNN, predicting a sequence of future states
ŷk+1. The first control move of the optimal sequence, u?

k,
is applied to the controlled system in each sample of the
controller. Then, k is increased by 1.
The sequencing of the presented NMPC framework is im-
plemented in Python. The optimizer MAiNGO is written
in C++. The controlled system is simulated in Dymola with
default integrator settings.

3.2 Optimizer

MAiNGO performs deterministic global optimization via
a branch-and-bound method using McCormick relaxations
in a reduced-space (McCormick (1976); Mitsos et al.
(2009); Bongartz and Mitsos (2017)). This formulation

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5348

obj

-+

NMPC controller

yk+1

uk

uk
*

yk

yk

yk+1

plant
model

ref

,uk-1,...uk-Lu+1

yk,yk-1,...,yk-Ly+1

branch-and-bound

Fig. 1. Implemented NMPC framework.

inserts all equality constraints describing the RNN, see
Equation (3), into the objective function and propa-
gates the convex relaxations through these explicit func-
tions (Schweidtmann and Mitsos (2019)). This eliminates
intermediate state variables and equality constraints from
the optimization problem reducing its dimensionality sig-
nificantly. Only the discretized controls, assumed piece-
wise constant, remain as decision variables for the opti-
mizer. As shown in our previous work (e.g., Schweidtmann
and Mitsos (2019)), the reduced-space formulation can
significantly speed up global optimization with neural net-
works embedded. However, the propagation of relaxations
through such complex expressions can also lead to weak
relaxations.
In contrast, the full-space formulation is most commonly
used for global optimization. Here, all intermediate state
variables and equality constraints are visible to the branch-
and-bound solvers. The full-space formulation leads to
larger problem sizes but can potentially also lead to tighter
relaxations. In some studies, the most efficient problem
formulation is a hybrid between the two formulations de-
scribed above (e.g., Bongartz and Mitsos (2019)). There-
fore, we also consider a hybrid formulation by exposing a
state variable at timestep mv as a decision variable ξ to
the optimizer. This is achieved by adding ξ to the decision
variables vector and linking it with the output ŷmv via
the simple equality constraint, i.e., ŷmv = ξ. In a similar
approach, Diedam and Sager (2018) exploited additional
state variables for global optimal control.
As an additional advantage of MAiNGO, it can solve prob-
lems in parallel using a master/slave approach. We solve all
problems on an Intel Skylake Platinum 8160 with 40 cores
in parallel with 2.10 GHz each. The computation time in
Section 4 is nonetheless always given as the corresponding
time for a single core, i.e., summed computational time
over all cores.

3.3 Data Generation

We generate a data set of 60, 000 samples for the input
V̇ /Vr and output CB . The training data set is generated
by simulating the dynamic model of the CSTR with a
hybrid input sequence. This technique is frequently used
to obtain data of a dynamic system (e.g., Lightbody and
Irwin (1997)) and described in the following: The input

sequence is designed by superposition of a low-frequency
signal with high-frequency noise. The low-frequent signal
is constructed by appending points sampled from the input
domain of the plant, which is defined by the manipulated
variables and their bounds. The transitions between step
changes are slow enough to allow the plant to settle. Thus,
this signal explores the response behaviour with regard to
step changes within the full input domain of the plant. It is
overlaid by high-frequent noise, which has a much smaller
amplitude, exciting the dynamics of the plant within each
region. An exemplary hybrid input sequence is depicted
in Fig. 2. The neural networks trained on this data learn
the discrete input-output behavior of the system. Some
of their properties are thus set by the input sequence:
The discretization timestep of an ANN, trained to predict
future states of a system based on this data, is bounded
by the sampling time of the noise. Further, the system
behavior is learned with a piece-wise constant control
profile.

0 2 4 6 8 10 12 14 16

samples

Fig. 2. Exemplary excerpt from a hybrid input sequence:
Step changes occur at samples 6 and 12. Noise is
applied after each step change. See, e.g., samples 8–12.

3.4 Neural Network Training

The RNN used herein is characterized by feeding back its
own lagged outputs to the network input vector together
with external input values. It is thus able to learn the
system equations (2b). In particular, we use two lags of the
input and output each to learn the following time-explicit
mapping of the predicted output at timestep k+m, ŷk+m:

ŷk+m = f (yk+m−1,yk+m−2,uk+m−1,uk+m−2) (3)

This constitutes a nonlinear auto-regressive model with
external inputs (NARX). During the training of RNNs,
the past plant outputs yk+m−1 and yk+m−2 are known
at each sample and used as past feedback outputs. The
trained RNN is employed as the plant model for NMPC,
i.e., the system equation (2b) in Problem (2) is substituted
by Equation (3). The prediction sequence ŷk+1 is gener-
ated by successive evaluation of the trained RNN model.
The predicted output is propagated through the future
timesteps. Thus, for m > 2, the past RNN predictions
ŷk+m−1 and ŷk+m−2 are used in Equation (3) instead of
the past plant outputs. This introduces nested functions,
the depth of which increases with each additional timestep.
We further train an alternative surrogate model structure:
a neural multi-model Lawryńczuk and Tatjewski (2010).
Here, independent ANNs are trained for each sampled
timestep k of the prediction horizon. Thus, no predicted
outputs ŷ have to be reused for consecutive predictions.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5349

Instead, only the initial system state yk and all control
moves made during the prediction horizon are taken into
account as the network input. We expect that the latter
approach yields tighter relaxations for the predicted out-
put. The following mapping now results for ŷk+m:

ŷk+m = f (yk,uk+m−1,uk+m−2, . . . ,uk) (4)

Note that in contrast to Equation (3), the size of the input
vector of ANNs in Equation (4) grows with m.
All networks are trained using MATLAB. RNNs with one
or two hidden layers are used. We train the RNN with
different hidden layer sizes, given in Table 1. Also, we
test both, the tanh function and the identity function, as
output layer activation function. As training algorithms we
apply the Bayesian Regularization backpropagation (BR)
algorithm or the Levenberg-Marquardt (LM) algorithm
with early stopping. In total, 200 RNNs are trained on
the generated data set. 40 different configurations result
from combination of the parameters given in Table 1 and
each configuration is trained 5 times.

Table 1. Parameters used for the training of RNNs.

hidden layer size
{[15 15], [10 10], [7 7], [5 5]
[25], [15], [10], [7], [5] }

training algorithm {LM, BR}
output activation function {tanh, identity function}

For the ANNs of the neural multi-model, we always use two
hidden layers with 7 neurons each and the identity function
as output layer activation function. The ANNs are larger in
size than the smallest RNNs used to model the system. The
choice is made to accommodate the growing input vector
associated with longer prediction horizons in Equation (4).
Training is performed with the LM algorithm together
with early stopping. The same data set as for the RNNs is
used. All ANNs forming the neural multi-model exhibit a
high accuracy in the training data set.
The implementation of RNNs for MAiNGO that is used in
this work can be found in our tool MeLOn (Schweidtmann
et al. (2020)).

4. RESULTS & DISCUSSION

This section presents the results of our study. First, the
closed-loop performance of the controller is demonstrated.
Then, the computational performance of the proposed
framework is analyzed.

4.1 Controller Performance

Fig. 3 shows a closed-loop simulation of the implemented
controller. The sampling time is chosen as 7.2 s in accor-
dance with the work of Čižniar et al. (2008) and Wang
et al. (2017). The RNN used for this specific simulation
has one hidden layer with 5 neurons and identity function
in the output layer and was trained with the LM algorithm.
It is selected because, of all RNNs trained, it exhibits
the fastest solution times on an illustrative test problem,
i.e., a single step of the closed-loop simulation. It should
be noted, that all trained RNNs were able to accurately
predict the process dynamics with the mean squared error
of predictions varying between the order of 10−7 and 10−9.

0 50 100 150 200 250 300

0

40

80

120

160

200

Time [s]

V̇ V
r

[h−1
]

controls V̇
Vr

(a) Manipulated variable V̇
Vr

.

0 50 100 150 200 250 300
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Time [s]

C
B

[mol L

]
output CB predicted output ĈB

setpoint Cref
B

(b) Controlled variable CB : The crosses indicate the one-step-
ahead prediction of the RNN employed. The predictions made
by the RNN are accurate and the controlled variable follows the
setpoint.

Fig. 3. Closed-loop simulation of the controller.

Thus, they also lead to effectively the same controller
behaviour.
The controller is simulated over 50 timesteps and the
control sequence is computed by deterministic global opti-
mization in each timestep. As a convergence criterion, the
relative optimality gap εrel is set to 0.01. This threshold
is within the accuracy of the RNN and chosen conser-
vatively to obtain accurate optimality guarantees. The
prediction and control horizons are set to Nu = 2 and
Np = 5 respectively. As depicted in Fig. 3, the controller
is able to track the reference trajectory of the controlled
variable with a slight tracking error. Furthermore, Fig. 3
demonstrates that the one-step-ahead predictions of the
RNN are accurate and display a mean squared error in
the order of 10−8. This observation is in good agreement
with the accuracy measured during training of the RNNs.
The proposed controller computes the control sequence in
less than 0.421 CPU seconds for each sample, while Wang
et al. (2017) reported a maximum solution time of 3.452
CPU seconds for the isothermal van de Vusse case study
with identical horizons. It should be noted, that in most
but not all instances herein, the global optimum is also
found by IPOPT (Wächter and Biegler (2006)).

4.2 Scaling of Computational Performance

In this section, we study the computational cost of solving
a NMPC problem with different neural network models
and varying control and prediction horizons to global op-
timality. First, we examine the 200 RNNs trained with
the parameters in Table 1. As a test problem, we consider

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5350

the nested problem of the first timestep of the previ-
ously shown closed-loop controller simulation and solve
it globally. We increase the prediction horizon to 8 and
elevate the relative optimality gap for convergence to 0.1
for this particular study, because we observe that the
separation between the RNNs is clearer for a longer pre-
diction horizon. The 200 RNNs trained differ substantially
in computational performance. The mean solution time of
the problem accumulated over all 40 cores is 12, 408 CPU
seconds with a standard deviation of 7, 110 CPU seconds.
Yet, the best-performing RNN, described in the previous
paragraph, results in a solution time of 0.919 CPU seconds
on this problem. The large variation is caused by tightness
of the McCormick relaxations of the RNN output, which
are strongly influenced by the network weight distribution.
A detailed analysis is not within the scope of this contri-
bution. Note, that the best-performing RNN is one of the
smallest RNNs trained, as smaller networks tend to yield
more tractable global optimization problems.
RNN performance is compared with the neural multi-
model in the following. We use the same test problem
but allow varying control and prediction horizons. Fig. 4
depicts the resulting development of the computational
cost, comparing the RNN surrogate model and the neural
multi-model. An increase in horizon length is accompanied
by a higher solution time. For the control horizon this is
probably caused by an increase of decision variables. With
the exception of a control horizons of 1, the computational
cost for the neural multi-model scales more favorably with
an increasing prediction horizon than it does for the RNN.
The resulting difference in computational cost for the
two different models manifests itself clearly at about a
prediction horizon of 12. For the longest prediction horizon
considered, 20, the computational cost is reduced by two
orders of magnitude when using the neural multi-model
over the RNN. The higher computational effort that is
caused by a longer prediction horizon originates from the
weakened McCormick relaxations of the network output
for multi-step-ahead prediction. This behavior was also
observed for implied state bounds of nonlinear ODEs for
global dynamic optimization by Singer and Barton (2006).
Our results indicate that the neural multi-model suffers
less from this effect than the RNN. For short prediction
horizons, the neural multi-model exhibits slightly longer
computational times than the RNN in our study. We
believe this occurs because the networks used therein are
larger than the RNN.

4.3 Optimization with an Exposed State Variable

We further explore the exposition of a state variable to
the optimizer for the RNN model, that was discussed
as an alternative problem formulation in Section 3.2. As
a benchmark, we set Np = 15 and select control hori-
zons Nu = {1, 2, 3, 4, 5}. For each of those, we vary the
placement mv of the additional exposed variable between
Nu and Np − 1. We compare the resulting computational
times with the times previously recorded for reduced-space
formulation at Nu = {1, 2, 3, 4, 5} and Np = 15 in Figure 4.
Table 2 gives the maximum reduction of CPU time achiev-
able by this adjustment and the corresponding timestep
m∗

v, at which the exposed variable is placed. For con-
trol horizons bigger than 1 a significant speed-up of the
optimization is achieved by this technique. It is in the

2 4 6 8 10 12 14 16 18 20

10−1

100
101
102
103
104
105 NMM RNN

Np

C
P

U
ti

m
e

[s
] Nu = 1 Nu = 1

Nu = 3 Nu = 3
Nu = 5 Nu = 5

Fig. 4. Computational cost of solving a test problem for
increasing control and prediction horizons Nu and Np.
The CPU time is given for a single core. A comparison
between the RNN surrogate model (RNN) and the
neural mutli-model (NMM) is made.

same order of magnitude as that achieved by using the
neural multi-model. Our results favor exposing the state
variable at the 6-th timestep of the prediction horizon for
the considered problem.
The results of the subsection show that the exposition of
a state variable indeed reduces the CPU time required
to solve the examined problem. In future endeavors, the
technique has to be employed to problems with varying
prediction horizons. Further, multiple exposed state vari-
ables should be tested.

Table 2. Reduction in CPU time for a benchmark OCP
with Np = 15 by exposing a state variable to the solver

at timestep m∗
v.

Nu m∗
v CPU time reduction [−]

1 − −
2 6 60.3%
3 5 91.3%
4 6 96.7%
5 6 98.4%

5. CONCLUSION

We propose the first deterministic global NMPC frame-
work based on RNNs and the first one based on a neural
multi-model. The neural network models learn the discrete
dynamic input-output behavior of a plant from simulation
data. The controller is validated on an illustrative van de
Vusse CSTR case study. We apply global NMPC in real-
time.
A comparison of computational times for two network
structures shows that the neural multi-model leads to
a faster convergence of global optimization with long
prediction horizons than the RNN model. However, we
demonstrate that a similar reduction of computational
cost can be achieved for the RNN model by exposition
of a state variable to the optimizer. Both enhancements
facilitate global NMPC for bigger control and prediction
horizons than those previously used for the van de Vusse
CSTR in literature. If additional speed-up by MAiNGO’s
parallel computing facilities is taken into account, the real-
time capability threshold of the controller can be further

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5351

elevated. In the examined van de Vusse case study, 40 cores
allow to solve NMPC problems with a control horizon of
4 and a prediction horizon of 20 in the order of seconds.
In the future, a training algorithm for the construction
of RNNs and ANNs with tight McCormick relaxations
subject to a pre-defined level of accuracy is desired. Fi-
nally, the application of the controller to modern MPC
formulations like economic MPC and to case studies of
larger scale is desirable.

ACKNOWLEDGEMENTS

Funded by the Excellence Initiative of the German fed-
eral and state governments. The authors gratefully ac-
knowledge the financial support of the Kopernikus project
SynErgie by the Federal Ministry of Education and Re-
search (BMBF) and the project supervision by the project
management organization Projektträger Jülich. This work
was partially performed as part of the Helmholtz School
for Data Science in Life, Earth and Energy (HDS-LEE)
and received funding from the Helmholtz Association of
German Research Centres. The authors further thank Do-
minik Bongartz, Jaromi l Najman, and Susanne Sass for
their work on MAiNGO. Simulations were performed with
computing resources granted by RWTH Aachen University
under projects rwth0422 and thes0612. Finally, we thank
the anonymous reviewers for their valuable comments and
suggestions.

REFERENCES

Bongartz, D. and Mitsos, A. (2017). Deterministic global
optimization of process flowsheets in a reduced space
using mccormick relaxations. Journal of Global Opti-
mization, 69(4), 761–796.

Bongartz, D. and Mitsos, A. (2019). Deterministic global
flowsheet optimization: Between equation-oriented and
sequential-modular methods. AIChE Journal, 65(3),
1022–1034.

Bongartz, D., Najman, J., Sass, S., and Mitsos, A. (2018).
Maingo: Mccormick-based algorithm for mixed-integer
nonlinear global optimization.

Chachuat, B., Singer, A.B., and Barton, P.I. (2006).
Global methods for dynamic optimization and mixed-
integer dynamic optimization. Industrial & Engineering
Chemistry Research, 45(25), 8373–8392.

Čižniar, M., Fikar, M., and Latifi, M.A. (2008). Design
of constrained nonlinear model predictive control based
on global optimisation. In 18th European Symposium
on Computer Aided Process Engineering, volume 25 of
Computer Aided Chemical Engineering, 563–568.

Diedam, H. and Sager, S. (2018). Global optimal control
with the direct multiple shooting method. Optimal
Control Applications and Methods, 39(2), 449–470.

Kravaris, C. and Daoutidis, P. (1990). Nonlinear state
feedback control of second-order nonminimum-phase
nonlinear systems. Computers & Chemical Engineering,
14(4–5), 439–449.

 Lawryńczuk, M. (2013). Practical nonlinear predictive
control algorithms for neural wiener models. Journal
of Process Control, 23(5), 696–714.

 Lawryńczuk, M. and Tatjewski, P. (2010). Nonlinear
predictive control based on neural multi-models. Inter-

national Journal of Applied Mathematics and Computer
Science, 20(1), 7–21.

Lee, J.H., Shin, J., and Realff, M.J. (2018). Machine learn-
ing: Overview of the recent progresses and implications
for the process systems engineering field. Computers &
Chemical Engineering, 114, 111–121.

Lightbody, G. and Irwin, G.W. (1997). Nonlinear control
structures based on embedded neural system models.
IEEE transactions on neural networks, 8(3), 553–567.

Long, C.E., Polisetty, P.K., and Gatzke, E.P. (2006).
Nonlinear model predictive control using deterministic
global optimization. Journal of Process Control, 16(6),
635–643.

Long, C.E., Polisetty, P.K., and Gatzke, E.P. (2007). De-
terministic global optimization for nonlinear model pre-
dictive control of hybrid dynamic systems. International
Journal of Robust and Nonlinear Control, 17(13), 1232–
1250.

Lucia, S. and Karg, B. (2018). A deep learning-based
approach to robust nonlinear model predictive control.
IFAC-PapersOnLine, 51(20), 511–516.

McCormick, G.P. (1976). Computability of global solu-
tions to factorable nonconvex programs: Part i — convex
underestimating problems. Mathematical Programming,
10(1), 147–175.

Mitsos, A., Asprion, N., Floudas, C.A., Bortz, M., Baldea,
M., Bonvin, D., Caspari, A., and Schäfer, P. (2018).
Challenges in process optimization for new feedstocks
and energy sources. Computers & Chemical Engineer-
ing, 113, 209–221.

Mitsos, A., Chachuat, B., and Barton, P.I. (2009).
Mccormick-based relaxations of algorithms. SIAM Jour-
nal on Optimization, 20(2), 573–601.

Schweidtmann, A.M. and Mitsos, A. (2019). Determin-
istic global optimization with artificial neural networks
embedded. Journal of Optimization Theory and Appli-
cations, 180(3), 925–948.

Schweidtmann, A.M., Netze, L., and Mitsos, A. (2020).
Melon: Machine learning models for optimization.
https://git.rwth-aachen.de/avt.svt/public/
MeLOn/.

Singer, A.B. and Barton, P.I. (2006). Bounding the solu-
tions of parameter dependent nonlinear ordinary differ-
ential equations. SIAM Journal of Scientific Computing,
27(6), 2167– 2182.

Sriniwas, R.G. and Arkun, Y. (1997). A global solution
to the nonlinear model predictive control algorithms
using polynomial arx models. Computers & Chemical
Engineering, 21(4), 431–439.

Wächter, A. and Biegler, L.T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
Programming, 106(1), 25–57.

Wang, X., Mahalec, V., and Qian, F. (2017). Globally
optimal nonlinear model predictive control based on
multi-parametric disaggregation. Journal of Process
Control, 52, 1–13.

Werbos, P.J. (1988). Generalization of backpropagation
with application to a recurrent gas market model. Neu-
ral Networks, 1(4), 339–356.

Wu, Z., Tran, A., Rincon, D., and Christofides, P.D.
(2019). Machine learning–based predictive control of
nonlinear processes. part i: Theory. AIChE Journal.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5352

