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Abstract: This paper deals with the technological analysis, and optimal control of multi-
chamber suspensions for automotive applications. Multichamber suspensions are composed by a
variable damping shock absorber and an air-spring equipped with at least an auxiliary volume.
The auxiliary volume is connected to the air-spring main chamber through a two-state valve.
This configuration allows for a rapid change of both the damping and the stiffness of the
suspension. The first goal of this paper is to model and analyze the behaviour of the suspension,
the second goal is to investigate the potential benefit of this architecture from the comfort
point of view. To this aim, the paper proposes an optimal benchmark controller and tests it in
simulation showing comfort improvements up to 16% with respect to state-of-the-art solution
of a passive soft spring and semi-active damping control.
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1. INTRODUCTION

Electronically controllable suspensions are subject of in-
tensive research in both academy and industry. Most of
the available works focus on two technologies: active and
semi-active suspensions. Active suspensions, being capable
of actively controlling the suspension force, outperform
semi-active suspensions. They however require a complex
hardware and absorb high power. Currently, semi-active
suspensions, modulating the damping coefficient, offer a
more reasonable performance-cost trade-off and are the
preferred technology (see Savaresi et al. (2010) for an
overview).

Recent technological advances have lead to the develop-
ment of reactive suspensions. This class of suspensions is
characterized by the possibility of electronically modulat-
ing the stiffness coefficient. To the best of the authors’
knowledge, these suspensions are still under-explored in
the open scientific literature. Some works study the ben-
efit of reactive suspension in an ideal settings (Youn and
Hac (1995), Spelta et al. (2011)); while others focus on
designing mechanical structures to implement reactive sus-
pensions. For example, Anubi and Crane (2015) propose
an architecture composed of two variable dampers acting
in orthogonal directions, that is able to modify the sus-
pension equivalent stiffness.

This paper focuses on the multichamber suspension ar-
chitecture. This kind of suspension is equipped with a
variable damping shock absorber and an air-spring with
an auxiliary volume. The auxiliary volume is connected to
the air-spring main chamber through a two-state electronic
valve. By changing the state of the valve, one can rapidly
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modify the stiffness coefficient without introducing active
power. Multichamber suspensions seem to be the most
industrially promising technology as they inherit many
advantages of semi-active suspensions: low energy demand,
intrinsic failproof behaviour, and mechanical simplicity.

In particular, this paper quantitatively analyses the po-
tential of this type of suspension in improving vertical
ride comfort. To this aim, we first derive a control-oriented
model; we then use the model to design a full-knowledge
optimal control that modulates the air-spring valve to
minimize the vertical sprung mass accelerations. While not
immediately implementable, this control strategy serves
as a performance benchmark and allows the designer to
better quantify the benefit of this technology. Two other
control strategies help quantifies the effect of the specific
features of the multichamber architecture. For brevity’s
sake, the paper focuses on constant speed straight driving.

The paper is organized as follows. Section 2 provides
a mathematical model of the multichamber suspension.
Section 3 formulates and solves the optimization problem.
Eventually, Section 4 quantifies the performance with a
simulation study.

2. SYSTEM MODELLING
2.1 Multichamber suspension modelling

The multichamber suspension is composed by a dissipative
element and an elastic element. The dissipative element
is a standard two-state electro-hydraulic shock-absorber:
it can be set to minimum damping c¢pn, Or maximum
damping ¢pqz, with a switching bandwidth of 40 Hz. The
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Fig. 1: Schematic representation of the multichamber
suspension.

peculiarity of the multichamber suspension lies in its elas-
tic element: the elastic force is generated by an air-spring
with an additional volume. The main chamber is connected
to an auxiliary chamber through a two-state electronic
valve. The state of the valve determines the amount of
volume available for the air compression/expansion. Figure
1 shows a schematic representation of the multichamber
suspension.

The suspension force F(¢) is the sum of the damping force
F.(t), and the elastic force Fy(t), generated by the air-
spring.

The dissipative element is modelled as:
¢(t) = —Be(t) + Bein(t) ()
Fo(t) = e(t)(26(t) — Z:(1))
where 8 is the bandwidth of the damping dynamics, c¢(t)
and ¢;,(t) are the actual and the requested damping
coefficients of the shock-absorber, z,(¢t) and z.(t) are the
position variation (with respect to the static condition) of
the car body and the tire respectively, then (2,(t) — 2:(¢))
is the suspension stroke rate.

The elastic force is generated by the air-spring. Assuming
an adiabatic transformation, the equivalent (i.e linearised
around a working condition (p,V)) stiffness of a classic
(single-chamber) air spring is:

oF npA?
- = @)

z %4

where A is the piston area, n is the adiabatic coefficient,
p and V are the gas pressure and volume. From (2) it
can be seen that, by changing the air-spring volume, the
local stiffness of the spring can be varied; in particular, the
larger the volume, the lower the stiffness. The multicham-
ber suspension exploits this idea, by changing the available
volume connecting/isolating the auxiliary chamber to the
main one by means of a controllable valve. However, the
multichamber behaviour cannot be described by the sole
equation (2), as it is affected by complex dynamics, requir-
ing a more detailed description.

k-

In the closed valve configuration, the pressure dynamics of
the two chambers is:

pm(t) = -

pauz (t) =0

npm () A(Z(t) — Z(t))
Vin(t) 3)

where pp,(t) and Vp,(t) refer to pressure and volume of
the main chamber, pg..(t) is the pressure of the auxiliary
chamber that, thanks to the adiabatic assumption, does
not change. Notice that the volume of the main chamber
depends on the piston position, as in

Vin(t) = Vino + A(2(t) — 2:(1)), (4)
where V0 is the main chamber volume in the static
position.

In the open valve configuration, the system dynamics
become

n(t) = (D) A(Z(t) — Z(1))
Vi () + Vaua (5)
Pauz (t) = pm(t).
In both configurations, the spring force is
Fy (t) = (pm(t) - patm)A~ (6)
where pu¢m is the atmospheric pressure.

Figure 2 shows the air-spring mechanical characteristic for
the two constant configurations (open and closed valve).
The force Fy generated at (z5(t) —2¢(t)) = 0 is called static
force, it is generated by the initial pressure of the system
Pmo, and it is the force that supports the vehicle static
load.

FO = (me 7patm)A~ (7)
From figure, it can be clearly seen that the open valve
configuration yields a lower stiffness than the closed valve
one.
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Fig. 2: Air-spring force-stroke characteristic.

The above models describe the air-spring force in either
of two configurations. When a valve switch occurs special
care has to be taken to model its effects. To better
understand how the switching dynamics affect the air-
spring characteristic, let’s consider a blocked piston, closed
valve and pressure in the main chamber different from the
pressure in the auxiliary one. If the valve is opened, the
pressure difference generates a mass exchange between the
two chambers, and, after a transient, the system will reach
a new steady state condition. Under the assumptions:

Assumption 1. Infinitely fast fluid dynamics transients.
Assumption 2. Negligible valve pressure drop.
Assumption 3. Instantaneous valve switch

and by defining ¢ the valve switching instant, = and ¢+
respectively the left and right time limit to ¢, the two
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chambers will instantaneously reach the same equilibrium
pressure

pm(tT) = p*I(T7)
Pauz (LT+) = peq(f—)
where the equilibrium pressure p©?(t) is
Pm (t)Vm (t) + Paus (t>Vauaj
€a(t) = . 9
p*I(t) Vot Vors 9)
After the valve switching, defining the valve state s(t) as:

_J1 open valve
s(t) = { 0 closed valve

(®)

(10)

the two pressures follow the dynamic represented by
pn(DAGE) — 4()
Vin(t) + s(6) Vaus
_ MPaus () A(Z(t) — (1))
Vin(t) + Vaua

pm(t) =
(11)

s(t)

pauw (t) =

In practice, the system is modelled as a discontinuous
system. The valve opening leads to a system resetting,
the equilibrium pressure is the new initial condition of
both chambers pressure, and then the two pressures fol-
low the dynamics derived in case of open valve. Since
the two pressures start from the same initial condition
Pm0 = Pauzo = P°1(t7), equation (11) guarantees that the
pressure of the main and auxiliary chamber will be the
same until a valve closing occurs.

When the valve is closed the auxiliary chamber is isolated,
and its pressure remains constant. The pressure of the
main chamber changes its dynamics since the total volume
is reduced to the volume of the main chamber only. This
behaviour is already well represented by equation (11),
without the necessity of a system resetting.

It is important to remark that, every time a valve switching
occurs, the system starts from a new initial condition.
More precisely:

Pmo = p*(7)

if s(t)=0As(")=1 — < Pauzo =p°4(t")
co=c(t™) (12)
Pmo = pm(f_)

if S(t__) =1A S(t_+) =0 — § Pauz0 = paur(fi)
co=c(t™)

2.2 Air-spring behaviour analysis

Section 2.1 showed that the multichamber architecture
can change the equivalent stiffness of the suspension.
However the behaviour is far from the ideal behaviour of a
spring with a controllable stiffness. A spring with an ideal
controllable stiffness coefficient can be represented as:

Fi(t) = k(t)(2(t) — 2¢(t)) + Fpre (13)
where k(t) € {k1, k2} is the controllable stiffness, and F,;.
is the force due to the suspension preload.

The main difference is in the immediate effect of a switch.
Considering the ideal model, every stiffness switch gener-
ates a force discontinuity that depends only on the suspen-
sion stroke (zp(t) — 2¢(t)). The air-spring with additional
volume generates a force discontinuity (kick force) only in

case of a valve opening, but not in case of a valve closing.
Moreover, the force change due to a valve opening depends
on the chambers pressure, which are influenced by the
system evolution; differently, considering the ideal model,
the force discontinuity depends only on the suspension
stroke, regardless the previous system evolution.

Another important difference is in the suspension static
position. The ideal model generates the static force at
zp(t) — z(t) = 0 regardless of the value of the controllable
stiffness; as a consequence, the suspension static position
never changes. On the other hand, the air-spring with an
additional volume may change its static position. Consider
the system at steady state and the air-spring valve open,
in this condition, the air-spring force balances the sprung
mass load. If the piston moves from the equilibrium
position and then a valve switch takes place, the air-spring
force characteristic changes.

Figure 3 exemplifies these considerations: starting from
the static position z,(t) — 2:(t) = 0 with open valve, the
suspension is compressed, the evolution is represented by
the line with circle marker. At (z;(f) —2¢()) = —20 mm the
valve is closed, after the switch the evolution is represented
by the line with square marker.
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Fig. 3: Air-spring force characteristic and example of
evolution.

The static force is generated in a different piston position:
(zp — 2z¢) = —7 mm, it means that the piston equilibrium
position is changed.

Based on the above considerations, it is clear that the
multichamber suspension cannot be modelled as an ideal
variable stiffness element.

2.8 Quarter car model

This work focuses on the comfort improvement that a
multichamber suspension can bring to a vehicle during
straight driving at constant speed. The quarter car model
accurately describes the vertical dynamics in these condi-
tions. Figure 4 recalls the quarter car model:

Mz(t) = 6F.(t)

mi () = —0F.(t) — ka(a(t) — m(r). Y
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M and m are the quarter car body mass (sprung mass)
and the unsprung mass respectively. z,(t) represents the
road profile disturbance. k; is the tire stiffness. 6 Fs(¢) is the
multichamber suspension dynamic force, and it is defined
as:

OF(t) = Fy(t) — Fo (15)
where F(t) is the force generated by the suspension, and
Fy, as in (6) is the static force. Overall, the dynamics of

Multichmber
Suspension i

Fig. 4: Quarter car model representation

a quarter car equipped with a multichamber suspension is
described by a 7" order system with state variables

2(t) = [26(t) 2(t) 2e(t) Z(t) Pm(t) Paua(t) c(t)]” (16)
and equations
MEy(t) = — c(t) (2(t) — 2(t)) + APm(t) — Patm)
— My
mz(t) = + c(t) (2 (t) — 2(t) — APm(t) — Patm)+
+ Mg — ke (ze(t) — 2(t))

. _ npm()AG(E) — Z4(1)) (17)
() = = e SOV
paux (t) _ NPauz (t)A(Zb(t) — 2t (t)) S(t)

Vm(t) + Vaua:
¢(t) = — Be(t) + Pein(t).
The discontinuous nature of the model is accounted for

by the state reinitialization every time the control valve
switches:
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One of the inputs of the quarter-car model is the road
profile. In this paper, we model the road following the
standard ISO8608 and adopting the analytical formula-
tion, proposed by Agostinacchio et al. (2014).
N
zr(x) = Z VAn 281073 (%) cos (27 iAn x + ¢;) (19)
1=0
where z is the spatial variable from 0 to L = 10 km;
An = 1/L; nymaz = 1/B; B is the sampling space interval;
N = L/B; ng = 0.1 cycles/m; ¢; € [0,2n] is a random

phase; k is a natural number that depends on the road
profile class, for a class C-D, we used k = 5.

3. COMFORT ORIENTED OPTIMIZATION

We assess the potential of the multichamber architecture
to improve ride comfort by setting an optimization prob-
lem. Since the objective is that to define the maximum
performance that the architecture can achieve, we adopt
the following assumptions:

Assumption 4. The requested damping c¢;,(t) is defined
by the mixed SH-ADD control algorithm (see Savaresi
and Spelta (2007)) that has been shown to approach the
filtering limit of a semi-active suspension.

Assumption 5. The performance is quantified by the
sprung mass vertical acceleration mean square (see (ISO

2631-1:1997):
g1 / o 52 (t)dt
= — z
T/, b

Assumption 6. The road disturbance z.(t) is known. In
other words, a perfect preview of the road profile is
assumed to be available: the current valve state can be
chosen based on the knowledge of the future disturbance.

(20)

Assumption 7. The control strategy sampling period is T;..

Assumption 8. A receding horizon approach is adopted.
The optimization is carried out in a time window of
duration T, = T,Q, where Q € N. Then the optimal
sequence is applied for the first time step T,., and the
optimization problem is solved again in a time window
T, shifted ahead of a time step T;..

Assumption 7 and Assumption 8 entail that @ is the
number of optimization variables in a time window: the
optimization result is the valve state in each time step: s,
where 7 = 1,2, ..., Q.

We specialize the above problem in three versions consider-
ing different switching limitations. The first optimization
problem is called Unconstrained Optimization; it allows
for an unconditional valve switching. In practice, there
are not constraints that forbid a valve opening or closing.
The second optimization problem, termed Opening Con-
strained Optimization, introduces a constraint for the valve
opening: a valve opening can occurs only if the difference
between the pressure in the main chamber and the pressure
in the auxiliary chamber is lower than a threshold AP. The
third optimization problem, the Switching Constrained
Optimization, further constraints the valve switching to
switch only if the suspension stroke is lower than Az
The switching constraints are designed to avoid the non-
idealities described in Section 2.2 and represent possible
strategies that could be implemented to minimize pressure
kicks and static force drifts.

8.1 Unconstrained Optimization

The Unconstrained Optimization is formalized as

1 to+Tw
min T—/ Z2(t)dt
St w Jtg (21)
=1, Q

ey

subject to (17).
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Since the optimization variable is a two state discrete
variable (s, € {0,1}), in each time window the number
N of possible valve state sequences s(t) is N = 29. This
makes a receding horizon exhaustive search viable, yielding
the following approach:

(i) to = 0.
i) If tg > Ty, then exit.
(iii) Test all the 2% sequences of s(t), simulating equations
(17) starting from zo = x(to), for ¢ € [to, to + Tw]-
) Choose the sequence s, (t) that generates the mini-

mum cost function J.

(v) Apply the optimal sequence s, () for ¢ € [to, to+Tr].
(vi) Set tg =to + T
(vii) Return to (ii).

where Ty is the simulation horizon. The applied sequence
is the solution of the optimization problem. The uncon-
strained optimization represents the best achievable per-
formance considering the above assumptions.

3.2 Opening Constrained Optimization

The Opening Constrained Optimization is obtained start-
ing from the unconstrained case described in (21), and in-
troducing a constraint on the valve opening: if the absolute
value of the pressure difference is greater than threshold
Ap at t = t, then the valve cannot be opened at that time
instant.

This constraint has been introduced for two different
reasons. The first one is related to the model uncertainty;
the multichamber model is derived under Assumptions 1
and 2, in practice the mass flow through the air-spring
valve is not modelled. The higher the pressure difference
is, the larger the mass flow through the valve, then the
more significant is the neglected phenomenon. Limiting the
valve opening only when the pressure difference is lower
than a threshold, means to limit the region in which the
model is not accurate. The second reason is related to the
generation of kick forces; when the valve is opened, the
higher the pressure difference is, the higher the kick force
generated.

The algorithm used for the solution of this optimiza-
tion problem is a simple evolution of the algorithm im-
plemented for the unconstrained case: in the exhaustive
search only the sequences that does not violate the con-
straint are explored and evaluated.

3.8 Switching Constrained Optimization

In this case, the valve can switch only if the absolute
value of the stroke is smaller than a threshold Az. The
constraint on the valve switching has been introduced
in order to preserve the static position. Consider the
ideal case in which the valve is switched always in the
static position z,(t) — z:(t) = 0, this switching strategy
guarantees that the static position does not change, since
the static position is the intersection of the two passive
stiffness characteristics (see Figure 2). Moreover, switching
in the same position guarantees that the pressure in the
two chambers is the same thus avoiding kick forces. It is a
stricter constraint than the one on the valve opening only.

Model Parameters Symbol Value
Sprung mass M [kg] 785
Unsprung mass m [kg] 50
Tire stiffness ki [N/mm)] 250

Cmaz [Ns/mm] 4.3
Cmaz [Ns/mm] 0.9

Maximum damping
Minimum damping

Damping bandwidth B [rad/s] 2m40
Main chamber initial pressure  pmo [bar] 8.05
Aux. chamber initial pressure  pquzo [bar] 8.05
Main chamber initial volume Vimo [1] 2.354
Aux. chamber volume Vauz (1] 1.085
Piston area A [m?] 0.011
Adiabatic coefficient n[] 1.36

Table 1: Numerical values of parameters used in simulation

The algorithm used for the solution of this optimization
problem is the same used for the Opening Constrained
Optimization Problem: the optimal sequence is chosen
among the sequences that do not violate the constraint.

4. OPTIMIZATION RESULTS

This section analyses the results of the three algorithms
and compares them against the best comfort-oriented
policy: open air-spring valve (yielding the softest passive
configuration) and mixed SH-ADD damping control (state
of the art solution for the comfort oriented semi-active
damping control). Tab. 1 summarizes the model param-
eters. In all the following simulations, the car is driven
straight at a constant speed of V,, = 20 m/s.

The optimization is solved with T,, = 300 ms (which
corresponds to a 6 m preview at V; = 20 m/s). This
window is long enough to endow the control system
with the proper amount of preview to yield close to
optimal results. The role of Time Step which depends on
the actuator bandwidth, is studied through a sensitivity
analysis.

We quantify the performance of the architecture by defin-
ing a relative improvement index

¥
Jimp = T vet (22)
Jref
where: J* is the comfort index obtained simulating the
stiffness control sequence; J,.y is the comfort index ob-
tained with the softest spring configuration (open valve).
By definition, if J;m, < 0, the control sequence improves

the comfort with respect to the passive configuration.

Figure b presents the results of the Unconstrained Opti-
mization as a function of Time Step T,.. From figure, one
concludes that:

e the multichamber suspension algorithm outperforms
the current state-of-the-art for all T;,.

e The relationship between J;,,, and 7T’ is monotonic:
the lower the Time Step is, the greater the improve-
ment with respect to the passive configuration. The
improvement obtained with a slow valve (T, = 100
ms) is —7.1%, while with a fast valve (7, = 20 ms) the
improvement is —16.7%. The case of T, = 30 ms has
been used for the solution of the two constrained op-
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Fig. 5: Unconstrained optimization problem result

timization problems, it represents the switching time
of the valve used in standard semi-active suspensions.

We now introduce the switching constraints. Figure 6 plots
the sensitivity of the Opening Constrained Optimization
to the threshold AP and the performance of the Opening
Constrained Optimization with Az = 5 mm. The figure
shows that,

e the stricter the constraint is, the worse the results are.

e Up to AP = 1.5 bar, the performance of the con-
strained approach are not too far from the bench-
mark. This means that the unconstrained optimiza-
tion already tries to avoid switching when there is a
large pressure difference.

e Even in case of AP = 0.5 bar there is a significant
improvement: —9.7%.

e The Opening Constrained Optimization yields an im-
provement of less than 2%. The Az = 5 mm threshold
on the position guarantees that there are no valve
opening with a pressure difference greater than 0.5

bar.
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< I Unconstrained
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I Ap=0.75 bar
125 [ Ap=0.5 bar
I Az=5mm
-15

Fig. 6: Summary of the optimization results

Remark. As previously discussed, the passive air-spring
benchmark is the open valve one. This configuration, while
being the best passive solution for the steady driving
comfort, cannot be employed in practice; indeed, during
dynamic manoeuvrers, i.e. braking and turning, it would
yield large pitch and roll movements. It is thus of in-
terest to compare the proposed approach also with the
performance of the closed-valve air-spring, whose stiffness
value is more suitable to be employed in a realistic passive
spring scenario. The comfort index obtained in this case

is Jimp = +48.13%; such result allows to stress even more
the potential benefits of using the controlled multichamber
suspension in a real application.

5. CONCLUSIONS

This paper discusses the modelling and comfort oriented
performance benchmarking of a multichamber suspension.
Designed so to allow a fast modulation of the spring
stiffness, multichamber suspensions are hardly modelled
as ideal reactive suspensions: the pressure dynamics in
the chambers call for special care both in modelling and
control.

We propose to consider these features by designing a full
knowledge optimal control. The optimal strategy confirms
that while the potential of improvements is considerable
(up to 16%), the effects the suspension state (and in par-
ticular the pressure in the chamber) has on the switching
dynamics cannot be neglected. In fact, by imposing the
switch to happen only when the stroke is close to the
nominal value only leads to a 2% improvement. Accounting
for the chamber pressure is paramount to achieve good
performance.

Future works will focus on the design of a real-time closed
loop control strategy for the multichamber suspension.
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