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Abstract: The problem of vehicle autonomous driving currently represents a topic of great
interest from both theoretical and practical points of view. Among the challenging tasks to
be addressed within any autonomous driving framework, one of the most important ones is
localization from data collected in real time. Within such framework, this paper is specifically
focused on the localization problem for rail vehicles, such as railway and tramway vehicles. Our
specific interest is on investigating solutions to the localization problem which are (as much as
possible) independent on ground sensor infrastructure and are therefore suitable to be employed
on any rail vehicle, irrespective of the ground equipment of the specific tracks. To this end, we
refer to a multi-sensor framework and, specifically, to a sensor fusion scheme which collects data
from different sensors installed on the vehicle (namely, an Inertial Measurement Unit and a
Global Positioning System) and carries out a Kalman-based filtering recursion which relies on
a simplified vehicle model. With the aim of identifying a solution for the localization problem
providing desirable performance, we carry out a comparative simulation analysis concerning
different Kalman-based data fusion strategies (in particular, the Extended Kalman Filter and
the Unscented Kalman Filter are considered).

Keywords: Localization, Modeling and simulation of transportation systems, Navigation,
Kalman filtering, Tramway vehicles, Railway vehicles

1. INTRODUCTION

The problem of vehicle autonomous driving currently rep-
resents a topic of great interest from both theoretical and
practical points of view. The increasing attention towards
this subject is witnessed by the large number of different
applications and studies that have been carried out, in-
volving many research fields such as, for example, signal
processing, information fusion, control, and optimization
(see for example Meng et al. [2017], Hansen et al. [2016,
2017], Liu et al. [2010], Paden et al. [2016], Li and Leung
[2003], Allotta et al. [2002], Malvezzi et al. [2014], Allotta
et al. [2014], Lim et al. [2018], Lu et al. [2019]).

Among the challenging tasks to be addressed within any
autonomous driving framework, one of the most important
ones is localization from data collected in real time.

With this respect, many research works have highlighted
possibilities and drawbacks associated to solutions based
on different sensor types. Specifically, the Global Position-
ing System (GPS) is very commonly used and can provide

? This work has been partially supported by Regione Toscana - POR
FSE 2014-2020, Grant UNIFI FSE2017 - through the project “Tram
Navigation by means of IMU and GNSS” (TramNav).

satisfactory performance in some operating conditions;
however, the reliability of a GPS-based localization system
is highly affected by different satellites coming in and out
of view, or by interference caused by obstructions, such
as the presence of tunnels. Another possible solution is
based on inertial navigation systems, which can provide
information about position, velocity, and attitude, but
such measurements are usually affected by drifts. Solutions
based on different sensors, such as, for example, radio
detection and ranging (radar), light detection and ranging
(LiDAR), cameras, as well as on a fusion of on-board and
off-board sensor data, have been proposed; however, the
cost associated with such sensors (also in terms of instal-
lation and maintenance) has to be taken into account.
An interesting comparative survey, highlighting potentials
and drawbacks of a number of different technologies, is
proposed in Kuutti et al. [2018].

This brief overview highlights the importance of solutions
to the localization problem able to combine information
provided by multiple different sensors: in fact, such so-
lutions have the potential of improving the performance
achieved by each single technology, while overcoming its
drawbacks.
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Our paper is specifically focused on the localization prob-
lem for rail vehicles, such as railway and tramway vehicles.
Even if railway and tramway applications are very different
from each other under several aspects (to name a few,
maximum reachable velocity, possible presence or not of
cars/pedestrians, etc.), they involve a vehicle whose move-
ment is constrained on a rail, which inherently reduces the
number of degrees of freedom. In such a context, from
wheel odometry it is possible to get a measure of the
distance travelled along the track with respect to a specific
(starting) point; therefore, this strategy naturally accounts
for such a reduced-dimensional space. On the other hand,
it has to be mentioned that wheel odometry can be quite
an invasive solution (a certain number of sensors are usu-
ally installed, each one on a different wheelset), and that
the information that is able to provide is reliable only in
absence of sliding during acceleration and braking (see for
example Malvezzi et al. [2014], Allotta et al. [2012]). Due
to such issues, the framework proposed in our paper does
not rely on wheel odometry.

Further, our specific interest is on investigating solutions
to the localization problem which are as much as possible
independent on ground sensor infrastructure, i.e., we aim
at obtaining a navigation system which does not rely
on balises/tags and is therefore suitable to be employed
on any rail vehicle irrespective of the ground equipment
of the specific tracks. This would also reduce installa-
tion and maintenance costs. Localization strategies which
heavily rely on ground sensor infrastructure have been
developed and are currently used for example in subway
applications (see for example Zhou et al. [2020], Chen
et al. [2013], Temple et al. [2017]); however, in the context
of railway and tramway positioning, alternative solutions
employing different technologies would be preferable. In
view of the considerations reported above, we will refer
to a multi-sensor framework and, specifically, to a sensor
fusion scheme which collects data from different sensors
installed on the vehicle and carries out a Kalman-based
filtering recursion relying on a simplified vehicle model.
Some research work has recently addressed a Kalman-
based framework for rail applications (see for example
Veillard et al. [2016], Faruqi et al. [2018], Lim et al. [2018]).
However, defining a solution which ensures simplicity of
implementation (with specific reference to the real-time
application of interest) and satisfactory performance while
requiring nor high-cost on-board sensors neither consis-
tent and invasive ground sensor infrastructure, is still an
open and challenging problem. In the proposed feasibility
analysis, we drastically assume that no ground sensors are
available, and that measurements are provided by an In-
ertial Measurement Unit (IMU) and a GPS. The adopted
sensor fusion framework exploits the rail constraint within
the filtering recursion through a simple model expressing
the movement of the vehicle along the rail. With the aim of
identifying a solution for the localization problem provid-
ing desirable performance, we carry out a comparative sim-
ulation analysis concerning different Kalman-based strate-
gies; in particular, the Extended Kalman Filter (EKF) and
the Unscented Kalman Filter (UKF) will be considered.

The paper is organized as follows. In Section 2, the overall
architecture of an autonomous driving rail vehicle system
is presented; further, the models to be used within the

Fig. 1. Autonomous driving for rail vehicles: general archi-
tecture

filtering recursion are derived. Section 3 briefly recalls the
estimation algorithms that are considered in this paper
within the sensor fusion framework. A comparative simu-
lation analysis is presented in Section 4, while concluding
remarks are provided in Section 5.

2. PROBLEM SETTING

2.1 Rail-vehicle autonomous driving: general architecture

Vehicle autonomous driving requires to simultaneously ad-
dress different tasks. The general aim is to make the driv-
ing system able to interact with the environment within
which it operates with guaranteed performance and safety
levels, i.e., collect measurements through sensors, extract
useful information, and appropriately react through suit-
able control actions (a schematic representation is given
in Fig. 1). With this respect, the first issue that needs to
be addressed is to localize the vehicle at each time with
sufficiently high accuracy; then, suitable control strategies
can be applied in order to realize vehicle autonomous
driving in accordance with prescribed position and speed
constraints. The focus of this paper is on the Kalman
filtering and data fusion task; specifically, within our in-
vestigation, the aim is to use measurements in order to
provide estimates of specific signals of interest. As it will
be clarified in Section 4, in this paper we propose results
obtained through a simulation analysis. Specifically, the
rail vehicle moving along the track is simulated in Simpack
Rail (Multi-Body Simulation SIMPACK MBS Software,
Dassault Systèmes) and data are collected emulating IMU
and GPS acquisitions to be used within the considered
filtering algorithms.

2.2 System and sensor models

The specific objective of this paper is to investigate pos-
sible solutions to the localization problem of rail vehicles
making use of Kalman-based filtering strategies (such as
the EKF and the UKF). The analysis will be concerned
on sensor fusion strategies able to use data provided by
different sensors to derive, at each time instant, the vehicle
location along the track with high accuracy level. In this
performance assessment analysis, the model to be used
within the estimation procedure will be derived under
the assumption that the slope variations of the track are
negligible so that the vehicle motion can be well described
through a two-dimensional framework. We point out that
this simplifying assumption is only considered for model
derivation, whereas our feasibility analysis is also directed
to more general situations (see Section 4).

We consider an IMU and a GPS, rigidly fixed on the
vehicle, acquiring measurements with sampling inter-
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vals Ts,IMU and Ts,GPS , respectively. We assume that
Ts,GPS = K Ts,IMU , with K a positive integer, and
that measurement acquisitions from the GPS occur syn-
chronously with those from the IMU; this assumption is
made for simplicity, but could be removed by accounting
for time stamps and aligning data to a common time
frame before processing them. We assume that all the mea-
surements are provided with respect to the same inertial
coordinate system; as we restrict the analysis to a two-
dimensional frame, we will denote such coordinate system
by Oxy (see Fig. 2). This assumption simplifies the overall
framework without any loss of generality in the sense that,
if some measurements are provided with respect to a dif-
ferent coordinate system, then it is sufficient to introduce
appropriate rotation matrices in order to express all data
with respect to the same frame of reference.

Specifically, we use the noisy measurements provided by
IMU and GPS as follows. Let t = 0, 1, · · · , denote dis-
crete time instants, i.e., t = κTs, with κ a non-negative
integer, and Ts = Ts,IMU . The IMU, located in the point
pIMU (t) = [pIMU,x(t), pIMU,y(t)]> (rigidly connected to
the vehicle), provides angular velocity and linear acceler-
ation measurements; further, we assume that an estimate
of the orientation of the IMU with respect to the inertial
frame Oxy is also available. Therefore, in the considered
two-dimensional framework, the following measurements
are available:

• the angular velocity

ωmeas
IMU (t) = ωIMU (t) + dωIMU (t) (1)

around x and y axes, which we can consider as
the sum of the corresponding noiseless measure-
ment ωIMU (t) = [ωIMU,x(t), ωIMU,y(t)]> and a noise
dωIMU (t) = [dωIMU,x(t), dωIMU,y(t)]>;
• the linear acceleration

ameas
IMU (t) = aIMU (t) + daIMU (t) (2)

along x and y axes, which we can consider as the sum
of the noiseless aIMU (t) = [aIMU,x(t), aIMU,y(t)]>

and a noise daIMU (t) = [daIMU,x(t), daIMU,y(t)]>;
• the orientation

ϕmeas
IMU (t) = ϕIMU (t) + dϕIMU (t) (3)

with respect to the inertial frame Oxy, which we
can consider as the sum of the noiseless ϕIMU (t) =
[ϕIMU,x(t), ϕIMU,y(t)]> and a noise dϕIMU (t) =
[dϕIMU,x(t), dϕIMU,y(t)]>.

From the GPS measurements we can obtain a noisy
evaluation of the position of the GPS receiver

pmeas
GPS(t) = pGPS(t) + dGPS(t) (4)

in the Oxy frame, which we can consider as the sum of the
noiseless GPS position pGPS(t) = [pGPS,x(t), pGPS,y(t)]>

(rigidly connected to the vehicle) and a noise dGPS(t) =
[dGPS,x(t), dGPS,y(t)]>.

Remark 1. As mentioned above, the GPS collects mea-
surements at acquisition time instants which are syn-
chronous with those of the IMU, but with sampling time
Ts,GPS = K Ts,IMU = K Ts. Nevertheless, we can use the
same time frame for both IMU and GPS measurements
(and thus the dependence on the same discrete time vari-
able t) with the understanding that GPS measurements
are available one out of K IMU acquisition instants.

Fig. 2. Simplified framework considered to derive the
system and sensor models.

The vehicle, moving along the track, is modelled in discrete
time as a nonlinear system

ξ(t+ 1) = f(ξ(t), u(t), d(t)) , (5)

where ξ(t) is the system state (to be estimated), u(t) is
the control input, and d(t) represents the process noise.
Specifically, we refer to the simplified framework of Fig.
2, which shows a single wagon moving along the curve
γ(s(t)) representing the track and parameterized by the
arc-length s(t) travelled with respect to a starting point
s(0). We denote by A(t) = [xA(t), yA(t)]> and B(t) =
[xB(t), yB(t)]> the contact points between the wagon
and the track (for simplicity we consider a single front
contact point and a single rear contact point), which are
equivalently expressed in terms of arc-length as sA(t) and
sB(t), respectively. We further consider a point C(t) =
[xC(t), yC(t)]> belonging to the wagon and representing
the origin of the body frame. The orientation of such frame
with respect to the inertial frame Oxy is given by the angle
ϕC(t).

In order to localize the wagon along the track, we are
interested in estimating the time evolution of sA(t) and
sB(t). From kinematic relations, in the absence of noise
we can easily obtain

sA(t+ 1) = sA(t) + Ts τ(sA(t))> [vIMU (t)

+ ΩIMU (t) ∧R(ϕIMU (t))AIMU ] (6)

sB(t+ 1) = sB(t) + Ts τ(sB)> {vIMU (t)

+ΩIMU (t) ∧R(ϕIMU (t))AIMU

−` [−sin(ϕC(t)), cos(ϕC(t))]>ωC(t)
}
(7)

where ∧ denotes cross product and

• τ(sA(t)) is the versor in the xy plane tangent to γ(s)
in sA(t);

• vIMU (t) = [vIMU,x(t), vIMU,y(t)]> is the velocity
experienced by the IMU (i.e., the velocity of the point
pIMU (t); we recall that pIMU (t) is rigidly connected
to the vehicle);

• ΩIMU (t) = ωIMU (t) k, where k is the versor orthog-
onal to the xy plane, pointing in the direction of the
axis forming a right-handed frame with x and y;
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• R(ϕIMU (t)) is the rotation matrix expressing the
orientation of the IMU frame of reference with respect
to the inertial coordinate system Oxy;
• AIMU is the position of point A expressed in the IMU

frame of reference (it can be assumed to be constant
over time as the wagon can be considered a rigid
body);
• τ(sB(t)) is the versor in the xy plane tangent to γ(s)

in sB(t);
• ` is the length of vector (A−B), where A and B are

defined in the Oxy coordinate system as A=̇(A−O)
and B=̇(B −O), respectively;
• ωC(t) is the angular velocity expressed in the body

frame of reference.

Note however that the noiseless ωIMU (t) and ϕIMU (t)
are actually unavailable, as the IMU can provide only the
corresponding noisy ωmeas

IMU (t) and ϕmeas
IMU (t). Note further

that the velocity vIMU (t) can be computed by integrating
the available ameas

IMU (t) in (2); however, such an operation
introduces non-negligible numerical errors, i.e.,

vintIMU (t+ 1) = vintIMU (t) + Ts a
meas
IMU (t) + dintIMU (t) . (8)

As for the GPS, we can express the position of the receiver
pGPS(t) in (4) with respect to both sA(t) and sB(t) as
follows:

pGPS(t) = γ(sA(t))−R(ϕGPS(t))AGPS (9)

pGPS(t) = γ(sB(t))−R(ϕGPS(t))BGPS , (10)

where:

• R(ϕGPS(t)) is the rotation matrix expressing the
orientation of the GPS frame of reference with respect
to the inertial coordinate system Oxy;
• AGPS is the position of point A expressed in the GPS

frame of reference (it can be assumed to be constant);
• BGPS is the position of point B expressed in the GPS

frame of reference (it can be assumed to be constant).

Note that, in the absence of noise, (9) and (10) return the
same result for pGPS(t).

Remark 2. Without loss of generality, we can assume that
the IMU, GPS, and body frames of reference have the
same orientation with respect to the inertial coordinate
systemOxy (this simplifying assumption could be removed
by introducing appropriate rotation matrices, for example
when it is necessary to take into account orientation mis-
alignments occurring during sensor installation). Accord-
ingly, in the above expressions we have ϕC(t) = ϕGPS(t) =
ϕIMU (t) and ωC(t) = ωIMU (t).

Summing up, by defining

ξ(t) =

 ξ1(t)
ξ2(t)
ξ3(t)
ξ4(t)

 =

 sA(t)
sB(t)

vIMU,x(t)
vIMU,y(t)

 (11)

u=

 u1(t)
u2(t)
u3(t)
u4(t)

 =

 ϕIMU (t)
ωIMU (t)
aIMU,x(t)
aIMU,y(t)

 (12)

z(t) = pmeas
GPS(t) (13)

we obtain the following expressions for the system model
ξ(t+1) = f(ξ(t), u(t), d(t)) and the measurement equation
z(t) = h(ξ(t), u(t), dz(t)):

ξ1(t+ 1) = ξ1(t) + Ts τ(ξ1(t))>
{[

ξ3(t)
ξ4(t)

]
+u2(t) k ∧R(u1(t))AIMU}+ d1(t) (14)

ξ2(t+ 1) = ξ2(t) + Ts τ(ξ2(t))>
{[

ξ3(t)
ξ4(t)

]
+u2(t) k ∧R(u1(t))AIMU

−`
[
−sin(u1(t))
cos(u1(t))

]
u2(t)

}
+ d2(t) (15)

ξ3(t+ 1) = ξ3(t) + Tsu3(t) + d3(t) (16)

ξ4(t+ 1) = ξ4(t) + Tsu4(t) + d4(t) (17)

z(t) =
1

2

[
(γ(ξ1(t))−R(u1(t))AGPS)

+ (γ(ξ2(t))−R(u1(t))BGPS)

]
+ dz(t) . (18)

With respect to the model form (5), the process distur-
bance d(t) appears as an additive term, i.e.,

ξ(t+ 1) = f(ξ(t), u(t)) + d(t) ,

and is defined as d(t) = [d1(t), d2(t), d3(t), d4(t)]> and
includes the effects of the noises and numerical errors
which have been highlighted in (1) - (3) and (8).

Note that the measurement equation (18) is obtained
from (4),(9) and (10) by averaging the information on
pGPS(t) provided by the estimate of both sA(t) and
sB(t). This operation has the objective of providing a
better evaluation of the unavailable noiseless pGPS(t). The
measurement noise dz(t) appears as an additive term, i.e.,

z(t) = h(ξ(t), u(t)) + dz(t) ,

and includes the effect of the uncertainties on pGPS(t) and
those expressed by dGPS(t) in (4).

In order to employ the derived system and measurement
models within a Kalman-based estimation algorithm, we
will assume that d(t) ∼ N (0, Q(t)) is a zero-mean white
Gaussian noise with covariance Q(t); similarly, we will as-
sume that dz(t) ∼ N (0, R(t)) a zero-mean white Gaussian
noise with covariance R(t).

3. ESTIMATION ALGORITHMS

The aim of this section is to recall the basic ideas of
estimation algorithms which represent candidate strategies
for the localization problem of interest. In particular,
we will consider the EKF and the UKF. Then, we will
employ the system and measurement models derived in
Section 2 within such techniques, and will evaluate and
compare in simulation the performance obtained by the
two algorithms.

Interesting references for the estimation algorithms that
will be briefly recalled in the following can be found for
example in Bar-Shalom et al. [2001], Julier and Uhlmann
[1997, 2004].
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3.1 Extended Kalman Filter

The Extended Kalman Filter is quite a commonly used
estimation algorithm, especially due to the simplicity of its
implementation. The basic idea behind EKF is to linearize,
at each iteration, the nonlinear system and measurement
functions through Taylor expansion around the current
estimate by computing the Jacobians of the nonlinear
model function f(·) and measurement function h(·) as
follows:

A(t) =
∂f(·)
∂ξ

∣∣∣∣
ξ̂(t|t),u(t)

, C(t) =
∂h(·)
∂ξ

∣∣∣∣
ξ̂(t|t−1),u(t)

(19)

This approximations allows one to actually resort to a lin-
ear model (for both system and measurement equations),
to which standard Kalman filtering can be applied. As
well known, the performance achievable by EKF is highly
dependent on the discrepancy between the linearized and
the actual nonlinear models; in fact, linearization errors
are not accounted for within the evaluation of estimate un-
certainty (i.e., within the computation of covariance matri-
ces). With this respect, it is also worth mentioning that the
initial estimate error affects the algorithm performance;
this issue must be considered within the application of
interest, with particular reference to the requirement of
reducing, as much as possible, ground sensor infrastructure
(specifically, appropriately placed tags/balises could be
necessary in order to improve the algorithm outcome).

3.2 Unscented Kalman Filter

The Unscented Kalman Filter aims at avoiding any ap-
proximation of the nonlinear system and measurement
model equations; to this aim, the Unscented Transform
is employed. To briefly recall the basic concepts of the
Unscented Transform, we consider a generic state η and
a generic nonlinear function g(·) such that λ = g(η). The
idea underlining the Unscented Transform is to determin-
istically select a certain number nσ of samples ηs, s =
1, . . . , nσ, in the state space so that the overall set describes
the most important features of the probability distribution
of η. In the case of Gaussian distribution, nσ = 2n + 1,
where n is the state dimension. A weight ws is associated
to each sample ηs; the pair (ηs, ws) is referred to as sigma
point. Each sample ηs is propagated through g(·) to pro-
duce “transformed” samples λs = g(ηs), s = 1, . . . , 2n+ 1,
from which it is possible to compute

λ =

2n+1∑
s=1

wsλs (20)

Pλ =

2n+1∑
s=1

ws(λs − λ)(λs − λ)> . (21)

Then, the distribution of λ is approximated by a Gaussian
with mean λ and covariance Pλ. With this respect, we
recall that a Gaussian distribution is exhaustively known
once its mean and covariance are determined. By em-
ploying the Unscented Transform, UKF generates sigma
points at each iteration and propagates them through the
nonlinear system and measurement functions f(·) and h(·),

p
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Fig. 3. Rail trajectory considered in the simulation sce-
nario.

respectively. Therefore, UKF does not require to compute
the Jacobian of such nonlinear functions; further, as the
number of sigma points depends linearly on the state
dimension, the computational burden is quite limited, thus
making the UKF algorithm suitable to being adopted for
real-time estimation tasks.

4. COMPARATIVE PERFORMANCE EVALUATION

In this section, we address the feasibility analysis of the
considered positioning framework when the EKF and UKF
algorithms briefly recalled in Section 3, relying on the
models described in Section 2, are employed for data
fusion. The analysis is carried out through a comparative
test in simulation, which is performed in two steps. First,
a three-dimensional multibody model of a rail vehicle
moving along the track represented in Fig. 3 is simulated in
Simpack Rail; this simulation provides noiseless IMU and
GPS measurements ωIMU , aIMU , ϕIMU (with sampling
time Ts = Ts,IMU = 10−2 s), and pGPS (with sampling
time Ts,GPS = 10Ts = 10−1 s), which are then corrupted
by zero-mean random noises drawn from Gaussian distri-
butions to obtain ωmeas

IMU , ameas
IMU , ϕmeas

IMU , pmeas
GPS . With this

respect, suitable values for the noise variances are chosen
so that such data reasonably emulate real measurements
provided by average-performance sensors. Then, the EKF
and UKF algorithms, implemented on the basis of the
system and measurement models (14)-(18), are run and
their performance is evaluated and compared. To this aim,
let ξ(t) represent the ground truth, i.e., the vector com-
posed of the “true” positions sA(t), sB(t) and velocities
vIMU,x(t), vIMU,y(t) provided by the three-dimensional
multibody model of the rail vehicle simulated in Simpack
Rail; note that such variables are actually unknown to
the algorithms, and are used herein only for performance
assessment purpose. We define the estimation error as

e(t) =

 e1(t)
e2(t)
e3(t)
e4(t)

 := ξ(t)−ξ(t) =

 sA(t)− sA(t)
sB(t)− sB(t)

vIMU,x(t)− vIMU,x(t)
vIMU,y(t)− vIMU,y(t)


(22)

In the first simulation setup, we assume that the maximum
slope along the whole track is 4×10−3. A comparison of the
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Fig. 4. First test. Comparison between the performances
achieved by using UKF and EKF within the consid-
ered positioning architecture (from top to bottom:
time evolution of |e1(t)|, |e2(t)|, |e3(t)| and |e4(t)|).

performance achieved when UKF and EKF, respectively,
are used, is reported in Fig. 4 in terms of the absolute
value of the estimation error e(t) obtained for the po-
sitions sA(t) and sB(t) and the velocities vIMU,x(t) and
vIMU,y(t). We can note that using UKF within the data
fusion strategy provides in general better performance,
especially for what concerns the error on positions sA(t)
and sB(t); in fact, even if the model used within the filters
(and described in Section 2) is simple, we note that the
nonlinearities in equations (14) and (15) can hardly be
accurately approximated by Jacobian computation (i.e.,
by first-order approximation). In the second simulation
test, we assume that the slope in the last 500m of the
track in Fig. 3 is 3 × 10−2, and show in Fig. 5 a compar-
ison of the performance achieved when UKF and EKF,
respectively, are used. The results are comparable to those
obtained in the previous test, thus suggesting that the
2D simple model of the rail vehicle derived in Section
2.2 from kinematic relations can be successfully employed
within a Kalman-based data fusion even in more general
situations. We point out that further tests, not reported
here, have been carried out, and that all of them have
underlined better accuracy as well as better robustness
properties of UKF than EKF with respect to variations
in disturbances/noises and algorithm initialization (initial
guess and associated initial uncertainty). This preliminary
analysis suggests that UKF is a suitable estimation algo-
rithm to be employed within positioning frameworks for
tramway and railway applications.

5. CONCLUSION

In this work, the localization problem for rail vehicles, such
as tramway and railway vehicles, has been addressed. Our
interest has been focused on investigating solutions which

Fig. 5. Second test. Comparison between the performances
achieved by using UKF and EKF within the consid-
ered positioning architecture (from top to bottom:
time evolution of |e1(t)|, |e2(t)|, |e3(t)| and |e4(t)|).

are (as much as possible) independent on ground sensor
infrastructure; the considered framework relies on a sensor
fusion scheme which collects data from an IMU and a GPS
installed on the vehicle and carries out a Kalman-based
filtering recursion based on a simplified vehicle model.
Specifically, the EKF and the UKF algorithms have been
considered, and their performance have been compared
through a simulation analysis involving a multibody model
of a rail vehicle. With this respect, the simulation analysis
has underlined that the UKF algorithm is a promising data
fusion strategy to be used within the considered localiza-
tion system. Future investigations will be concerned on
analyzing the performance achievable on real-case scenar-
ios, as well as on including different sensors within the
positioning framework.
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