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Abstract: The interconnection and damping assignment passivity-based control (IDA-PBC)
is well-known for regulating the behavior of nonlinear systems. In underactuated mechanical
systems (UMSs), its application requires the satisfaction of matching conditions, which in many
cases demands to solve partial differential equations (PDEs). Only recently, the IDA-PBC
method has been extended to UMSs in implicit representation, where the system dynamics
are described by a set of differential-algebraic equations. In some system classes, this implicit
model allows to circumvent the PDE obstacle and to construct an output-feedback law. This
paper discusses the design and real-system implementation of the total energy shaping IDA-
PBC with an optimal local performance for a portal crane system in implicit port-Hamiltonian
representation. The implicit controller is compared with the simplified (explicit) IDA-PBC,
introduced by Xue and Zhiyong (2017), which also shapes the total energy and avoids PDEs.
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1. INTRODUCTION

The purpose of the interconnection and damping assign-
ment passivity-based control (IDA-PBC) technique is to
transform a nonlinear system into a closed-loop that takes
a port-Hamiltonian (pH) structure with a desired target
Hamiltonian. Its application requires to satisfy the so-
called matching conditions. In underactuated mechanical
systems (UMSs) the IDA-PBC method was first character-
ized using the explicit pH structure (Ortega et al., 2002),
where shaping the energy usually requires the solution
of two partial differential equations (PDEs): one for the
kinetic energy and one for the potential energy. However,
in general, solving these PDEs is not an easy task.

The IDA-PBC has already been tested on portal crane
systems. For instance, Banavar et al. (2006) apply a
potential energy-shaping IDA-PBC, while Singhal et al.
(2006) employ the total energy-shaping IDA-PBC, with
constant target inertia matrix. Later, on the basis of the
PID-PBC, Donaire et al. (2015) present a method to shape
the energy of a class of mechanical systems without solving
PDEs and apply their results on a portal crane. Not long
ago, Xue and Zhiyong (2017) implement in such a system
the simplified IDA-PBC of Ryalat and Laila (2016) which
reduces the potential energy PDE to a simple integral
by selecting an adequate target inertia matrix. Above
research uses the (simplified) planar model except for
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(Donaire et al., 2015) where the model is in 3-D. Moreover,
all of these approaches use an explicit formulation.

The difference between an explicit and an implicit model
relies on the considerations of physical constraints. Thus,
complex systems can be modeled as simpler interconnected
subsystems, where interconnections (constraints) are de-
scribed by algebraic equations, forming a set of differential-
algebraic equations (DAEs). In this context, Castaños
et al. (2013) provide a complete geometric relation between
the implicit and explicit port-Hamiltonian representations,
concluding that the controller design or implementation
is independent of its representation (implicit or explicit).
Later, Macchelli (2014) extends the passivity-based con-
trol (PBC) theory applied to implicit systems on Dirac
structures. Taking a closer look, Cieza and Reger (2019)
extend the total energy shaping IDA-PBC technique to
implicit UMSs. Their work gives a general method which
is not restricted to holonomic systems and does not require
a positive definite target inertia matrix. Besides, for some
system classes, they can reduce the (energy shaping) PDEs
to algebraic equations and devise an output-feedback law.

Until now, the Implicit IDA-PBC technique has remained
in a theoretical and simulation framework with no physical
implementation. Thus, the main contribution of this work
is to work out the results of the implicit control algorithm
on a constant rope-length portal crane system and com-
pare these results with that of the simplified (explicit)
IDA-PBC from Xue and Zhiyong (2017).

The paper is organized as follows. In Section 2, we briefly
recall the implicit and explicit IDA-PBC approaches. Sec-
tion 3 is devoted to analyzing the explicit planar (2-D)
and implicit 3-D models of a portal crane. In Section 4, we
apply both methods to the aforesaid system and present a
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local linear performance assignment for the implicit con-
troller. Section 5 presents the experimental results. Finally,
we draw our conclusions in Section 6.

2. IMPLICIT AND EXPLICIT IDA-PBC FOR UMS

Let us briefly summarize the general formulation of im-
plicit IDA-PBC for UMSs introduced by Cieza and Reger
(2019). Consider the implicit pH system 1

[
ṙ
ρ̇

]
=

[
0 Inr
−Inr 0

][
∂>r H
∂>ρ H

]
+

[
0
b(r)

]
λ+

[
0
G(r)

]
u, (1a)

b>(r)∂>ρ H = 0, (1b)

H(r, ρ) =
1

2
ρ>M(r)−1ρ+ V(r)

and the desired closed-loop implicit pH system

[
ṙ
ρ̇

]
=

[
0 J (r)

−J>(r) −W(r, ρ)

][
∂>r Hd
∂>ρ Hd

]
+

[
0

bd(r)

]
λd, (2a)

b>d (r)∂>ρ Hd = 0, (2b)

Hd(r, ρ) =
1

2
ρ>Md(r)

−1ρ+ Vd(r), bd(r) = J>(r)b(r),

where r ∈ Rnr and ρ ∈ Rnr are implicit coordinates
(position and its canonical momenta, respectively), u ∈
Rnu is the input, G : Rnr → Rnr×nu is the implicit
input matrix, M,Md : Rnr → Rnr×nr are the (nominal
and desired) nonsingular inertia matrices with M � 0,
H,Hd : Rnr ×Rnr → R are the Hamiltonians representing
(nominal and desired) energy functions, (1b) and (2b) are
kinematic constraints, and implicit variables λ, λd ∈ Rnλ
are related to the constraints forces b(r)λ, bd(r)λd with
b, bd : Rnr → Rnr×nλ . If (1) is holonomic (integrable
constraints), then there exist a function φ : Rnr → Rnλ
such that φ(r) = 0 (zero level set) and ∂>r φ(r) = b(r).

Definition 1. Let S(r) := [G(r) b(r)]. System (1) with
holonomic constraints is underactuated if rankS < nr;
else it is fully actuated (Castaños and Gromov, 2016).

To avoid cumbersome notation we will omit the arguments
of functions that have been previously defined.

Proposition 2. (Well posedness). Consider the implicit sys-
tem (1). Then for all r ∈ X := {r ∈ Rnr | rank ∆ = nλ},
∆ = b>M−1 b, the constrained state-space set Xc :=
{(r, ρ) ∈ X × Rnr | b> ∂>ρ H = 0, φ(r) = 0} is a regular

manifold embedded 2 in Rnr ×Rnr , and (1) is a system of
DAEs with unique solution for λ and differential index 1.

Let us define ∆d := b>d M−1d bd. Similarly, λd has a unique
solution for all r ∈ Xd := {r ∈ Rnr | rank ∆d = nλ}, which
is obtained from the hidden constraint 0 = d

dt

(
b>d ∂

>
ρ Hd

)
.

Proposition 3. (Implicit IDA-PBC). The implicit feedback
u = uI(r, ρ) with

uI(r, ρ) = S†
(
∂>r H−J>∂>r Hd−W∂>ρ Hd+J>bλd

)
(3)

transforms the system (1) into (2) for all r ∈ X ∩ Xd,
whenever the implicit matching conditions

1 We write ∂h
∂x

= ∂xh or ( ∂h
∂x

)> = ∂>x h for any vector or scalar
function h(x). In denotes the identity matrix of size n.
2 The constrained state space is the space of variables (r, ρ), while
the configuration space (or manifold) is the space of coordinates r.

S⊥
(
∂>r
(
ρ>M−1ρ

)
−J>∂>r

(
ρ>M−1d ρ

)
−W1M−1d ρ

)
= 0, (4a)

S⊥
(
∂>r V − J>∂>r Vd

)
= 0, (4b)

S⊥MdM−1b = 0, (4c)

are satisfied. 3 Here we denote S† = [ Inu 0 ](S>S)
−1
S>,

J =M−1Md, W(r, ρ) := 1
2W1(r, ρ) + S Ku(r)S>, W1 ∈

Rnr×nr with W1 linear in ρ, and Ku ∈ R(nu+nλ)×(nu+nλ).
Define XI = (

{
r ∈ Xd | b⊥MM−1d Mb>⊥ � 0

}
×Rnr )∩Xc.

The closed-loop system (2) has a stable equilibrium in
(r?, 0) ∈ Xa =

{
x ∈ XI | S⊥ ∂>r V = 0

}
if 4

r∗ = arg min
r∈XI

Vd (5a)

is an isolated minimum,

0 = ρ>M−1d W1M−1d ρ
∣∣
XI , (5b)

and sym(Ku) � 0. Asymptotic stability in r? is guaranteed

if yI = sym(Ku)
1
2 S>M−1d ρ is a detectable output of (2).

Proposition 4. (Algebraic Implicit IDA-PBC). Let system
(1) be holonomic and assume it possesses constant M,
∂>r V, and polynomial G, φ. Feedback (3) stabilizes the
closed-loop at (r?, 0) if there are

C1. a vector µ? ∈ Rnλ ,
C2. a symmetric matrix A ∈ R(nr−nλ)×(nr−nλ), A � 0,
C3. a matrix C ∈ R(nr−nλ)×nλ ,
C4. a non-singular matrix D ∈ Rnλ×nλ , and
C5. a function S̄ : Rnr → R(nu+nλ)×nψ , nψ ≤ nu + nλ,

such that (4c) and

S⊥
(
∂>r V +MZcD b?>µ?

)
= 0, (6a)

∂r(S Si)M−1Md −MdM−1∂>r (S Si) = 0, (6b)

Z⊥Ab
?
⊥ (∂r(b µ

?)|r=r?) b?>⊥ AZ>⊥ � 0 (6c)

hold with Si the ith column of S, b? := b(r?), r̃ := r? − r,

Md=MB?
[
A+ CDC>CD
DC> D

]
B?>M, B?>=

[
b?⊥
b?>

]
,

Vd=
1

2
ψ>Kψψ + r̃>b?µ?, ψ=

∫ r

r?
S̄>i (s)S>(s)M−1d M ds,

Kψ = K>ψ � −Z†
(
Za−Za Z>⊥ (Z⊥ Za Z>⊥ )−1Z⊥ Za

)
Z†>,

Zc = b?>⊥ C + b?, Z = [Inr−nλ −C]B?−1M−1 S(r?)S(r?)
is full rank, Za = Ab?⊥ (∂r(b µ

?)|r=r?) b?>⊥ A, Z† =

(Z>Z)−1 Z>, W1 fulfills W>1
[
S>⊥ M−1d ρ

]
= 0, and

sym(Ku) � 0. Moreover, if yI = sym(Ku)
1
2S>M−1d ρ is a

detectable output of (2), then r? is asymptotically stable.

Proposition 5. (Output-feedback). Let the conditions of
Prop. 4 be fulfilled with SS̄ = G andW1 = 0. If in addition
b⊥MdM−1b = 0, then the new control law u = uN (r, ξ),

uN (r, ξ) = S†
(
∂>r H−J>∂>r Vd − GK̄u(ξ + ψ(r))

)
, (7a)

ξ̇ = −Λξ(r)K̄u(ξ + ψ(r)), (7b)

with K̄u = K̄>u , sym(Λξ) � 0, ξ ∈ Rnu , Λξ, K̄u ∈ Rnu×nu ,
and Hd as in Prop. 4, stabilizes the system at (r?, 0).
The closed-loop is asymptotically stable at r? if yN =
G>M−1d ρ is a detectable output of (2).

3 We write the subscript ⊥ for any matrix F to represent its full
rank left annihilator, i.e., F⊥F = 0.
4 In what follows, sym(A) := A+A>, for any square matrix A.
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In Propositions 2–5 we have summarized the IDA-PBC
methodology for implicit pH systems with holonomic con-
straints. Besides, if system (1) and (2) have no constraints,
namely, (1b) and (2b), we can simply rewrite them as

[
q̇
ṗ

]
=

[
0 Inq
−Inq 0

] [
∂>q H

∂>p H

]
+

[
0

G(q)

]
u, and (8)

[
q̇
ṗ

]
=

[
0 J
−J> −W

][
∂>q Hd

∂>p Hd

]
, (9)

respectively. Thus, the model is defined by means of
the (explicit) generalized coordinates q and momenta
p, where H(q, p) = 1

2 p
>M(q)−1 p + V (q), Hd(q, p) =

1
2 p
>Md(q)

−1 p + Vd(q) and M, Md � 0. The following
proposition recalls the standard IDA-PBC for UMSs as
presented in (Donaire et al., 2016).

Proposition 6. (IDA-PBC). Feedback u = uE(q, p) with

uE(q, p)=(G>G)−1G>
(
∂>q H−J>∂>q Hd−W∂>p Hd

)
(10)

transforms system (8) into the desired system (9) whenever
the kinetic and potential matching conditions

G⊥
(
∂>q
(
p>M−1p

)
−J>∂>q

(
p>M−1d p

)
−W1∂

>
p Hd

)
=0, (11a)

G⊥
(
∂>q V −J>∂>q Vd

)
= 0 (11b)

are satisfied with J = M−1Md and W = 1
2W1(q, p) +

GKvG
>, for W1 linear in p. The closed loop system is

stable in (q?, 0) with q? ∈ {q | G⊥∂>q V = 0} if q? =
arg minVd is an isolated minimum, Md is positive definite,
sym(Kv) � 0, and 5

∂pHdW1∂
>
p Hd = 0. (11c)

Moreover if yE := G>∂>p Hd is a detectable output of (9),
then the equilibrium is asymptotically stable.

Observe that the matching conditions (11) and control law
(10) of the conventional (explicit) IDA-PBC for an UMS
are a specific case (S = G, q = r, p = ρ, Md = Md,
J = J , W = W , etc.) of the implicit IDA-PBC presented
in Prop. 3.

3. PORTAL CRANE MODEL

This work focuses on the portal crane system shown in
Fig. 1a, where the support mechanism (frame) is fastened
to the floor. On the top, a set of girders and belts move the
bridge of mass mb and the trolley of mass mt along the
x-axis. The trolley, which is mounted under the bridge,
is restricted to move in the y-direction. A basket hangs
from a winch or rope drum, and thus it can move in the
z-direction varying its length l. A load can be attached to
the basket in various ways and then transported with it.
In the following, we refer to the basket and the additional
weight as the payload of mass mp. The assumptions below
are considered throughout this work.

A1. The rope mass is negligible.
A2. The payload is a point mass.
A3. The rope length l > 0 is fixed.
A4. The payload air friction is negligible.

5 Skew-symmetry of W1 is a sufficient condition for (11c).
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Fig. 1. Physical configuration of the portal crane system.

3.1 3-D Implicit Model

The schematic view of the portal crane is given in
Fig. 1b, where we describe the trolley position with 6

rt := vec(xt, yt), the payload relative position with rp :=
vec(xp, yp, zp), and the trolley external forces (actuators)
on the x- and y-axis with ν := vec(νx, νy). The selected
coordinates lead to the holonomic constraint

φ := 1
2 (x2p + y2p + z2p − l2) = 0. (12)

To measure real positions, the system is equipped with
encoders in xt, yt, l, α and β, where the geometric relation
shown in Fig. 1c–1d results in

xp = l sinβ, yp = l cosβ sinα, zp = −l cosβ cosα. (13)

Following assumptions A1–A2, we may now calculate the
kinetic and potential energy as

T̄ = mt+mb
2 ẋ2t +mt

2 ẏ
2
t +

mp
2

(
(ẋt+ẋp)

2+(ẏt+ẏp)
2+ż2p

)
,

V̄ = mp gr zp,

where gr is the gravity constant. From assumptions A3–A4
and coordinates r := vec(rp, rt), the Lagrange equations
with external forces Ḡu and constrains (12) gives
[M̄1 M̄2

M̄>2 M̄3

][
r̈p

r̈t

]
+

[
0
Rtṙt

]
+

[
∂>rp V̄
∂>rt V̄

]
=

[
∂>rpφ

∂>rtφ

]
λ̄+

[
03×2
I2

]
ν,

where M̄2 = mp

[
I2

01×2

]
, M̄1 = mpI3, M̄3 = diag(mt +

mb+mp,mt+mp), and Rt are the bridge-trolley frictions.
By using partial feedback linearization (PFL) (Spong,
1994) with u = r̈t (trolley acceleration), it follows that[
r̈p
r̈t

]
=

[
m−1p ∂>rp V̄

0

]
+

[
m−1p ∂>rpφ

0

]
λ̄+

[
−m−1p M̄2

I2

]
u, (14a)

ν = f1(r, ṙ, λ̄) + f2(r)u, (14b)

for some functions f1 and f2. Now, we can rewrite (14a)
as (1) with H(r, ρ) := 1

2ρ
>ρ+ gr zp, b=vec(xp, yp, zp, 0, 0),

G>=
[−1 0 0 1 0

0−1 0 0 1

]
and λ= 1

mp
λ̄. Note that M = I5 which

implies ṙ = ρ.

6 We write vec(x1, x2, . . . , xn) =
[
x>1 x>2 . . . x>n

]>
for any scalars

or column vectors x1, x2,. . . , xn.
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Our laboratory setup includes a PID + Feedforward trolley
velocity loop as shown in Fig. 2. This inner loop with an
additional integrator before ν yields a system which can be
approximated as (14a). Consequently, the integrator with
PID + Feedforward is also an approximation of (14b), and
it avoids the necessity to estimate the system masses (e.g.
trolley, payload, bridge), inertias, and frictions.

∫
PID

v

Feedforward

−

cẋ

q̇

cẏ,

u

.
IDA-PBC
controller

CRANE + PFL

�q

q̇

q

q

Plant
+

Fig. 2. IDA-PBC block diagram

3.2 Planar Explicit Model

To model the real crane of Fig. 1 in 2-D, the following
assumption is required.

A5. The angles β and α are sufficiently small s.t. the axes
(x and y) are approximately decoupled.

The dynamics of this reduced system with PFL can be
found in (Xue and Zhiyong, 2017) and is given by two
systems of the form of (8), where H(q, p) = 1

2p
>p−ḡ cos q1,

G(q) = vec(−a cos q1, 1), a = 1/l, and ḡ = gr/l. Besides,
the first system has q = vec(q1, q2) = vec(β, xt) and u =
ẍt, while the second one has q = vec(q1, q2) = vec(α, yt)
and u = ÿt. Similar to the 3-D model with PFL we have
M = I2 and q̇ = p.

4. IDA-PBC IN THE PORTAL CRANE

4.1 State Feedback Implicit IDA-PBC

We now use Prop. 3 to synthesize controller uI . Since our
desired position is r? = vec(0, 0,−l, x?c , y?c ), we see that
b? = vec(0, 0,−l, 0, 0). Selecting C = 04×1,

S⊥ =

[
−zp 0 xp −zp 0

0 −zp yp 0 −zp

]
and b?⊥ = l

[
I2 02×1 02
02 02×1 I2

]
,

we obtain Zc = b?. From (4c) and (6a) for arbitrary xp, yp
and zp, it follows that µ? = gr

Dl3 and

A =




a1 e1 D − a1 −e1
e1 a2 −e1 D − a2

D − a1 −e1 d1 e2
−e1 D − a2 e2 d2


 ,

where ai, di, ei and D are arbitrary constants s.t. A � 0. In
the next step we choose SS̄ = G, which clearly fulfills (6b)
because G is constant. Then, we calculate Z and pick
Z⊥ = [ 1 0 1 0

0 1 0 1 ] obtaining that (6c) is satisfied for any
D > 0. In the following, to simplify analysis, we set ei = 0
and W1 = 05×5. At this point, we are able to calculate

ψ =



−D(x?t − xt) + xp(D − a1 + d1)

l2γ1

−D(y?t − yt) + yp(D − a2 + d2)

l2γ2


.

where γi = diai − D2 + 2Dai − a2i . Finally, we select
Kψ = diag(Kψ1,Kψ2), Kψi > 0, Ku = diag(Ku1,Ku2, 0),
Kui > 0, and A � 0. Now, all elements of the control
law (3) are on hand.

4.2 Output Feedback Implicit IDA-PBC

If additionally, ai = D, then b⊥MdM−1b = 0 holds and
Prop. 5 can be used selecting Kψi > 0, sym(Λξ) � 0 and
K̄u = diag

(
K̄u1, K̄u2

)
, K̄ui > 0.

4.3 Explicit IDA-PBC Control Law

Xue and Zhiyong (2017) applied the simplified IDA-PBC
introduced by Ryalat and Laila (2016) on the portal
crane model of Section 3.2. However, their feedback law
has the velocity q̇2 in the denominator, and thus, it is
not well-defined for all (q, p) ∈ E = {(q, p) | q̇2 = 0}.
Additional inspection shows that the kinetic matching
condition is also not satisfied for all (q, p) ∈ E . To avoid
the aforementioned problems, we redesign the controller
searching for new Md and Vd.

Let G⊥ = [1 a cos q1], W1 =
[
0 −s
s 0

]
, s = s1(q1)η1 +

s2(q1)η2, Md =
[
m1(q1) m2(q1)
m2(q1) m3

]
, and η := ∂>p Hd =

vec(η1, η2), then (11a) can be reduced to

K1η
>∂q1(Md)η +2G⊥

[
0 −s
s 0

]
η = 0, (15)

where K1 = m1(q1) + am2(q1) cos q1. Equation (15) has a
solution for arbitrary η1 and η2 if and only if s2(q1) = 0,

K1 ∂q1(m1) + 2a s1(q1) cos q1 = 0, and (16a)

K1 ∂q1(m2)− s1(q1) = 0. (16b)

We can simplify the potential energy PDE (11b) to a
simple integral by selecting m2(q1) = −am3 cos q1. Now
we can solve (16), obtaining s1 = K1 am3 sin(q1) and

m1 = a2m3 cos(q1)
2

+ c1 for some constant c1. Therefore,

Md =

[
a2m3 cos(q1)

2
+ c1 −am3 cos q1

−am3 cos q1 m3

]
, (17)

Vd = − ḡ cos q1
c1

+ Υ(q2), (18)

with Υ being an arbitrary function. Let Υ := 1/2Kp (q2−
q?2)2, then it is straightforward to proof that Md � 0 and
q? = (0, q?2) is a strict local minimum of Vd if Kp > 0,
c1 > 0, and m3 > 0. Finally, choosing Kv > 0, we see that
the (explicit) IDA-PBC controller (10) is reduced to

uE(q, q̇) =
m3 sin(q1)

c1

(
q̇2q̇1a

2 cos q1 + aq̇1
2 + ḡa cos q1

)

+Kpm3(q?2 − q2)− Kv q̇2
m3

. (19)

Clearly, the previous controller is well defined for any q̇2
and is independent of any mass.

4.4 Local Linear Performance

Using Proposition 5 of (Cieza and Reger, 2019) we can
reduce 7 the implicit (holonomic) system (14a) in the

7 The coordinate reduction eliminates the constraint b>∂ρH = 0
and constraint forces bλ.
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form of (1) to an explicit pH representation of the form
of (8), where q = vec(β, α, xt, yt), M = (∂>q h)M(∂qh),

ρ = ṙ = (∂>q h)M−1p, G = (∂>q h)G, V = V(h(q)), and

the geometric relation r = h(q) is defined by (13). 8 Note
that the implicit inertia matrix M is constant, while the
explicit one,M , is not. Let x := vec(q, p). The linearization
of the portal-crane system with controller (3) about the
point x = x? := vec(β, α, x?t , y

?
t , 0, 0, 0, 0) is

˙̃x = (Ar +BrKI)x̃,

where x̃ = x− x?, ūI(q, p) = uI(h(q), (∂>q h)M−1p),

Ar =

[
0 I4
−I4 0

]
∂2H

∂x2

∣∣∣∣
x=0

, Br =

[
04×2
G(0)

]
,

KI = ∂xūI |x=0 =

[
k11 0 k12 0 k13 0 k14 0
0 k21 0 k22 0 k23 0 k24

]

ki1 =
Kψi(D − ai + di)

lγi
+
aigr
D
− gr, ki2 = −DKψi

l2γi
,

ki3 =
Kui(D − ai + di)

l3γi
, ki4 = −KuiD

l2γi
.

Since the pair (Ar, Br) is controllable for any l > 0,
we can easily set an LQR local optimal performance to
our controller (3) by solving ai, di, D, Kψ and Ku from
−Klqr = KI , where the LQR feedback is ulqr = −Klqrx̃. 9

Similarly, linearization of the 2-D model (see Section 3.2)
with x := vec(q1, q2, q̇1, q̇2) and the explicit IDA-PBC
controller (19) yields

KE = ∂xuE |x=0 =

[
aḡm3

c1
−Kpm3 0 −Kv

m3

]
.

In comparison, the presence of 0 in the matrix KE prevents
to set an arbitrary LQR local performance, which is a
disadvantage of (19) with respect to (3).

5. EXPERIMENTAL RESULTS

Figures 3–5 show experimental step responses with initial
conditions xt = yt = β = α = ẋt = ẏt = β̇ = α̇ = 0 under
five control actions: two implicit full state-feedback IDA-
PBC (uI1 and uI2), an implicit output-feedback IDA-PBC
(uN ), an explicit full state-feedback IDA-PBC (uE), and
an LQR (ulqr). To compare the ulqr and the implicit law
uI we assign the same local performance, i.e., −Klqr =
KI , and rename uI as uI1. Here ulqr is obtained from
Ar, Br, Qlqr = diag(400, 400, 100, 100, 10, 10, 1, 1), and
Rlqr = I2. Since the explicit controller uE does not allow
an arbitrary local optimal performance or pole assignment,
see Section 4.4, we choose the parameters of uI s.t.
KE = [ki1 ki2 ki3 ki4], and call it uI2. The parameters
of the IDA-PBC controllers are shown in Table 1, where
gr = 9.81 m/s

2
, l = 1 m, mp = 4.975 kg.

First, we observe that all controllers achieve asymptotic
stability of the desired position. Besides, since the crane
angles β and α are rather small (−10o < α, β < 10o),
we have a very similar behavior for the pairs uI1-ulqr
and uE-uI2. Clearly, the optimal local performance al-
lows a faster settling time and smaller overshoot of uI1

8 The reduction is well-defined for α, β ∈
]
−π

2
, π
2

[
, i.e., zp < 0.

9 Setting the weighting matrices Qlqr and Rlqr to be diagonal,
produces a Klqr with the same structure (position of zeros) as KI .
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Fig. 3. Crane response: signals xt and yt.

and ulqr with respect to uE . The output-feedback law
requires the additional parameter restriction ai = D, so
it yields the slowest settling time, but avoids any velocity
measurement. Finally, note that the implementation of the
implicit IDA-PBC does not depend on the linearization or
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Fig. 4. Crane response: signals β and α.
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assumption A5. Consequently, it may allow a larger region
of attraction (compared with the local ulqr and uE).

Table 1. Implicit and explicit IDA-PBC parameters.

uN uI1 uI2 uE

P
a
ra

m
et

er

ai 12 3.2005 3 -
ei 0 0 0 -
di 29 2.2671 2 -
D 12 1 1 -
µ? gr/12 gr gr -
Kui - 19.67 8.57 -
Kψi 0.0045 24.138 12.6 -
K̄ui 175 - - -
Λξ 0.10I2 - - -
m3 - - - 0.42
c1 - - - a2m3

Kv - - - 1.8
Kp - - - 15

6. CONCLUSION

Explicit and implicit IDA-PBC approaches are designed
and implemented successfully on an experimental por-
tal crane system. Both methods shape the total energy
without solving PDEs. The simplified (explicit) IDA-PBC
uses a 2-D model, which is obtained under small angle
assumption (relative position of the payload w.r.t. the
trolley). In contrasts, the implicit IDA-PBC uses a 3-D
model, avoiding the previous requirement.

On the other hand, we found a significant implementation
flaw in the simplified IDA-PBC of Xue and Zhiyong (2017)
and solve it by picking a new target Hamiltonian. The
application of this method in the portal crane with a 3-D

−8
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Fig. 5. Crane response: signals ẋt and ẏt.

model is not as straightforward as the one modeled in 2-D.
Therefore, we restrict this method to 2-D and apply the
feedback in each axis (x and y) as if they were decoupled.

Finally, we compare five control actions: an LQR, an
implicit state-feedback IDA-PBC tuned to have the same
local behavior as the LQR, a simplified (explicit) IDA-
PBC, an implicit state-feedback IDA-PBC tuned to be-
have locally as the explicit one, and an output-feedback
implicit IDA-PBC. The results give favour to the implicit
IDA-PBC instead of the simplified explicit one.
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