
Evaluation of Nonlinear System
Identification to Model Piezoacoustic

Transmission

Matheus Patrick Soares Barbosa ∗ Daniel Pereira da Costa ∗

Helon Vicente Hultmann Ayala ∗

∗ Dep. of Machanical Engineering, Pontifical Catholic University of
Rio de Janeiro, Brazil (e-mails: mpatrick.barbosa@gmail.com,

daniel.pereiracosta@hotmail.com, helon@puc-rio.br)

Abstract: Piezoeletric materials are used on high-precision and high-dynamics applications,
such as for acoustic transmission. This paper covers the challenges of creating a black-box
model for a simultaneous acoustic transmission problem, with data acquired in a laboratory
setup. The system performance is analyzed for three different models: AutoRegressive Moving
Average with eXogenous inputs (ARMAX) model, Nonlinear AutoRegressive with eXogenous
inputs (NARX) model with artificial neural network structure, and Nonlinear AutoRegressive
Moving Average with eXogenous inputs (NARMAX) models. The best results of each models
are compared with respect to precision in free-run simulation. The prediction results show that
the most complex NARMAX model had the best results, what encourages further research
in creating nonlinear mathematical data-driven abstractions for the piezoacoustic transmission
application.
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1. INTRODUCTION

Piezoelectric materials can directly convert an electrical
signal into a physical displacement and vice-versa. With
those materials it is possible to create smaller and lighter
actuators and manage small displacements in the range
of sub nanometers to several hundreds of micrometers
(Gu et al., 2014). High-precision and high-speed control
are a requirement for applications such as micro/nano-
positioning and transmission, so an important aspect is
modeling and simulation. However, non-linearities such as
creep, static and dynamic hytheresis and amplitude, rate
and load dependency behaviours, complicate the modelling
of piezoelectric actuators. Several first-principles analyti-
cal models exists that takes those non-linearities in con-
sideration, such as the Preisach model, Duhem model,
Prandtl-Ishlinskii model, Maxwell model, too cite a few
(Gu et al., 2014; Rakotondrabe, 2017; Miri et al., 2013).
But, due to requirements of physical parameters, compu-
tation process complexity, rate dependency, and the neces-
sity of several experiments, to obtain the weight functions
and update the model on-line, adaptation to changes of
the control conditions degrades (Deng and Tan, 2009; Miri
et al., 2013).

One use of piezoelectric actuators is in communication
through metal walls. This is interesting in applications
were a container or vessel cannot have physical pene-
trations and due the strong Faraday effect, the use of
other through wall techniques such as inductive coupling,
capacitive coupling, and magnetic resonance coupling are
not feasible (Yang et al., 2015; Shoudy et al., 2007). In this

scenario, an active piezoelectric material bounded to the
outside wall generates acoustic waves which propagates
through the material, also knows as acoustic channel,
which may be then recovered by a second piezoelectric ma-
terial at the inner wall that transduces the received waves
for various purposes such as data transmission (Graham
et al., 2011), energy harvesting (Hu et al., 2003, 2008) or
both (Shoudy et al., 2007; Kluge et al., 2008).

Naturally the physical properties of this channel can
severely reduce the efficiency of the transmission and
the introduction of multilayered channels, composed of
different materials such as steel and water, can pose a
challenge to modeling (Takahashi et al., 2019). Although
analytical models for this kind of application also ex-
ists, the performance suffers from several factors such as
roughness of the surfaces, presence of discontinuities in
the medium, power losses, and undesired vibrations, to
cite a few (Chakraborty et al., 2013; Lawry et al., 2012).
As those characteristics are inherent to the system and
are challenging to simulate, the models used to tune the
control laws should be equipped to better represent the ac-
tual system. As such, data-driven modeling such as black-
box system identification is a general modeling framework
which hinders the difficulties mentioned before. In system
identification a black-box model do not require particular
knowledge of the physics of the relationship’s involved in
the system, it is known to have flexibility and can be ap-
plied to both linear and non-linear systems (Ljung, 2001).
Those properties mitigates the uncertainties of modeling
such systems.
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Although the use system Identification methodology and
data-driven models in Piezoelectric actuators are not new
in the literature, such as in Micro/nano-positioning in 1
or 2 degrees of freedom (Ayala et al., 2018, 2015; Cheng
et al., 2015), Vibration Control (Dong et al., 2006; Lou
et al., 2017), and even in general hysteresis modeling
(Deng and Tan, 2009; Yu et al., 2005), there are no works
that develops on the challenge of modeling the problem
of acoustic transmission of data and power in multiple
layers with system identification methodology. That is, the
approaches available to identify ultrasonic power and data
transfer are still an open issue for the general multilayered
case.

In this context, the present work focuses on the application
of black-box system identification as a tool for the acoustic
transmission modeling problem. The proposed approach is
implemented with three data-driven black box models. To
identify and estimate the model parameters, a test bench
was created to simulate the application scenario and allow
data acquisition under designed input signal that covers
the whole frequency band of interest. The main objective
is to create a model capable that may be used to identify
divergences when changes in the medium occurs and cal-
culate the optimal frequency response offline. To this end,
we evaluate a swept sine excitation signal and compare
the performance of AutoRegressive Moving Average with
eXogenous inputs (ARMAX), Nonlinear AutoRegressive
Moving Average with eXogenous inputs (NARMAX), and
artificial neural networks Nonlinear AutoRegressive with
eXogenous inputs (NARX) models for modeling the dy-
namics of the system using solely input and output data.
Being so, the model may be then used for evaluating online
the frequency response or to track changes in the system
when applied to monitoring.

The present paper is organized as follows. In Section II
the case study is presented in details. In Section III the
system identification methods employed in the present
work are reviewed and in Section IV we give the results of
the application of system identification to the problem of
acoustic transmission through multiple layers. Lastly, the
conclusion and future works are stated in the last Section
V.

2. CASE STUDY

The complete test bench can be seen in 1(a). It consists
of a signal generator, RF amplifier, oscilloscope and the
piezoelectric system.

The acoustic channel of the system studied in this paper
consists of two piezoelectric actuators, coupled to one side
each of the two steel 5mm thick plates with a layer of
epoxy. The two plates are spaced by 100mm and the
intermediate region filled with distilled water at room
temperature, as show in Fig. 1(b). This creates a system
with five layers and three materials (epoxy, steel and
water) where both data and energy can be transmitted.

Due to limitations in the hardware available, only the
generated input signal (before amplification) and the re-
sponse output signal (after amplification at receiver) were
measured. In this case, the amplifier was made part of the
system to be modeled as show in Fig. 2.

(a) (b)

Fig. 1. Picture took from the test bench. (a) Test Bench
with amplifier, oscilloscope and signal generator; (b)
Steel plates with piezoelectric actuators test bench
(on the lower right) at 10 cm away from each other.
The tank is filled with distilled water at room tem-
perature.

Fig. 2. Schematic drawing of the system showing the input
and output acquisition signals location.

2.1 Design of input signals

The choice of input signals is made based on the kind of the
experiment under study. They are generated in order to
excite the model in several frequency bands, with different
amplitudes, and then analyze the system response.

The system was excited using different signal: multisine,
square sweep, and linear chirp. Between these three the
one chosen to estimate the model was the chirp. This kind
of signal excites the system in many frequencies and the
rate of change in frequency is a linear function of time.
This results in much faster measurement rates and is best
suited to making a higher signal-to-noise ratio.

An input chirp signal with amplitude, before amplifica-
tion, of 80mVpp and 100ms period was generated. The
frequency range varied from 900kHz to 1350kHz. This
range was chosen because of the specific application and
the overall system response is greater at those frequencies.

2.2 Data Pre-Processing

Once the input signal was chosen, the next step was to
acquire the data and pre-process it. Pre-processing is an
important step of system identification, it leads to better
results and also avoids out-of-range values. Since the data
of the model is sensitive to noise, this stage is rather
relevant.

The acquisition frequency was 100Mhz, resulting in 10
million points for the 100ms period of the signal, which
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resulted in an over sampled data set. Therefore the first
step in the pre-pocessing phase was to resample the
data. From Nyquist-Shannon Theorem (Lai, 2003) its
possible to measure the minimum-sampling rate at which
a continuous-signal can be recovered. But in order to
achieve the ideal sampling rate, a method proposed in
(Aguirre, 2019) was used as a guideline. This method
brought the total number of samples from 10 million to
1 million. In order to further process the resampled data,
the frequencies out of the studied range, were removed
by a fifth-order band pass filter. From the resampled and
filtered data set we used only 2000 samples for creating the
models. The reason is that we should limit the number of
samples in order to obtain the model predictions for all
orders tested. Due to the characteristics of the signal, this
sample does not contain the entire frequency range of the
original signal.

3. SYSTEM IDENTIFICATION

After the acquisition and pre-processing of the input and
output signals from the system, the next step consists
of selecting the model structure. The chosen approach
is black-box system identification, which builds a math-
ematical relationship between input and output measured
data to reproduce output, without requiring any a priori
knowledge about the physical properties of the system.
The models are detailed in the sections below.

3.1 ARMAX

In addition to theoretical explanatory variables, the AR-
MAX model structure includes moving average compo-
nents and disturbance dynamics, that explain variations
in endogenous variables. Its output incorporates previous
outputs, inputs, and disturbances. With the moving av-
erage error, this structure is useful when dominating dis-
turbances that have entered early in the process (Rachad
et al., 2015).

The model can be written as

A(q)y(t) =

nu∑
i=1

Bi(q)ui(t− nki) + C(q)e(t) (1)

where A(q), B(q), and C(q) are polynomials to be esti-
mated. y(t), u(t), and e(t) are respectively output, input,
and the residual signals of the system at discrete time t.

The estimation of the ARMAX model parameters requires
an iterative method such as prediction errors method
(PEM), generalised least squares (GLS), instrumental
variables (IV), or extended least squares (Billings, 2013).
PEM methods uses numerical optimization to minimize
the cost function, a weighted norm of the prediction error.
The idea behind this method is to determine the model
parameter θ, on 2 such that the residual

e(t, θ) = y(t)− ŷ(t|t− 1, θ) (2)

is minimized, where ŷ(t|t−1, θ) is the prediction performed
using measured data up to t − 1. The results for the
ARMAX model given in this work used the PEM method
for estimating the paramaters of the models.

3.2 NARX

The NARX (Nonlinear AutoRegressive with eXogenous
inputs) model is defined as

y(t) = F [y(t− 1), y(t− 2), . . . , y(t− ny),

u(t− 1), u(t− 2), . . . , u(t− nu)] + ξ(t);
(3)

where ny and nu are the maximum lags (or orders of the
model) at the output and the input. The function F [.] is
in general nonlinear. The residual is defined as

ξ(t) = y(t)− ŷ(t). (4)

The model relates the current value of a time series with
its past values and also the exogenous series. It can be
efficiently used for modelling non stationary and non linear
time series.

The nonlinear functions used for the NARX architecture
are the artificial neural network, wavelet network, and a
sigmoid network. The neural network approach is a highly
parallel distributed network of connected processing units
called neurons. These system are able to learn and perform
specifics tasks given input and output pairs. The wavelet
network consists of a feed-forward neural network with one
hidden layer whose activation functions are drawn from
an orthonormal wavelet family (Veitch, 2005). The latter
follows the same principles of wavelet network, but it uses
a sigmoid functions instead.

3.3 NARMAX

The NARMAX (Nonlinear AutoRegressive Moving Aver-
age with eXogenous inputs) model is defined as

y(t) = F [y(t− 1), . . . , y(t− ny),

u(t− 1), . . . , u(t− nu),

e(t− 1), . . . , e(t− ne)] + e(t)

(5)

where y(t), u(t), and e(t) are the system output, input,
and residual signals respectively.

The model is a nonlinear difference equation which relates
the output of the system at a given time instance to
values of the input, outputs, and residual at previous
time instance (Unbehauen, 2009). The structure is one
of the mostly used for black-box system identification for
nonlinear systems. The higher-order polynomials are often
selected as the nonlinear function.

The method used for term selection and parameter es-
timation used on this article was the Forward Regres-
sion Orthogonal Least Squares (FROLS) (Billings, 2013).
This algorithm uses the principles of the orthogonal least
squares (OLS), where the orthogonal function calculates
each parameter at a time independently, and the Error
Reduction Error (ERR), which is a by product of the
OLS algorithm, that shows the significance of each term
in the model based on the percentage reduction that each
term makes with respect to the output mean squared error
(Ahmad and Jamaluddin, 2001). The FROLS uses the
basic of the OLS algorithm but at each step of the iteration
the best candidate term of the unselected model terms,
irrespective of the order, is written down in the model.
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3.4 Model Validation

Model validation is the final step of the system identifica-
tion process. In this step a metric is used to analyze the
prediction results of each model and also to validate its
consistency. There are several metric to choose to evaluate
how well the model fits a set of samples, some are discussed
below.

Residuals When building the model, the first metric to
review the model quality is the One-Step-Ahead (OSA)
residual error. The OSA prediction uses past measured
values to calculate the output of the model. Then the
residuals can be calculated comparing the predicted value
against the measurement. Thus it is possible to evaluate
the adherence of the model to the measured data. It is
not good practice to analyze the OSA residuals alone and
so the Free-run Simulation (FRS) residual error can be
used. Instead of using past measured values, the FRS
prediction uses past predicted values to calculate the
future predictions. Due to its characteristic of using past
predictions, it tends to accumulate errors over time, better
reflecting the real model capability of representing the
system dynamics. In turn, if even OSA residuals are not
good, one will not expect good results in FRS. That’s why
the OSA, despite it’s limitations, still a good starting point
to first assert the model quality.

Quantitative Metrics Other metrics can be calculated
on the basis of the residuals. Those metric offer a more
direct comparison between models as those summarize
the discrepancy between observed values and the values
expected as a single quality number of the estimator.
Those are the Mean Squared Error (MSE) and the multiple
correlation coefficient (R2).

The MSE measures the average of the squares of the errors
and is always non-negative where values closer to zero are
better. The R2 is not dependent on the amplitude and is
a measure of how well a given variable can be predicted.
Values closer to one are better. It can be calculated as

R2 = 1−
∑N

t=1 [ξ(t)]
2∑N

t=1 [y(t)− ȳ]
2
. (6)

4. RESULTS

In this section we show the results of applying the models
based on the ARMAX, NARX and NARMAX to identify
the vibro-acoustic system. The output data is given in Fig
3, when the excitation signal is the sine chirp.

In the following sections the best fit of each model is going
to be further analysed. At the end of the section, the
results for all models analyzed are summarized according
to ascending order of R2 in FRS. The parameters used for
the models were defined empirically.

4.1 ARMAX

For this specific model, its parameters nu, ny, and ne
orders varied from 1 to 10 generating 1,000 different
models. As discussed on section 3.1, its parameters were
estimated using the prediction errors method.

Fig. 3. Input and Output data used for the creation of the
model.

The best result obtained using the ARMAX structure was
a model with the following orders: ny = 10, nu = 2,and
ne = 6. The model error can be observed on figure 4.
Although the model does not include nonlinear terms, the
obtained result presented good performance, with R2 = in
FRS.

Fig. 4. Error for ARMAX model in OSA (blue) and FRS
(red).

4.2 NARX

Both the models orders and its non-linearity estimators
where changed in order to achieve better results. ny and
nu varied from 1 to 20. A higher fit value was obtained
with higher total complexity. The model was studied with
one or two hidden layers, with a combination of four, five,
and ten neurons in each layer. These last were constructed
using both a cascade-forward network and feed forward
network. A sigmoid and a wavelenet network were also
used as non-linearity estimators.

The models that obtained the higher R2 in FRS used a
sigmoid network as the activation function. Compared to
the ARMAX error, the NARX error, Fig. 5, is greater on
the center part of the samples while the ARMAX error
is bigger in the extremities. This may suggests that a
ensemble of both models may lead to better fits. The best
model in terms of FRS has the following orders: ny = 16,
and nu = 15, with R2 = in FRS.
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Fig. 5. Error for NARX model in OSA (blue) and FRS
(red).

Fig. 6. Measured vs Predicted for the free-run simulation of
the best NARMAX model. In red the y = x curve and
in green the fitted linear regression for the predictions.

4.3 NARMAX

In order to construct the NARMAX models, we tested all
possible combinations for the parameters nu, ny and ne in
the range [1,10]. The non-linearity tested was nl = 2. For
all model orders, we tested the threshold ρp in the range
[10−4, 10−5], always having ρn = 10−1ρp.

The best result obtained using the NARMAX structure
was a model with the following parameters: nu = 1, ny =
2, ne = 3, nl = 2, ρp = 10−6, and ρn = 10−7. As shown
in Fig. 6 and Fig. 7 the model has reasonable accuracy
for prediction. The scatterplot of the predictions vs. the
measurements is close to the line with 45◦ slope which
represent the ideal model prediction.

4.4 Summary of all models tested

In Table 1 we show a description of the best models for
each class tested, in terms of R2 in FRS. We can see
that higher complexity obtained overall better results.

Fig. 7. Error for NARMAX model in OSA (blue) and FRS
(red)

Table 1. All models ordered by ascending order
of R2 in FRS.

model nu ny ne nl ρp ρn
R2
FRS

3 19 17 NA NA NA NA 0.8830
3 17 16 NA NA NA NA 0.8830
3 18 18 NA NA NA NA 0.8880
3 15 16 NA NA NA NA 0.8920
2 1 5 2 1 NA NA 0.9000
2 1 5 5 1 NA NA 0.9010
2 2 10 7 1 NA NA 0.9040
2 1 8 3 1 NA NA 0.9040
2 2 10 6 1 NA NA 0.9060
1 1 3 1 2 10−4 10−5 0.9396
1 1 2 8 2 10−4 10−5 0.9612
1 1 2 3 2 10−4 10−5 0.9629
1 1 2 3 2 10−6 10−7 0.9651
1 4 5 10 2 10−6 10−7 0.9815
1 4 4 1 2 10−6 10−7 0.9819
1 4 6 4 2 10−6 10−7 0.9822
1 4 5 8 2 10−6 10−7 0.9824

In this table, NARMAX (1), had the best results, with
a greater margin, when compared to the ARMAX (2)
and NARX(3). It is possible to see that the predictions
are close to unity in FRS for the NARMAX case, what
confirms this model ability to represent the dynamics of
the system using measured data.

5. CONCLUSION

The present work demonstrated the identification of the
acoustic transmission system through multiple layers with
piezoelectric actuators using black-box models. We have
successfully applied several models, namely the linear AR-
MAX, NARX with artificial neural networks model struc-
ture and the power-form polynomial NARMAX models,
and compared them with real-world acquired data. The
proposed models are an alternative to analytical model,
when computational performance is important for mon-
itoring as environmental changes may take place. The
model is thus useful for tracking time-varying systems that
is relevant for such application, as their frequency response
determines the maximum gain and is influenced by the
parameters of the obtained model.
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Future research will be devoted to construct models with
general purpose signals such as the random phase mul-
tisine and model validation with exclusive datasets. It
will also be sought to study how different assumptions of
changes in the operational conditions affects the model
performance, such as the distance between the plates,
and fluid temperature and type. As the bandwidth and
sampling frequency required by the system are large, we
also think that new methods for handling big datasets are
handful for black-box modeling in this application.
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