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Abstract: As one of common diseases among elderly, stroke often leads to motor impairment and even 

serious disability. Post-stroke rehabilitation is of great importance to restore the motor function and 

improve the life quality of stroke survivors. This study therefore sets out to propose a hybrid system 

based on brain-computer interface and virtual reality, which can provide various training programs 

including action observation, motor imagery and physical therapy for post-stroke patients with different 

motor control levels and training demands. The present work offers new insights into the way in which 

the conventional rehabilitation programs can be turned into innovative and interactive training 

experiences with advanced technologies to make optimal rehabilitation outcomes for stroke survivors.  
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1. INTRODUCTION 

Stroke is a leading cause of serious disability for adults 

worldwide. The global number of new stroke occurrence each 

year is around 16 million, and will keep increasing in future 

decades as the global population aging (Di Carlo, 2009). 

Stroke survivors who suffer from hemiparesis or partial 

paralysis due to the neurological injury, show decreasing 

independence and require assistance or even fully depend on 

caregivers in performing dressing, washing, eating and other 

self-care tasks in daily life (Veerbeek, 2011). Therefore, post-

stroke rehabilitation is of great significance in order to 

improve the life quality of stroke survivors. 

Post-stroke rehabilitation generally focuses on maximizing 

the restoration of the lost motor and cognitive function, and 

helps stroke survivors relearn skills which are lost due to the 

brain injury (Johansson et al., 2011). It is usually considered 

effective if the patient is capable of transferring the motor 

and cognitive function to the daily life (Trombly, 2002). 

Although the rehabilitation cannot reverse the neurological 

injury, it can help survivors become as independent as 

possible and achieve the best possible quality of life. As one 

common rehabilitation type, physical therapy includes a 

variety of muscle maneuvers and exercises, and is widely 

adopted around the world for stroke recovery (Langhorne, 

2009). The conventional physical therapy for upper limb 

motor impairment which is a very common problem 

following stroke, involves exercises performed with the 

impaired arm such as pushing, circle, punching and other 

movements according to different levels of motor impairment, 

in order to stimulate injured brain areas and strengthen the 

motor function with the guidance and help of the therapist. 

Current evidence suggests that intensive training is able to 

help patients regain movement in affected arms (Langhorne, 

2009). However, repeating the same movement for a long 

time in the conventional program is rigid and boring, which 

may result in the decrease of patients’ motivation in getting 

involved and eventually restrict the effectiveness of post-

stroke rehabilitation program (Desrosiers, 2003). 

Besides the conventional physical therapy, some innovative 

training approaches have been established for post-stroke 

rehabilitation. Action observation (AO) is defined to be the 

training through the observation of movements performed by 

others and is able to activate the same brain areas used for 

performing actual movements, especially when the observed 

movements are familiar and belong to the motor repertoire of 

the observer (Abbruzzese et al., 2015). Motor imagery (MI) 

refers to the training of cognitive process in which the patient 

imagines performing a movement without actually doing it. 

This training strategy has been initially developed for athletes 

to improve performance (Guillot & Collet, 2008). It has been 

demonstrated that during MI training the activation 

sequences in the motor cortex are similar to those occurring 

during the actual movement (Carrasco & Cantalapiedra, 

2016). MI can be classified as two types: external, with the 

visual imagery of scenes from an external observer, and 

internal, with the imagery content from the patient’s own 

body. MI and AO are considered effective when used 

independently, and furthermore, the combined approach of 

AO+MI has been found more effective in motor learning for 
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post-stroke rehabilitation and worthy of scholarly attention 

(Eaves et al., 2016). In fact when compared with the 

conventional physical therapy, AO+MI allows patients to 

observe other’s movements and mentally practice movements 

which they cannot perform due to the motor impairment, and 

shows the special advantage in the early stage of stroke 

recovery when the rehabilitation is especially crucial but 

patients have no or very little muscle control of the affected 

arm. 

Recently, advanced technologies such as brain-computer 

interface (BCI) and virtual reality (VR) have attracted lots of 

attention as promising tools to improve the rehabilitation 

outcome. BCI is based on the real-time analysis of acquired 

brain signals, and is a perfect tool to determine whether the 

patient is correctly performing MI training (Alonso-Valerdi 

et al., 2015). As a direct communication pathway between the 

brain and external devices, BCI is generally composed of six 

main steps: brain signal acquisition, pre-processing, feature 

extraction, signal classification, command translation and 

real-time feedback. It is considered as a new input approach 

that can change patients’ way to interact with the virtual 

environment, by interpreting brain signals into machine codes 

or commands (Silvoni et al., 2011). VR technology, which is 

characterized by the capability of the creation of customized 

virtual environment and generation of highly immersive user 

experience, can enable new opportunities for a variety of 

rehabilitation applications. It has already been used nowadays 

for treating neurological symptoms and disorders, including 

but not limited to stroke, Parkinson’s disease, dementia, 

balance and gait disorders (Kellmeyer, 2018). Especially for 

illnesses requiring upper limb rehabilitation, patients are able 

to interact with a virtual arm in the virtual environment to 

perform active exercises. It has been suggested that the 

implementation of VR technology can improve the 

rehabilitation effectiveness by increasing patients’ interest 

and engagement in the form of VR game (Fluet & Deutsch, 

2013; Lohse et al., 2014). To date, several VR based systems 

have been developed to provide more options for post-stroke 

rehabilitation in addition to conventional programs (Laver et 

al., 2017). There is also emerging evidence that the 

implementation of VR for rehabilitation can bring benefits to 

the recovery following stroke (i Badia et al., 2016).  

The aim of this study was to propose a hybrid system for 

post-stroke rehabilitation by combining BCI and VR to 

enable innovative and interactive training programs including 

AO, MI and physical therapy. It is hoped that this proposed 

system can serve as a novel platform for post-stroke patients, 

in order to make optimal rehabilitation gains based on 

advanced technologies. 

2. METHOD 

2.1  Overall system architecture 

The hybrid system based on promising technologies of both 

BCI and VR was proposed for post-stroke patients with 

different motor control levels and training demands, with the 

overall architecture shown in Fig. 1. The VR training is 

divided into two parts: AO+MI which is especially suitable 

for patients with low levels of motor control, and innovative 

physical therapy which involves upper limb movements for 

patients with some volitional motor control of the affected 

arm. Thus, patients in any stage of stroke recovery can 

benefit from the current system, which allows patients to 

control a wide range of training experiences in the virtual 

environment through their brain activities or upper limb 

movements by merging BCI and VR technologies.  

 

Fig. 1. Architecture of the proposed system 

BCI technology in the current system helps to establish a 

bridge between the patient’s brain and the VR training by 

identifying the patient’s internal motor intentions. MI signals 

from the patient’s brain activity which indicate the attempt of 

body movement is first acquired and pre-processed before 

analysis due to the influence of noise. Then, features of MI 

signals can be utilized from feature extraction for signal 

classification. The identified MI signals after processing is 

finally used to drive the movement of upper limb of the 

virtual avatar for MI in VR training. The entire process of MI 

training is displayed in real-time in the virtual environment, 

therefore allowing the visual feedback delivered to the patient 

functioning as AO training through VR technology. 

In the proposed system, VR serves as a base platform by 

providing rich and motivating virtual environments and 

feedbacks for post-stroke rehabilitation. In VR training of 

AO+MI shown in Fig. 2, the patient can observe the upper 

limb movement of the virtual avatar and imagine performing 

the movement without actual doing it. This training approach 

can be used in all stages of stroke recovery to restore the 

motor function, and is especially suitable for patients in the 

early stage of recovery with very limited motor control of 

upper limb movements. In this study, the innovative physical 

therapy in VR training focuses on the circle and pushing 

movements of upper limb. The circle movement of upper 

limb shown in Fig. 3 is a beneficial exercise for post-stroke 

rehabilitation, when the patient has enough strength to move 

arms but is not able to keep balance in sitting. The pushing 

movement of upper limb shown in Fig. 3 is also a commonly 

adopted exercise for stroke recovery with the normal arm 

helping the affected arm. 
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Fig. 2. AO+MI training without actual movement 

      

Fig. 3. Circle movement (left) and pushing movement (right) 

2.2  MI signal processing 

To apply BCI properly and accurately in the current system, 

it is necessary to design a MI signal classifier. However, this 

is very challenging due to the low signal-to-noise ratio of 

brain signals (Wolpaw et al., 2002) and the non-stationary 

property over time (Grosse-Wentrup, 2011). Therefore, the 

classification of MI signal generally consists of two processes: 

an offline model training process based on available dataset 

of MI signals generated from subjects and measured via 

corresponding sensors, and an online identification process 

for pattern recognition (Lotte, 2014). The offline training 

process can also help with the calibration of classification 

model for reliable results as MI signals are highly dependent 

on subjects. 

Similar as many other types of signals, MI signals have both 

temporal and spatial features which can be utilized for feature 

extraction and classification. The conventional procedure for 

analysing such kind of signals is to extract features using 

feature selection algorithms and apply classifier based on 

these features. However, this process is very domain-specific 

and hand engineered. Moreover, as the representations of the 

MI signal are not fully understood by researchers, it is very 

difficult to design algorithms to select features manually. 

 

Fig. 4. Neural network structure 

With the advantages in approximation and classification, 

artificial neural networks are widely used in signal processing 

and pattern recognition. Due to the strong representational 

power which can learn any function with arbitrary accuracy, 

multi-layer perceptron (MLP) with hierarchical structure of 

several perceptrons is one of the most popular neural network 

types. Besides the above mentioned benefits, hidden and 

hierarchical features which are very difficult to extract using 

conventional methods can be learned from data directly to 

achieve end-to-end learning due to the hierarchical multi-

layer structure, which is more suitable for classification 

problem in complex systems. In this study, MLP was utilized 

to analyse MI signal patterns for classification purpose, with 

its structure shown in Fig. 4.  

To evaluate the proposed classification model and the 

effectiveness of the method with relatively low risk at the 

testing stage, a public dataset with MI recording from the 3rd 

BCI competition (Lal et al., 2005) was utilized in this study. 

In the dataset, the time series of the brain activity of a subject 

performing imagined movements of left small finger or the 

tongue were recorded using 8x8 platinum electrode grid 

which was placed on the contralateral (right) motor cortex. 

The sampling rate is 1000 Hz and the record duration of each 

experiment trial (i.e.: imagined tongue or finger movement) 

is 3 seconds. In total there are 278 trials of raw data with 

labels. The raw signal is shown in Fig. 5. To smoothen the 

signal for better signal-noise-ratio and improve the analysis 

efficiency, down sampling technique was applied in the pre-

processing stage of the signal from 3000 samples to 100 

samples of each electrode for each trial. The signal after 

down-sampling is shown in Fig. 6. 

In order to evaluate the system performance, some datasets 

were reserved as the testing set for evaluation purpose, and 

the classification accuracy based on testing set was used as 

the performance measure. In this study, 228 groups of data 

were randomly selected as the training set and the rest 50 

groups were the testing set. In the training process, a neural 

network with two hidden layers with 50 and 10 neurons 

respectively was designed. 80% of the training set was used 

for training and the rest 20% was used for validation. 

 

Fig. 5. Raw MI signal of one electrode for one trial sampled 

at 1000 Hz 
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Fig. 6. MI signal after down-sampling 

2.3  Virtual environment design 

The immersive virtual environment in this hybrid BCI-VR 

system is presented to the patient via the VR device-HTC 

VIVE Focus Plus shown in Fig. 7, including one head-

mounted display (HMD) and one wireless controller. The 

HMD that supports 6-DOF tracking is powered by a 

Qualcomm Snapdragon 835 and equipped with two 3.5-inch 

AMOLED displays. The controller has two main function 

buttons: teleport and trigger. In order to simplify the 

operation process for the patient in virtual environments, only 

the trigger button of the controller is used during the training 

of upper limb movements in the proposed system. 

 

Fig. 7.   HTC VIVE Focus Plus 

 

Fig. 8. Unity interface 

The virtual reality game scene and game code were 

developed by Unity and Visual Studio Code software 

respectively. Unity is a multi-platform game engine for 

creating interactive 3D contents for virtual reality 

applications, as shown in Fig. 8. The virtual environment in 

the current system consists of a game lobby, a game store and 

various training programs, with 3D models in the virtual 

environment by both self-building and downloading from the 

Unity official store. The training programs are presented with 

various visual stimuli and based on the first perspective of the 

patient in the virtual environment in order to enable an 

immersive and engaging user experience. 

While wearing the VR HMD in the proposed system, the 

patient or the therapist can enter the game lobby shown in Fig. 

9 to choose the training program. During the training, virtual 

gold coins can be earned and exchanged for rewards in the 

game store shown in Fig. 9 to enable a motivating training 

experience for the patient. Three training programs including 

AO+MI, circle movement and pushing movement, are 

available in the current system.  

 

Fig. 9. VR game lobby (left) and game store (right) 

In the AO scenario shown in Fig. 10, the patient observes the 

virtual adult avatar representing the therapist performing the 

swinging movement of upper limb to activate the same brain 

areas used for performing the actual swinging movement. 

The MI scenario shown in Fig. 10 involves two virtual 

avatars: an adult avatar representing the therapist which is the 

same as that in AO training, and a teenager avatar 

representing the patient who is conducting the MI training. 

 

Fig. 10. VR training of AO (left) and MI (right) 

The scenario of circle movement is shown in Fig. 11 and was 

defined that the patient moves the knife representing the 

controller in the virtual environment, to cut off the string of 

balloons by performing the circle movement. The pushing 

movement scenario was designed that a virtual hand 

representing the controller pokes a bubble after the pushing 

movement, as shown in Fig. 12. 
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Fig. 11. VR training of the circle movement 

 

Fig. 12. VR training of the pushing movement 

3. RESULTS 

3.1  MI signal classification 

The network performance for MI signal classification in the 

training process is shown in Fig. 13 with good validation 

performance. In the testing process with the 50 groups of data 

as the testing set, the accuracy of the network was found to be 

92%. This implies only 4 groups of data are misclassified, 

which is acceptable considering the low signal-to-noise 

nature of MI signals.  

 

Fig. 13. Network performance in the training process  

The good classification result in MI signal classification of 

the public dataset demonstrates the effectiveness of the neural 

network method, and also provides the confidence in working 

with practical experiment data towards the solid performance 

of the proposed system.  

3.2  VR training programs 

As an innovative training program with no need for patients 

performing any actual movement, AO+MI in the VR training 

of the proposed system requires the patient to observe other’s 

movements and mentally practice movements. After 

observing the therapist performing the movement, the patient 

is encouraged to imagine performing the same task, thereby 

moving the avatar’s arm with visual scenes from an external 

observer. The avatar’s arm is essentially controlled by the 

patient’s MI signals acquired and classified through BCI, and 

can only show the same movement when the patient is 

correctly conducting the MI training. Owning to this hybrid 

BCI-VR system, the patient is able to observe the immediate 

result of MI training through the real-time visual feedback of 

the avatar’s arm movement in the virtual environment, which 

could be considered as an additional AO training conducted 

along with MI training.  

The physical therapy in the proposed system includes two 

types of upper limb exercises: the circle movement and the 

pushing movement. Both these movements are controlled by 

the corresponding movement of the controller, with the 

patient’s normal arm helping the affected arm. In the circle 

movement training, the patient can use the controller to move 

the knife to approach the string and press the trigger button to 

cut off the string to receive a gold coin. The balloon rises 

quickly after the cutting and disappears when reaching a 

certain height. Then a new balloon appears to start the second 

scene of this scenario. Enough time between two balloons is 

allowed for the patient to adjust the posture. In the pushing 

movement training, the moving distance between the virtual 

hand and the bubble is set according to the arm's length to 

enable a relatively complete pushing movement. When the 

virtual hand approaches the bubble through a pushing 

movement, the patient can press the trigger button of the 

controller to poke it to burst and collect a gold coin. There is 

no time limit for each scene, as the bubble bursts only after a 

complete pushing, and a new bubble appears to activate the 

next scene. 

4. CONCLUSIONS 

The aim of the current study was to propose a hybrid system 

for post-stroke rehabilitation by combining BCI and VR 

technologies to improve the rehabilitation effectiveness, 

which has the advantages to offer the innovative training 

program without actual body movement, various physical 

trainings on movement patterns and repetitions, immersive 

virtual training environments, real-time and motivating 

training feedbacks, etc. The results of current study indicate 

that the proposed system shows great potential as a 

rehabilitation tool by turning the conventional trainings into 

interesting and engaging interactive experiences in virtual 

environment for patients with different motor control levels 

and training demands. 

The main limitation of this study was the absence of practical 

experiment data of MI signals to validate the proposed signal 

classification method. Although the current study was based 

on a public dataset with MI recording, the findings of the 

high classification accuracy suggest the effectiveness of the 

neural network method. The research on experimental MI 
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signal classification is the focus of future work to establish a 

complete hybrid system for post-stroke rehabilitation. 
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