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Abstract: This paper deals with the optimal fault estimation and accommodation problem
for a class of linear systems in the framework of Stackelberg differential game theory. In this
framework, the observer plays the role of the follower, while the system plays the role of the
leader in making sequential decisions. A dual controller approach is used to design an auxiliary
controller for the observer such that it can non-cooperate with the controller of the system
to achieve the Stackelberg equilibrium. To achieve the online updating of the fault-tolerant
controller, an adaptive dynamic programming methodology is used by establishing two critic
neural networks for the observer and system respectively. Finally, a simulation is presented to
illustrate the efficiency and applicability of the theoretical results.
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1. INTRODUCTION

With growing demand for increased safety and reliability,
fault-tolerant control has attracted significant attention
from various fields, such as industrial production (Ding
(2008)). Since an undetected incipient fault may result in
a serious disaster, the development of more reliable fault-
tolerant control (FTC) methods to guarantee the stability
and performance of the system after faults occur is a
significant and challenging issue (Zhang and Jiang (2008)).

Existing FTC methods can be classified into two cate-
gories: (i) passive FTC and (ii) active one. The main idea
of passive FTC is employing only one controller with fixed
structures and fixed parameters to deal with both healthy
and faulty situations. Active FTC is based on reconfig-
uration of the controller in response to the detection of
occurred faults (Wen et al. (2018)). In contrast to passive
FTC, the active FTC approach has some key advantages
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such as being less conservative and more effective due
to its flexible structure and adaptive parameters (Chen
et al. (2016); Zhang et al. (2004)). It is worth mention-
ing that few of the existing results address the optimal
performance of the system under the faulty case (Wang
et al. (2018)), which motivates the research presented in
this paper through the use of the game theory.

Game theory is an interdisciplinary subject initiated from
mathematics, which has infiltrated into various disciplines,
such as economics and control (Basar and Olsder (1999)).
The players in a game theoretic framework may cooperate
or non-cooperate with each other to reach the Nash
equilibrium, which is a state that none of the players would
like to leave. One of the typical games is the Stackelberg
differential game, where there are two players: leader
and follower. The key characteristic of the Stackelberg
differential game is that the leader is one-step ahead of
the follower. The follower takes an action to response
the strategy of the leader after it gets the information
of the leader. Meanwhile, the leader is able to know this
situation, therefore, it can select its optimal control to deal
with the follower’s action. As a result of this characteristic,
Stackelberg differential game takes effect in many areas
of our daily life, such as the smart grid (Maharjan et al.
(2013)). However, how to apply the Stackelberg differential
game into solving the active FTC problem still an open
and challenging problem.
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Inspired by the above challenges, this paper deals with the
optimal fault estimation (FE) and fault accommodation
(FA) problem for a class of linear systems by making
use of the Stackelberg differential game. To the best of
our knowledge, there are no existing results on the use of
Stackelberg differential game theory to solve this problem.
Different from the previous results, we cast the optimal
FE and FA problem into a Stackelberg differential game
to achieve sequential decisions between the observer and
system. The main contributions are summarized as follows.

• A Stackelberg differential game-based optimal FE
and FA approach is proposed, in which the observer
plays the role of the the follower and the system plays
the role of the leader to obtain the optimal state/fault
estimation and the optimal fault-tolerant controller,
respectively;
• An auxiliary controller variable is designed for the

observer such that it can non-cooperate with the
controller of the system to construct the complete
game situation and further to achieve the Stackelberg
equilibrium;
• Utilizing the adaptive dynamic programming (ADP)

approach, two new adaptive updating laws of the
critic weights are designed for the system and ob-
server respectively.

Notation: xT (or AT ) represents the transposition of a
vector x (or a matrix A), |·| denotes the Euclidean norm,
0n̄×m̄ ∈ Rn̄×m̄ expresses a matrix with all elements are
zero, Ip̄×q̄ ∈ Rp̄×q̄ means a matrix with diagonal elements

are one and the other elements are zero, Ik̄ ∈ Rk̄ expresses
a column vector with all elements are one.

2. PROBLEM FORMULATION

2.1 System dynamics

Consider a class of continuous linear systems described as

ż = Āz + B̄u+ Ēf
y = C̄z

(1)

where z ∈ Rn, u ∈ Rq, f ∈ Rd and ȳ ∈ Rp are the state,
control input, fault function, and output of the system,
respectively. The matrices Ā, B̄, C̄, and Ē are known
constant matrices of appropriate dimensions.

The fault signal f(t) is generated from a dynamical ex-
osystem:

ẋf =Āfxf , t ≥ tf
f =C̄fxf , (2)

where xf is the fault-state with the initial fault value
xf (tf ) = xf0, xf0 is an unknown value and tf is the
unknown time that the fault occurs. The matrix Āf ∈
Rd×d is assumed to be stable, C̄f ∈ Rp×d is the output
matrix with full row rank. This fault model investigated
in Chen and Patton (2012) can describe various kinds of
faults, such as actuator faults, sensor faults and process
faults (Abfalg and Allgower (2006)).

For well-posedness, we make the following assumption.

Assumption 1. The pair (Ā, B̄) is controllable, the pairs
(Ā, C̄), (Āf , C̄f ) are observable, and all the eigenvalues λf

of the matrix Āf make the matrix

[
λfI − Ā −Ē

C̄ 0

]
have

full column rank. 2

2.2 The Stackelberg differential game

The definitions of the best response and the Stackelberg
equilibrium are given.

Definition 1. In the game theory, the best response is the
optimal strategy of a player, which takes account of the
other players’ strategies to minimize its own cost. 2

Definition 2. Suppose P1 and P2 are the leader and fol-
lower in a Stackelberg differential game. The cost functions
and the strategies for leader and follower are denoted as
Γi and µi, ∀i = 1, 2, respectively. The pair {µ∗1, µ∗2(µ∗1)}
is defined as a Stackelberg equilibrium strategy if the
following properties are satisfied:

(1) For each µ1, there exists µ∗2(µ1) for the follower such
that

Γ2 (µ1, µ2
∗(µ1)) ≤ Γ2 (µ1, µ2) ,∀µ1;

(2) There exists µ∗1 on the best responses of the leader
such that

Γ1 (µ∗1, µ
∗
2 (µ∗1)) ≤ Γ1 (µ1, µ2 (µ1))

for any pair (µ1, µ2 (µ1)) on the best responses of the
leader. 2

Based on the above definitions, our objective is to design
an optimal active FTC scheme under the framework of the
Stackelberg differential game such that the state z of the
faulty system (1) converges to zero and the system’s cost
function is minimized.

To achieve this goal, the bridge connecting the Stackel-
berg differential game with FE/FA is established in the
following section.

3. STACKELBERG DIFFERENTIAL GAME-BASED
OPTIMAL FE/FA DESIGN

In this section, the link between the Stackelberg differen-
tial game and FE/FA is developed. Then, the designs of
the optimal FE and FA are presented.

3.1 Stackelberg differential game-based optimal FE/FA
design

To estimate the state and fault simultaneously, the sys-

tem’s dynamic model is augmented by setting x
∆
=[

zT , xTf

]T
. The augmented system is given by

S :

{
ẋ = Ax+Bu
y = Cx

, (3)

where A
∆
=

[
A EC̄f

0d×n Af

]
, B

∆
=

[
B

0d×q

]
, C

∆
=
[
C̄ 0

]
.

Using the duality between the linear optimal observer
and the linear quadratic tracking control (Besançon and
Munteanu (2015)), an observer is constructed for the
system (3) based on the design of an auxiliary controller
variable v,

O :

{
x̂ = Ax̂+Bu+ Fv
ŷ = Cx̂

, (4)
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Fig. 1. The Stackelberg differential game between the
system (leader) and observer (follower)

where x̂ is the estimation of the state x, v is an auxiliary
controller variable designed for the observer O, F ∈
R(n+d)×q is an input designed matrix, and ŷ is the output
of the observer. Compared with the traditional observer
design, the output y is included into the observer (4)
through v.

The links between the augmented system (3) and the
observer (4) is illustrated in Fig. 1. From the strategy-
making perspective, the system has an initial strategy u0

working before the auxiliary controller v of the observer
works. After the observer receives the information of u
and y from the system, the observer will make the best
response to the system’s current strategy, i.e., designing

the optimal auxiliary controller v∗ to minimize ey
∆
= y− ŷ.

In return, the system will adjust its own strategy based
on the state and fault estimation from the observer, i.e.,
designing the matrix u∗, such that the goal of FTC can be
achieved. Therefore, the system has the dominant position
and has one-step advance than the observer.

Based on the above analysis, it is shown that the decisions
between the observer and system can be sequential, in
which the system first takes action and then the observer
follows based on the strategy of the leader. Such sequential
decision feature coincides with the core of the Stackelberg
differential game. Thus, we set the system as the leader and
the observer as the follower in the Stackelberg differential
game to achieve the optimal FE and FA. The optimal fault
estimation will be presented in the following section.

3.2 The follower’s design

In this section, the optimal FE problem for the observer
is formulated as the follower’s problem in the Stackelberg
differential game under an arbitrary strategy of the sys-
tem, u ∈ U , where U is the set of the admissible strategies
of the system.

The cost function for the observer (4) is defined as

J1 (v)
∆
=

∫ ∞
0

{
(ŷ − y)

T
Q (ŷ − y) + vTRv +uTGv

}
dt,

(5)

where Q, R, and G are symmetric positive definite matri-
ces. The term uTGv represents the impact from the system
S to the observer O.

According to the analysis of the sequential decisions be-
tween the system and observer, there exists controller
signal u0 of the system in operation which is used by the
observer. Thus, we firstly investigate the problem of the
follower under an arbitrary strategy of the leader u ∈ U .
More specifically, the problem of the follower is descried
by

min
v

J1

s.t. (4)
for an arbitrary u ∈ U .

To solve this problem, the associated Hamiltonian function
is defined as

H1
∆
= (ŷ − y)

T
Q (ŷ − y) + vTRv + uTGv

+∇JT1 (Ax̂+Bu+ Fv) , (6)

where ∇J1
∆
= ∂J1/∂x̂ denotes the partial derivative of the

cost function J1 with respect to the state estimation x̂.

The necessary conditions are given by

∇J̇1 = −2CTQCx̂+ 2CTQy −AT∇J1, (7)

and
∂H1

∂v
= 0⇒ 2Rv +Gu+ FT∇J1 = 0, (8)

which implies that

v∗ = −1/2R−1
(
FT∇J∗1 +Gu

)
. (9)

The optimal value of the cost function J∗1 satisfies the
Hamilton-Jacobi (HJ) equation

0 = min
v
H1 (x̂,∇J∗1 , v) . (10)

Substituting control policy (9) into (10) leads to the
following coupled HJ equations:

(ŷ − y)
T
Q (ŷ − y)− 1

4
(∇J∗1 )

T
FR−1FT∇J∗1

−1

4
uTGR−1Gu− 1

2
∇uTGR−1FT∇J∗1 + (∇J∗1 )

T
Ax̂

+ (∇J∗1 )
T
Bu = 0 (11)

with J∗1 (0) = 0.

Theorem 1. Suppose Assumption 1 holds. The optimal
auxiliary controller designed in (9) guarantees

lim
t→∞

(x (t)− x̂ (t)) = 0.

2

Proof. The proof is omitted due to space limitations.

3.3 The leader’s design

In this section, the optimal FA problem for the system
will be solved by designing the leader’s problem of the
Stackelberg differential game.

The cost function for the system (3) is defined as

J2 (u)
∆
=

∫ ∞
0

(
xTMx+ uTLu+∇JT1 π∇J1

)
dt, (12)

where M , L and π are symmetric positive definite matri-
ces.

Under the cost function (12), the problem for the leader is

min
u

J2(u)

s.t. (3), (7).

The goal is to minimize the cost function (12) under
the constraints of both the system (3) and the observer
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(7). The reason to regard (7) as the constraint from the
observer is that ∇J1 is the unique influencing factor of
v∗ in (9). By considering the constraint (7), the system’s
optimization contains the best response v∗ of the observer,
which means that the system adjusts its controller based
on the state and fault estimation from the observer to
achieve its optimal FTC goal.

To solve the leader’s problem, the Hamiltonian function is
defined as

H2
∆
=xTMx+ uTLu+∇JT1 π∇J1 +∇JT2 (Ax+Bu)

+ βT
(
−2CTQCx̂+ 2CTQy −AT∇J1

)
, (13)

where ∇J2
∆
= ∂J2/∂x and β

∆
= −∂J2/∂(∇J1).

The necessary conditions for the leader are given

∇J̇2 =− ∂H2

∂x
⇒ ∇J̇2 = −2Mx−AT∇J2 − 2CTQCβ,

(14)

β̇ =− ∂H2

∂(∇J1)
⇒ β̇ = ATβ − 2π∇J1, (15)

and the optimal fault-tolerant controller can be obtained

∂H2

∂u
= 0⇒ u∗ = −1

2
L−1BT∇J∗2 . (16)

Substituting (16) into (13), the coupled HJ equation for
the leader is as follows

xTMx− 1

4
(∇J∗2 )

T
BL−1BT∇J∗2 + (∇J∗1 )

T
π∇J∗1

+ (∇J∗2 )
T
Ax+ βT

(
−2CTQCx̂+ 2CTQy −AT∇J∗1

)
= 0

(17)

with J∗2 (0) = 0.

Also, under the controller u∗ in (16), the coupled HJ
equation (11) for the observer can be further expressed
as

(ŷ − y)
T
Q (ŷ − y)− 1

4
(∇J∗1 )

T
FR−1FT∇J∗1

− 1

16
(∇J∗2 )

T
BL−1GR−1GL−1BT∇J∗2

+
1

4
(∇J∗2 )

T
BL−1GR−1FT∇J∗1 + (∇J∗1 )

T
Ax̂

− 1

2
(∇J∗1 )

T
BL−1BT∇J∗2 = 0. (18)

Theorem 2. Under Assumption 1, the optimal fault-tolerant
controller u∗ designed in (16) can guarantee the faulty sys-
tem (3) under the cost function (12) to be asymptotically
stable, and the pair {u∗, v∗(u∗)} reaches the Stackelberg
equilibrium if the optimal costs J∗1 and J∗2 satisfy the
coupled HJ equations in (17) and (18). 2

The Stackelberg equilibrium {u∗, v∗(u∗)} in Theorem 2
means that after several rounds of making the best re-
sponse to each other, the competition between the system
and observer arrives at a balance point. At this equilib-
rium, the observer achieves the optimal state and fault
estimation with minimal cost J∗1 , and the system achieves
optimal FTC with the minimal cost J∗2 . Moreover, even
they are in the equilibrium, they still have interactions
with each other such that one of them leaving this Stack-
elberg equilibrium would result in the loss of the other
side. Thus, they have no intensive to leave this equilibrium
point.

On the other hand, Theorem 2 reveals that the solutions
of the coupled HJ equations in (17) and (18) are the key to
achieve the Stackelberg equilibrium. However, the coupled
HJ equations are difficult to be solved in practice. To ad-
dress this problem, the Adaptive Dynamic Programming
(ADP) approach (Wang et al. (2018)) will be employed in
the following section.

Remark 1. It is worth mentioning that the Stackelberg
game considered in this paper is in an open-loop structure.
One of our contributions is the development of the open-
loop Stackelberg equilibrium solutions to ensure that the
closed-loop system can be asymptotically stable. More-
over, this open-loop Stackelberg equilibrium solutions can
be written as a state-feedback form, more details can refer
to Moon and Başar (2018).

4. ADP-BASED STACKELBERG DIFFERENTIAL
GAME STRATEGY

In this section, the Stackelberg differential game strategies
are carried out online by using the ADP technology, in
which two new adaptive learning laws of critic weights are
proposed.

Two critic networks are designed for the system and
observer to approximate the cost functions J∗1 and J∗2 ,
respectively

J∗1 =WT
c1σc1 (x̄) + εc1 (x̄) , (19)

J∗2 =WT
c2σc2 (x) + εc2 (x) , (20)

where x̄
∆
=
[
x̂T yT

]T
, Wci ∈ RΓi , ∀i = 1, 2, represents the

ideal critic weights, Γi is the number of neurons belonging
to the hidden layers, σci is the actuation function, and εci
denotes the error of the approximation, which converges
to zero as Γi →∞.

Note that the dynamics of the system may not available in
practice, the state estimation is employed into the system.
Therefore, a hidden layer is added into the critic network
of the system (20), which is expressed as

J∗2 =WT
c2σc2

(
wTc2x̂

)
+ εc2 (x̂) , (21)

where wc2 is the ideal weight of the hidden layer, which
assumes to be fixed during the training process.

The derivatives of J∗1 and J∗2 are obtained

∇J∗1 =∇σTc1Wc1 +∇εc1, (22)

∇J∗2 =∇σTc2Wc2 +∇εc2, (23)

where ∇J∗1
∆
= ∂J∗1 /∂x̂, ∇J∗2

∆
= ∂J∗2 /∂x̂, ∇σc1

∆
= ∂σc1/∂x̂,

∇σc1
∆
= wc2(∂σc2(α)/∂x̂), α

∆
= wTc2x̂, ∇εc1

∆
= ∂εc1/∂x̂ and

∇εc2
∆
= ∂εc2/∂x̂.

Using (22) and (23), the Stackelberg equilibrium solutions
(u∗, v∗) in (9) and (16) can be expressed as

v∗ =− 1

2
R−1

(
FT
(
∇σTc1Wc1 +∇εc1

)
+Gu∗

)
, (24)

u∗ =− 1

2
L−1BT

(
∇σTc2Wc2 +∇εc2

)
. (25)

Applying (24) and (25) into the Hamiltonian functions (6)
and (13), it can obtained that
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(ŷ − y)
T
Q (ŷ − y)− 1

4
WT
c1∇σc1FR−1FT∇σTc1Wc1

− 1

16
WT
c2∇σc2BL−1GR−1GL−1BT∇σTc2Wc2

+
1

4
WT
c2∇σc2BL−1GR−1FT∇σTc1Wc1

+WT
c1∇σc1Ax̂−

1

2
WT
c1∇σc1BL−1BT∇σTc2Wc2

=ξc1, (26)

x̂TMx̂− 1

4
WT
c2∇σc2BL−1BT∇σTc2Wc2

+WT
c2∇σc2Ax̂+ βT

(
−2CTQCx̂+ 2CTQy

−AT
(
∇σTc1Wc1

))
+WT

c1∇σc1π∇σTc1Wc1

=ξc2. (27)

where ξc1
∆
= −∇εTc1 (Ax+Bu∗ + Fv∗), ξc2

∆
= −∇εTc2 (Ax

+Bu∗)+βTAT∇εc1 represent the residual errors. With the
growth of the number of hidden layers, it has |ξci| ≤ lξci.
To solve the problem of the unknown ideal weight Wci,
two adaptive critic networks are employed to estimate Ji
as Ĵi = ŴT

ciσci, where Ŵc1, Ŵc2 are the estimations of
Wc1, Wc2, respectively. Then, the estimations of u∗ and
v∗ can be expressed as

v̂ =− 1

2
R−1

(
FT
(
∇σTc1Ŵc1

)
+Gû

)
, (28)

û =− 1

2
L−1BT∇σTc2Ŵc2. (29)

Hence, the estimated Hamiltonian functions can be repre-
sented as

H1

(
x̂, y,∇Ĵ1, v̂

)
=(ŷ − y)

T
Q (ŷ − y)− 1

4
ŴT
c1∇σc1FR−1FT∇σTc1Ŵc1

− 1

16
ŴT
c2∇σc2BL−1GR−1GL−1BT∇σTc2Ŵc2

+
1

4
ŴT
c2∇σc2BL−1GR−1FT∇σTc1Ŵc1

+ ŴT
c1∇σc1Ax̂−

1

2
ŴT
c1∇σc1BL−1BT∇σTc2Ŵc2

=ec1, (30)

H2

(
x̂,∇Ĵ2, û

)
=x̂TMx̂− 1

4
ŴT
c2∇σc2BL−1BT∇σTc2Ŵc2

+ ŴT
c2∇σc2Ax̂+ βT

(
−2CTQCx̂+ 2CTQy

−AT
(
∇σTc1Ŵc1

))
+ ŴT

c1∇σc1π∇σTc1Ŵc1

=ec2. (31)

In order to minimize the errors in (30) and (31), the
following functions are introduced, ∀i = 1, 2,

Eci
∆
=

1

2
eTcieci.

Taking advantage of the the gradient descent method, two
adaptive weights of the critic networks are proposed

˙̂
W c1 = −a1

ψ1

k1
ec1 + a1

[
ψ1

4k1
ŴT
c1∇σc1FR−1FT∇σTc1Ŵc1

− ψ1

16k1
ŴT
c2∇σc2BL−1GR−1GL−1BT∇σTc2Ŵc2

−
(
F12Ŵc1 − F11ψ

T
1 Ŵc1

)]
,

(32)

˙̂
W c2 =− a2

ψ2

k2
ec2 + a2

[
ψ2

4k2
ŴT
c2∇σc2BL−1BT∇σTc2Ŵc2

+
ψ2

k2
ŴT
c1∇σc1π∇σTc1Ŵc1

−
(
F22Ŵc2 − F21ψ

T
2 Ŵc2

)]
. (33)

where ai represents the learning rates, ki
∆
= 1 + θTi θi

and ψi
∆
= θi

ki
, θ1

∆
= ∇σc1 (Ax̂+Bû+ F v̂), θ2

∆
=

∇σc2 (Ax̂+Bû). The terms Fi1 and Fi2 are two matrices
to be designed.

The following general assumption in the neural network is
given.

Assumption 2. The critic weights Wci, ∀i = 1, 2 are
bounded, i.e., |Wci| ≤ Wimax for Wimax > 0. Similarly,
∇εci, ∇σci, β, A, B, G and F are upper bounded by
positive constants, i.e., |∇εci| ≤ lεi, |∇σci| ≤ lσi, |A| ≤ lA,
|B| ≤ lB , |G| ≤ lG, and |F | ≤ lF . 2

Theorem 3. Under Assumptions 1-2, the approximate op-
timal auxiliary controller (28) with the adaptive weight
updating law (32), and the approximate optimal fault-
tolerant controller (29) with adaptive weight updating law
(33) can achieve that the states of the faulty system (3),
the states of the observer (4), and the estimation errors of
the critic weights are all uniformly ultimately bounded. 2

Remark 2. The advantages of the proposed method are
concluded: By using the proposed Stackelberg differential
game, the relation between the system and observer is
revealed from a sequential decision perspective, which
also helps to achieve the optimal FE and fault-tolerant
controller for the system. Moreover, the solutions are
approximated by using the ADP method, which avoids
the problem of dimension disaster.

5. SIMULATION

In this section, an example of continuous-time linear
system is given to verify the effectiveness of the proposed
method. Consider the following faulty system, in which
only parts of the states are measureable,

ż =

[
−0.5 −1.5

2 −3

]
z +

[
5
1

]
u+

[
5 3
0 5

]
f,

ȳ = [ 1 0 ] z,

where z
∆
= [z1, z2]

T
is the state of system.

The fault is supposed to be

ẋf =

[
−1 0.5
0 −1.5

]
xf ,

f =

[
1 0
0 1

]
xf ,
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Fig. 2. The state trajectory of system
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Fig. 3. The estimation errors of state and fault

where xf
∆
= [xf1, xf2]

T
. Assume that the fault takes place

at tf = 0.5s. Choose the parameters in the cost function
as

F = B,Q = 5, R = 2, G = 1.5, L = 2,M = 3I4×4.

The activation functions are selected as

σc1 (ŷ, y) =[y y2 yŷ ŷ2 ŷ],
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The learning rates are set as a1 = 0.1, a2 = 0.8. The
parameters F11 = 190I5, F21 = 20I5, F12 = 0.01I5×5,
F22 = 0.001I5×5. In addition, the persistent excitation
condition is guaranteed by adding a small probing input
signal ri(t) = 0.02sin5(t)cos(t), for t < 3s.

The simulation results are displayed in Figs. 2-3, which
show that the state trajectories for the system and the
estimation errors of states/ faults all converge to a small
neighborhood of zero. Thus, the effectiveness of the devel-
oped Stackelberg differential game-based FTC methods is
verified.

6. CONCLUSIONS

In this paper, the Stackelberg differential game is extended
to solve the optimal FE and FA problem, in which the
observer plays the role of the follower and the system
plays the role of the leader to achieve the Stackelberg
equilibrium. Moreover, the ADP approach is used to make
the fault-tolerant controller update online, in which two
new adaptive laws of the critic weights are proposed.
The simulation results have been presented to verify the
effectiveness of the proposed methods. Futuer work will
focus on how to extend these results into more complex
systems, such as nonlinear systems.

REFERENCES

Abfalg, J. and Allgower, F. (2006). Fault diagnosis with
structured augmented state models: modeling, analysis,
and design. In Proceedings of the 45th IEEE Conference
on Decision and Control, 1165–1170. IEEE.

Basar, T. and Olsder, G.J. (1999). Dynamic noncoopera-
tive game theory, volume 23. Siam.
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