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Abstract: This paper proposes a synthesis method of stabilizing state-feedback controllers
for linear infinite-dimensional systems with possible unbounded input operators. A regularity
condition is assumed in the sense of the existence of step responses for all initial conditions and
constant inputs, under which the closed-loop system with any bounded state-feedback is well-
posed with a filter on the input channels. Operator inequalities are provided on the dual space
of the input-to-state operator, where any solution to the linear inequality provides a stabilizing
filtered state feedback controller.
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1. INTRODUCTION

Synthesis of feedback controllers for infinite-dimensional
systems has been receiving a great deal of attention in
recent years. Fruitful results have been presented for
various specific classes of infinite-dimensional systems.
Also some of papers are based on general frameworks
for synthesis of controllers, particularly those based on
linear or linearized operator inequalities; See e.g. Fridman
and Orlov (2009a,b); Gahlawat and Peet (2017); Peet
(2019) and references therein. A difficulty lies in that
the partial differential equation derived as the result of
feedback control might not be well-posed and for this
problem case-by-case treatments are inevitably needed, if
the plant has unbounded input and/or output operators.
Detailed discussion on well-posedness of feedback systems
can be found in Staffans (2005); Tucsnak and Weiss (2009,
2014).

This paper proposes a simple way of synthesis of stabilizing
state-feedback controllers for linear infinite-dimensional
systems with possible unbounded input operators. We
assume a regularity condition in the sense of the existence
of step responses for all initial conditions and constant
inputs, under which the closed-loop system with any
bounded state-feedback is well-posed via a filter on the
input channels. Operator inequalities are provided on the
dual space of the input-to-state operator ΣAB, by which
the plant variable x ∈ X with input u ∈ U is governed as

ẋ = ΣAB

[

x
u

]

,

where X and U are Hilbert spaces and ΣAB is a linear op-
erator defined on the Cartesian product space fo X and U .
This is adopted from Staffans (2005), where ΣAB is written
as A&B. By this we can represent e.g. boundary control

systems whose input appears in the boundary condition.
We mention that in the proposed operator inequalities
some of unknown variables can be eliminated in a similar
fashion as the Finsler’s lemma (Boyd et al. (1994)) in LMI-
based synthesis for finite-dimensional systems.

2. DESCRIPTION OF THE SYSTEM

Let X and U be Hilbert spaces and consider a linear
infinite-dimensional system represented as the following
state equation on X :

ẋ(t) = ΣAB

[

x(t)
u(t)

]

, t > 0 (1)

x(0) = x0, (2)

where x(t) ∈ X is the state and u(t) ∈ U is the input of the
system, with initial state x0 at time t = 0. Let Z = X⊕U
be the Cartesian product space of X and U and let ΣAB

be a linear operator from Z to X that defines the input-
to-state characteristic of the system, where its domain is
D(ΣAB) ⊂ Z. The integral equation for (1)–(2) is

x(t) = x0 +ΣAB

t
∫

0

[

x(s)
u(s)

]

ds, t ≥ 0. (3)

Define an operator A : X → X with its domain D(A) as
follows:

D(A) =

{

x ∈ X :

[

x
0

]

∈ D(ΣAB)

}

, (4)

Ax=ΣAB

[

x
0

]

, x ∈ D(A). (5)

Assumption 1. Operators A and ΣAB are closed.
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This assumption follows a part of those assumed in
Staffans (2005) for system nodes.

We assume a simple regularity condition on the system in
the sense of the existence of step response x for constant
input u. Let C(D,X) and Ck(D,X) denote the spaces
of continuous functions and k-times continuously differen-
tiable functions from D to X , respectively.

Assumption 2. For every

[

x0

u0

]

∈ X ⊕ U , there exists a

unique x ∈ C([0,∞), X) that satisfies (3) for constant u
with u(t) = u0, t ≥ 0.

If u0 = 0, for every x0 ∈ X , there exists a unique
x ∈ C([0,∞), X) that satisfies

x(t) = x0 +A

t
∫

0

x(s)ds, t ≥ 0 (6)

from Assumption 2. Lemma 3 below guarantees the ex-
istence of a solution to the following abstract Cauchy
problem:

ẋ(t) =Ax(t), t > 0, (7)

x(0) = x0 (8)

for x0 ∈ D(A) and that A generates a C0 semigroup.

Lemma 3. The following three statements are equivalent:

(i) Operator A generates a C0 semigroup on X .
(ii) Operator A is closed, ρ(A) 6= 0, and, for every x0 ∈

D(A), there exists a unique x ∈ C1([0,∞), D(A))
that satisfies (7)–(8), where ρ(A) stands for the
resolvent set of A.

(iii) Operator A is closed and, for every x0 ∈ X , there
exists a unique x ∈ C([0,∞), X) that satisfies (6).

Proof. See Theorem 20.2 of Miyadera (1996). See also
Theorem 1.1.1 of Melnikova and Filinkov (2001).

From this lemma and Assumptions 1 and 2, A in (4)–(5) is
densely defined and generates a C0 semigroup T(t), t ≥ 0
on X , with which solutions to (6) and (7)–(8) are given by

x(t) = T(t)x0, t ≥ 0.

Moreover, Assumption 2 derives some useful properties
of input-to-state operator ΣAB. Define a densely defined
operator Aa : D(ΣAB) → Z by

Aa =

[

ΣAB

[ 0 0 ]

]

, D(Aa) = D(ΣAB),

which is apparently closed since so is assumed for ΣAB.
From Assumption 2 and Lemma 3, we see the unique
existence of z ∈ C([0,∞), Z) satisfying

z(t) = z0 +Aa

t
∫

0

z(s)ds, t ≥ 0

for every z0 ∈ Z and indeed z(t) is given as

z(t) =

[

x(t)
u(t)

]

=

[

x(t)
u0

]

, z0 =

[

x0

u0

]

. (9)

Also there exists a unique z ∈ C1([0,∞), Z) such that

ż(t) =Aaz(t), t > 0,

z(0) = z0

for every z0 ∈ D(Aa) = D(ΣAB) from Lemma 3. Further-
more, Aa is densely defined and generates a C0 semigroup
Ta(t), t ≥ 0 on X , with which the step responses are given
by

x(t) = [ IX 0 ]Ta(t)

[

x0

u0

]

,

[

x0

u0

]

∈ X ⊕ U,

where IX stands for the identity operator on X . Clearly

T(t) = [ IX 0 ]Ta(t)

[

IX
0

]

.

Let Ma > 0, ωa ∈ R be constants for which ‖Ta(t)‖ ≤
Mae

ωat, t ≥ 0.

Remark 4. The above introduction of an augmented sys-
tem can be compared with that for boundary control
systems in Section 3.3 of Curtain and Zwart (1995) with
C2 input. Our formulation here is rather simple and may
be regarded as an explicit implementation of a filter to
generate smoothen inputs from the measured state.

3. FILTERED STATE FEEDBACK

Let L(X,U) and L(U) denote the sets of bounded linear
operators from X to U and U to U , respectively. For
system (1), consider state feedback control with filtering:

u̇(t) = Fx(t) +Gu(t), (10)

where F ∈ L(X,U), G ∈ L(U). The transfer function of
this controller is (sIU −G)−1F , which is a state feedback
followed by a first-order low-pass filter. Combining (1) and
(10), we have the closed-loop system equation as

[

ẋ(t)
u̇(t)

]

=

[

ΣAB

[ F G ]

] [

x(t)
u(t)

]

,

{

x(0) = x0,
u(0) = u0.

(11)

By using the notation Aa with

z(t) =

[

x(t)
u(t)

]

, z0 =

[

x0

u0

]

, Ba =

[

0
IU

]

and

Fa = [F G ],

we can represent the closed-loop system (11) as

ż(t) = Aclz(t), Acl = Aa +BaFa.

Since Aa generates a C0 semigroup and Ba and Fa are
bounded, Acl generates a C0 semigroup Tcl(t), where we
have ‖Tcl(t)‖ ≤ Mae

(ωa+‖Fa‖)t, t ≥ 0 and D(Acl) =
D(Aa) = D(ΣAB).

Here we consider synthesis of Fa for which the closed-loop
system is exponentially stable, i.e., we seek Fa such that
Tcl satisfies

‖Tcl(t)‖ ≤ Mae
−αt, t ≥ 0 (12)

for some α > 0. Since Z is a Hilbert space, A∗
cl
, the adjoint

operator of Acl, generates a C0 semigroup T
∗(t) (See Pazy
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(1983), Corollary 10.6 of Chaper 1). Moreover, Tcl satisfies
(12) if and only if T∗

cl
satisfies

‖T∗
cl(t)‖ ≤ Mae

−αt, t ≥ 0 (13)

(See Pazy (1983), Lemma 10.1 of Chaper 1). We have
A∗

cl
= A∗

a + F ∗
aB

∗
a and

A∗
a =

[

Σ∗
AB

[

0
0

] ]

,

B∗
a = [ 0 IU ] ,

F ∗
a =

[

F ∗

G∗

]

,

where D(A∗
cl
) = D(A∗

a) = D(Σ∗
AB

) ⊕ U . Operators Σ∗
AB

,
A∗

a and A∗
cl
are closed and F ∗ ∈ L(U,X), G∗ ∈ L(U).

4. OPERATOR INEQUALITIES

Here we invoke Lyapunov methods (Datko (1970); Curtain
and Zwart (1995)); The following Lyapunov inequality
guarantees the exponential stability of T∗

cl
and hence that

of Tcl:

α1‖w‖
2 ≤ 〈w, Paw〉 ≤ α2‖w‖

2 ∀w ∈ Z, (14)

〈PaA
∗
clw, w〉+ 〈w, PaA

∗
clw〉 ≤ −γ‖w‖2

∀w ∈ D(Σ∗
AB), (15)

where 0 < α1 < α2, γ > 0 and Pa ∈ L(Z) is self-adjoint.
Let

PaA
∗
cl = Pa(A

∗
a + F ∗

aB
∗
a) = PaA

∗
a +W ∗

aB
∗
a,

where

Wa = [W V ] := FaPa ∈ L(Z,U)

with W ∈ L(X,U), V ∈ L(U). Then

PaA
∗
cl = [ PaΣ

∗
AB W ∗

a ].

Thus we have obtained the following linearized operator
inequality.

Proposition 5. Let 0 < α1 < α2 and γ > 0. Suppose that
there exists a self-adjoint operator Pa ∈ L(Z) and bounded
operators W ∈ L(X,U), V ∈ L(U) such that

α1‖w‖
2 ≤ 〈w, Paw〉 ≤ α2‖w‖

2 ∀w ∈ Z, (16)

〈PaΣ
∗
ABf +W ∗

a g, w〉

+ 〈w, PaΣ
∗
ABf +W ∗

a g〉 ≤ −γ‖w‖2

∀w ∈ D(Σ∗
AB), (17)

where

w=

[

f
g

]

, f ∈ X, g ∈ U

and

Wa = [W V ].

Then Pa is invertible in L(Z) and

Fa = [ F G ] = WaP
−1
a

is a pair of operators F andG by which Tcl is exponentially
stable.

We can eliminate variable Wa in (17), which amounts to
Finsler’s lemma (Boyd et al. (1994)) for finite-dimensional
LMIs. The first term of the left hand side of inequality
(17) is divided as

〈PaΣ
∗
ABf +W ∗

a g, w〉

= 〈[ IX 0 ]PaΣ
∗
ABf, g〉+ 〈[ 0 IU ]PaΣ

∗
ABf, g〉

+ 〈g, Wf〉+ 〈g, V g〉 . (18)

One may expect that setting

W = −[ 0 IU ]PaΣ
∗
AB

will cancel out W and simplify the inequality. This is
stated concretely as follows.

Corollary 6. Suppose that a self-adjoint operator Pa ∈
L(Z) satisfies (16) and

〈[ IX 0 ]PaΣ
∗
ABf, f〉

+ 〈f, [ IX 0 ]PaΣ
∗
ABf〉 ≤ −γ‖f‖2 (19)

for all f ∈ [ IX 0 ]D(Σ∗
AB

), where 0 < α1 < α2, γ > 0.
Suppose also that operator

W0 = −[ 0 IU ]PaΣ
∗
AB : D(Σ∗

AB) → U (20)

is extended to an operator W ∈ L(X,U). Then (17) holds
for W = W0 with V = −(γ/2)IU .

Proof. The proof is seen that under the assumption of
the corollary,

Right hand side of (18)

= 〈[ IX 0 ]PaΣ
∗
ABf, f〉 −

γ

2
‖g‖2.

Then (17) holds from this and (19).

Such an extension in Corollary 6 can be available if Pa is
chosen an operator that ‘integrates’ Σ∗

AB
f when Σ∗

AB
is

an operator involving some differentiation of f . Another
derivation of a controller is considered below.

Corollary 7. Suppose that (16) and (19) hold and

‖W0w‖ ≤ k‖w‖ (21)

for all w ∈ D(Σ∗
AB

), where W0 is defined as in (20). Then
(17) is satisfied with W = 0, V = −cIU with c > 0 large
enough, and γ replaced with γ/2.

Proof. From (19) and (21), settingW = 0 and V = −cIU ,
we get

Left hand side of (17)

≤ −γ‖f‖2 + 2k‖f‖ ‖g‖− c‖g‖2

≤ −(γ/2)‖w‖2,

where the last inequality holds for some large c > 0.

5. CONCLUSION

In this paper, we showed a synthesis method of stabilizing
state-feedback controllers for linear infinite-dimensional
systems. We assumed a simple regularity condition of
the existence of step responses. This suffices to guarantee
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the well-posedness of closed-loop systems with a filter on
the input channel and any bounded feedback operators.
Operator inequalities are provided on the dual space of the
input-to-state operator, where any solution to the linear
inequality provides a stabilizing filtered state-feedback
controller.

Though the paper considered only stabilization, synthesis
to satisfy control performance criteria can be considered by
extending the proposed formulation via operator inequali-
ties. The results of this paper can be extended in the spaces
X−1, Xd

−1 (Staffans (2005); Tucsnak and Weiss (2009,
2014)) with more sophisticated regularity assumptions,
where operator inequalities will provide bounded operators
in the extended spaces.
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