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Abstract: Input Shaping/Time-Delay Filtering is now an established approach for shaping
reference inputs to minimize residual vibrations for rest-to-rest maneuvers, velocity and periodic
tracking controllers, and to minimize excitation of high frequency unmodelled modes. At the
core of successful reference shaping approaches have been the encapsulation of robustness to
model parameter uncertainties. Special attention has also been paid to incorporation of the
input shapers within closed loops of various configurations. This paper reviews existing designs
for input shaping and highlights some of the latest contributions related to input shaping for
precision motion control.

Keywords: Input Shaping, Time-Delay Filters, Reference Shaping, Motion Control, Vibration
Control, Path Planning of Underdamped Systems, Rest-to-Rest maneuvers

1. INTRODUCTION

Vibration mitigation of lightly damped structures includ-
ing flexible arm robots, atomic force microscopes, hard
disk drives, cranes etc. has drawn attention over the past
few decades. The demand for faster and lighter mecha-
nisms in various applications has resulted in the design
of underdamped structures whose motion induced vibra-
tions need to be mitigated to realize the benefit of the
lightweight structure. Building on the pioneering work
by Smith (1958) (Posicast control), Singer and Seering
(1990)’s concept of Input Shaping reignited the interest
of the control community on the use of filtering to shape
the reference input to a stable system. Over the past three
decades, this renewed interest has resulted in a vast body
of literature on precision motion control of vibratory sys-
tems (Singh and Singhose (2002); Singhose (2009); Singh
(2009)).

Before addressing the selected aspects in reference pre-
filtering for precision motion control by input shapers, let
us outline the fundamentals of the problem at hand. A
classical feed-forward interconnection of an input shaper
and the controlled flexible system is shown in Fig. 1. The
purpose of the shaper is to shape the reference r in order to
pre-compensate the oscillatory modes of the flexible sub-
system F (s), given by the damping and natural frequencies
ξi, ωi, i = 1 . . .m. Note that for successful mode compen-
sation in the scheme in Fig. 1, the closed loop actuator

dynamics C(s)G(s)
1+C(s)G(s) need to be sufficiently fast compared

to the modes of F (s) to be compensated.

In general, the shaper is considered in the form
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Fig. 1. Feedforward interconnection of a reference shaper

u(t) = A0r(t) +

n∑
i=1

Air(t− τi), (1)

where r, u are the input and the output of the shaper,
respectively, Ai ∈ [0, 1], i = 0 . . . n are the gains and τi are
the lumped time delays satisfying 0 < τ1 < ... < τn. In
order to keep the unity gain of the shaper, the coefficients
Ai, i = 0 . . . n need to satisfy the equality

n∑
i=0

Ai = 1. (2)

Let us note that for the Smith’s Posicast, a single oscil-
latory mode (m = 1) is to be targeted with (1), n = 1,
which is identical with zero-vibration (ZV) shaper (Singer
and Seering (1988, 1990); Singhose et al. (1994)) given by

u(t) = A0r(t) +A1r(t− τ1). (3)

The transfer function of the shaper (1) is given as

S(s) = A0 +

n∑
i=1

Aie
−sτi . (4)

If the ith−root underdamped mode: ri = −ξiωi −
jωi
√

1− ξ2
i (and the complex conjugate root) is to be fully

compensated, the following equation needs to be satisfied

S(ri) = 0. (5)
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Thus, from the spectral point of view, the functioning of
the shaper is achieved by direct shaper-zero - system-pole
compensation.

An alternative design strategy of the input shaper is via
the residual vibration function

V (ω, ξ) = e−ξωτn
√
R(ω, ξ)2 + I(ω, ξ)2 (6)

where

R(ω, ξ) = A0 +

n∑
i=1

Aie
ξωτi cos(ω

√
1− ξ2τi) (7)

I(ω, ξ) =

n∑
i=1

Aie
ξωτ sin(ω

√
1− ξ2τi), (8)

determining the scaled amplitude of the residual vibrations
at time t = tn, Singer and Seering (1990), Singhose et al.
(1994). The design counterpart to (5) is given by

V (ωi, ξi) = 0. (9)

Let us also mention that the residual vibration function is
linked to a transfer function (4) frequency response

V (ω, ξ) =
∣∣∣S(−ξω − jω

√
1− ξ2)

∣∣∣ eξωτn . (10)

Satisfying only this requirement leads to ZV shaper with
the residual vibration function visualised in Fig. 2

Application of the residual vibration measure V (ωi, ξi)
is beneficial from the robustness analysis point of view,
taking into account the mismatch between the design and
true dynamical modes to be compensated. As will be
discussed in more detail further, the robustness can be
imposed by reducing V (ω, ξ) in the local neighbourhood of
the flexible mode (ξi, ωi), either analytically or numerically
- see the ZVD, ZVDD and EI characteristics in Fig. 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

ZV

ZVD

ZVDD

EI

Fig. 2. Residual vibration various input shapers

1.1 Distributed delay shapers and discrete-time FIR filters

Next to the input shaping, various command profiles, e.g.
Trapezoidal and S-curve function, are used to smooth
the rapid changes in the reference or input signals of
flexible systems, and thus to decrease the vibrations,
Meckl and Arestides (1998). As shown in Singhose et al.
(2010), the input shaping is a considerably faster and
more efficient technique for reducing vibrations compared
to the command smoothing. A partial advantage of the
smoothers is filtration at the high frequency range. The
properties of input shapers and smoothers have been
merged recently by introducing the distributed delay input
shapers, Vyhĺıdal et al. (2013), Alikoç et al. (2016).

Utilizing the Stieltjes integral, both the lumped delay
shaper (1) and the distributed delay shaper can be de-
scribed by

u(t) = A0r(t) + (1−A0)

∫ T

0

r(t− η)dh(η) (11)

where T is the overall delay length and h(η) is the
distribution of the delay. For the lumped delay shaper
(1), h(η) is a step-wise function with weighted steps at τi
and T = τn. For the distributed delay ZV (DZV) shaper
introduced in Vyhĺıdal et al. (2013), the delay distribution
function is given by h(η) = 1

T η, η ∈ [0, T ]. In Vyhĺıdal and
Hromč́ık (2015), various distributions of the delay were
proposed and tested, S-curve, trigonometric and triangular
distribution, in particular. Next to smoothing the response
at its settling stage, the positive feature of distributed
delay shapers are their retarded spectrum of zeros. In
particular, the distribution of shaper zeros is important
when the shaper is placed within a control loop, Vyhĺıdal
et al. (2016).

Let us note that after discretization of the distributed
delay shaper, it can be implemented in the form

u(k) =

n∑
i=0

Āir((k − i)∆t), (12)

with k denoting the discrete time and ∆t the sampling pe-
riod. Notice that when considering τi being equidistantly
distributed so that τi − τi−1 = ∆t, i = 1 . . . n, (12) is
formally identical to (1). Notice also that the shaper (12)
is in a form of a discrete finite impulse response (FIR),
considered e.g. by Singh and Vadali (1995), Cole (2011),
Cole and Wongratanaphisan (2011). Thus, the properties
of the distributed delay shaper are close to the properties
of a FIR-shaper. However, a considerable lower number of
parameters is needed as a rule for (11) compared to FIR
filter in a form (12). An alternative discrete form of the
distributed delay shaper is based on its implementation in
a form of a dynamical system, Pilbauer et al. (2017).

After introduction and brief preliminaries, the main part
of paper is organised as follows. Section 2 discusses robust
shaper design based on nominal models. This is followed
by Section 3 which focuses on interval uncertainty based
design. This includes legacy and recent designs based on
lumped and distributed delays. The following Section 4
discusses recent results in risk based design which exploits
probability density function characterization of model pa-
rameter uncertainties. This is followed in Section 5 with a
brief discussion of recent results on including input shapers
within feedback loops. The paper concludes with some
thoughts on open problems to pursue in the domain of
reference prefiltering and the related problem of including
shapers within loops.

2. ROBUST DESIGN BASED ON NOMINAL MODELS

It was noted in the early work of Tallman and Smith
(1958) that the model based Posicast control approach
was sensitive to incorrect estimates of the damping ratio
and the natural frequency of the underdamped second
order system. After being essentially dormant as a widely
studied approach for three decades, the Posicast control
which is essentially a tap-delay filter saw renewed interest
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after the inspired formulation of the concept of Input
Shaper by Singer and Seering (1990). The design of the
Input Shaper was posed as an optimization problem to
determine the amplitude and delay sequence of a series of
impulses with the objective of a quiescent response at the
end of the impulse sequence, and the additional constraint
that the sensitivity of the response of an underdamped
second order system to the damping ratio or natural fre-
quency be forced to zero. It was also demonstrated that
the sensitivity of the system response to the damping
ratio was identical to that to the natural frequency. This
corresponded to a concurrent reduction of sensitivity of the
response to uncertain estimates in the damping ratio and
natural frequency around the nominal estimates of those
parameters. This impulse sequence designed to force the
vibration at the end of the impulse sequence was called
a zero vibration (ZV) ZV Input Shaper (given by (3), i.e.
S(s) = A0 +A1e−sτ1). The impulse sequence which forced
the vibration and the gradient of the vibration at the
end of the impulse sequence was called a Zero Vibration
Derivative (ZVD) Input Shaper. This impulse sequence
when convolved with any reference input resulted in a
shaped reference profile which eliminated or profoundly
reduced the residual vibration relative to the unshaped ref-
erence input at the end of the impulse sequence. Singhose
et al. (1994) graphically illustrated the fundamental way
the Input Shaper results in zero vibration at the end of
the impulse sequence. They also presented a graphical
interpretation of the ZVD shaper using a phasor.

Singh and Vadali (1993) illustrated that the ZV was iden-
tical to a time-delay filter whose amplitudes and delays
were selected such that the zeros of the transfer function
of the time-delay filter cancelled the underdamped poles
of the system. A cascade of two of the time-delay filters
designed to cancel the underdamped poles resulted in a
ZVD shaper. This also corresponded to locating multiple
zeros of the time-delay filter at the nominal location of
the poles underdamped system. Increasing the number
of zeros of the time-delay filter at the nominal location
of the poles of the system increased the robustness of
the Input Shaper for perturbations of the system model
around the nominal parameters as illustrated in Figure 2
by the flattened curve in the proximity of ω=1 for the
ZVD and ZVDD shaper. The EI shaper can be asso-
ciated with locating multiple zeros around the nominal
modes. A prefilter to cancel multiple distinct poles of the
underdamped system could be synthesized by cascading
multiple time-delay filters, each designed for one mode.
Singh and Vadali (1995), Tuttle and Seering (1994) and
Murphy and Watanabe (1992) presented techniques for
pole-zero cancellation based design of Input Shapers in
the continuous and discrete domain respectively, where
the filter could be concurrently designed to cancel all
the underdamped modes with the fewest delays necessary.
Singh and Vadali (1995) also presented a simple approach
to design Input-Shapers where the user could select the
magnitude of the delays permitting the continuous time
design in the discrete time framework.

This concept of locating multiple zeros of the time-delay
filter at the nominal location of the poles of the system was
used to generate Input Shapers which did not result in a
staircase reference profile when driven by a step input.

Imposing constraints on the jerk resulted in prefiltered
profiles, Singh (2004), which minimized the energy of the
shaped profiles in the high frequency domain, resulting
in reduced excitation of high frequency unmodelled dy-
namics. This idea was also used to design a variety of
robust open loop optimal control profiles which minimized
the maneuver time, Singh and Vadali (1994), fuel-time
cost, Hartmann and Singh (1999), fuel limited maneuver
time, Singhose et al. (1999), jerk limited maneuver time,
Muenchhof and Singh (2003), etc.

The basic concept of Input Shaper design was reduced to
cancelling the poles of the underdamped system with the
zeros of the time-delay filter. This prompts the obvious
question of shaping the reference input to account for the
zeros of the input-output transger function of the under-
damped system. Perez and Devasia (2003); Iamratanakul
et al. (2008) in multiple articles introduced the concept
of pre- and post-actuation for output-to-ouput transi-
tion of systems and demonstrated improved transition
performance relative to control profile without pre- and
post-actuation for a class of systems. Singh (2012) posed
the design of Input Shapers where the time-delay filter
cancelled the underdamped poles as well as the zeros of
the system and for systems with minimum-phase zeros
resulted in post-actuated control. Non-minimum phase
zeros result in pre-actuation shaped profiles. Butterworth
et al. (2012) compared three inverse-model approaches
for shaping reference inputs in the discrete time domain.
They include the the zero-phase-error tracking controller
(ZPETC) Tomizuka (1987), nonminimum-phase zeros ig-
nore (NPZ-Ignore), and the zero-magnitude-error track-
ing controller (ZMETC) Al-Numay (2007). These discrete
time approaches also deal with pole-zero, zero-pole cancel-
lations for minimum-phase poles and zeros.

All the aforementioned approaches for design of prefilters
to attenuate residual vibration of underdamped systems
only required knowledge of the nominal underdamped
poles of the system. Robustness was achieved by desensi-
tizing the system response in the proximity of the nominal
poles of the system. It should be noted that the robustness
is achieved at a cost of increased maneuver time.

Singh (2008) used the residual energy evaluated at the
largest delay of the time-delay filter, which is composed of
the kinetic energy and a pseudo-potential energy (which
is zero when the system displacement is coincident with
the desired final value) to design Input Shapers. The issue
of robustness was addressed by increasing the order of
the system by including the differential equations which
represent the sensitivity of the system states to model
parameter uncertainties and forcing these sensitivity states
to zero at the end of the maneuver Liu and Singh (1997).

A vector based general parametrization procedure of all
equidistant four-pulse robust shaping filters with minimum
set of chosen parameters was proposed in Schlegel and
Goubej (2010). Peng et al. (2019), used the feed-forward
smoother in combination with the frequency estimator to
reduce both the swing and twisting of the payloads during
slewing motions by tower cranes. In Newman et al. (2018),
the oscillations induced e.g. by parametric uncertainty or
force disturbances are turned to initial condition problem
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and targeted by the input shaper designed in the time
domain.

3. INTERVAL UNCERTAINTIES BASED DESIGN

This section will focus on robust input shaper design given
knowledge of the domain of uncertainties. Various cost
function which include the 1, 2 and∞ norm of the residual
energy sampled over the uncertain domain, are considered
in the shaper design.

3.1 Worst Case Design (∞ norm)

The first effort at requiring a measure of the system
response at the end of the Input Shaper’s transition be
below a specified threshold was addressed via the Extra
Insensitive Input Shaper design, Singhose et al. (1994). In
this design, the user specifies a tolerable residual vibration
for the nominal model, and the optimizer determines two
neighboring values of the uncertain parameter where the
residual vibration is forced to zero. This expands the
domain of the uncertain variable where the residual vi-
bration is below a specified threshold, relative to the ZVD
Input Shaper (Figure 2), for the same number of impulse
sequence. A complementary approach is called Specified-
Insensitivity (SI) shaping, Singhose et al. (1996), where the
uncertain parameter is sampled over the specified range of
interest, and the residual vibration is minimized over that
domain. The exact SI shaper was designed by requiring
the residual vibration to equal the tolerable threshold and
forcing the slope of the sensitivity curve to zero at a set
of unknown frequencies and forcing the residual vibrations
to zero at another set of unknown frequencies.

Singh (2002) proposed a minimax optimization problem
where the residual energy (kinetic energy plus psuedo-
potential energy) at the end of the maneuver is the cost
function. The worst cost, i.e., the maximum magnitude
of the cost over the domain of uncertainty is minimized
by the parameters of the Input Shaper (time-delay filter).
This formulation did not require any constraints to be
enforced such as the cost being forced to zero at specific
realizations of the uncertain parameters. The problem
however, did require the uncertain domain to be discretely
sampled. A uniform grid of sampling points were selected
to solve this problem. This minimax problem is a nonlinear
programming problem which is burdened by the fact that
the optimal solution might not converge to the global
optima. To address this issue, Conord and Singh (2006)
posed a Linear Matrix Inequality (LMI) based convex
optimization problem which ensures that the resulting
solution is near global-optimal. This results from the fact
that the LMI based approach also requires sampling of the
uncertain domain and as the sampling density increases,
the solution will tend to the global-optima.

3.2 Optimal design of input shapers with lumped and
distributed delays

In input shaper design, various aspects such as robustness,
time response and spectral features are to be handled
simultaneously. Taking into account the structural require-
ments, the design task can be formulated as a standard
constrained optimization task. The pioneering work in this
subject is Lim et al. (1999), where the shaper is considered

in the standard FIR form. The objective of the formulated
optimization task is to minimize the number of impulses
to track the reference without the residual vibrations. The
task is formulated and solved as l1-norm constrained quasi-
convex optimization problem. A multi-level optimization
approach for creating discrete time shapers was proposed
by Robertson and Singhose (2001). Next to zeroing the
residual vibrations for the given frequency, secondary con-
straints such as robustness, rise time, or number of im-
pulses were targeted by the multi-stage algorithm. Build-
ing up on these results, it was shown by Baumgart and
Pao (2007) that a feasible discrete-time single-input shaper
always exists, considering also a class of MIMO systems.

When both the delays and the gains within the input
shaper are to be optimized, it forms a nonlinear opti-
mization problem, which is difficult to solve. However,
as recognized by Singh and Vadali (1995) and Van den
Broeck et al. (2008), once the time delays in the shaper are
prefixed, the optimization task is considerably simplified.
Instead of several delays considered in the conventional
input shaper, its active time range is divided into a large
number of equally distributed time samples. The gains
taken in these samples then form the parameter set to
be optimized. Once the objective function is linear in the
gain parameters, the optimization task can be formulated
as a linear programming problem, where the equality and
inequality constraints are imposed by the required shaper
structure and properties.

In Cole and Wongratanaphisan (2011), analogously to Lim
et al. (1999), a generalized FIR filter with shaping capa-
bility is proposed. By analysis of the FIR and the system
convolution, the conditions on the smooth FIR function
are derived. For a discrete shaper form, the designed
task is turned to either linear or quadratic programming
problem - the other providing the minimum quadratic
gain. Note that the equality and inequality constraints are
imposed by the performance and structural properties of
the FIR filter, as discussed above for the shaper. Compared
to lumped delay shapers, the impulse response has no
singularities and as such, it filters discontinuities from
a command input. The design methodology also allows
to handle multiple modes within a single shaper design.
The method was subsequently extended to adaptive input
shaping by discrete FIR filter in Cole (2011) and Cole and
Wongratanaphisan (2013). In Cole (2012) a fundamental
set of input shaper design solutions was derived that give
exact vibration cancellation for a finite number of modes
and also have low-pass properties with a specified degree
of high-frequency attenuation. H2 optimal FIR pre-filter
is proposed in Cole et al. (2018) for vibration suppression
in machine motion control. A finite horizon optimization
was adopted by Goubej and Helma (2019) for the deriva-
tion of an optimal open-loop control strategy for damping
oscillations in gantry crane systems.

Recently, enhanced attention was paid to employing
the optimization methods in design of distributed de-
lay shapers. In Vyhĺıdal and Hromč́ık (2015), a method
based on the constrained linear least squares optimization
was proposed for direct design of robust shapers with
piece-wise equally distributed delay. The residual vibra-
tion function was considered as the objective function.
Consequently, in Pilbauer et al. (2017) the design task

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8780



was addressed as a quadratic multi-objective problem
balancing the robustness and the response time, i.e. two
characteristics which are in conflict. The design of a shaper
with piece-wise distribution of the delay was also targeted
in Kungurtsev et al. (2017) where the stability constraint
on the spectral abscissa was considered. The resulting non-
smooth and non-convex optimization problem was then
solved by SQP-GS algorithm, Curtis and Overton (2012).

3.3 Robust shaper design by quadratic programming

A most common optimization based shaper design method
is by quadratic programming. Next to the lumped delay
shaper (1), considering the pre-fixed values of the delays
τi, let us consider the shaper with a piece-wise equally
distributed delay described by the transfer function

S(s) = A0 +
1

s

n∑
i=1

Aie
−sτi , (13)

considering the delays 0 = τ1 < τ2 . . . < τn being
equidistantly distributed over the pre-selected response
time T = τn, Vyhĺıdal and Hromč́ık (2015), Pilbauer et al.
(2016).

The task to be targeted here is to optimize the single
mode shapers with S(s) given either by (1) or by (13).
The oscillatory mode to be fully compensated is given by

r = −ωζ− jω
√

1− ζ2. The objective is to design a shaper
robust against variations of the frequency ω considering
the shaper action length T = τn and fixed number of
delays to n. For both the shaper types, the parameters
to be assessed are the gains

x = [A0 A1 A2 · · · An]
ᵀ
. (14)

The optimization problem can then be formulated as

min
x

f(x),

subject to{
Ax ≥ b1,
Aeqx = b2,

(15)

where the equality and inequality constraints result from
the performance and structural requirements on the shaper
structure. A natural choice concerning the objective func-
tion f(x) is to target the residual vibration function (10).
Substituting the mode given by (ζ, ω) for s in the shaper
transfer function S(s), we obtain

S
(
−ωζ − jω

√
1− ζ2

)
= L(ζ, ω)x (16)

with
L(ζ, ω) =

[
1 g0(r) · · · gNp(r)

]
,

where gi = e−sτk for (13) and gi = e−sτk

s for (4), i = 1..n.
Consequently, taking into account (10) we have

V (ζ, ω)2 = xᵀ L(ζ, ω)∗L(ζ, ω) xe2ζωτn

= xᵀ <(L(ζ, ω)∗L(ζ, ω)) xe2ζωτn (17)

where .∗ denotes a complex conjugate transform. The
robustness objective then can be formulated as minimizing
V (ζ, ω)2 over a region ω ∈ [ωmin, ωmax], with nominal
frequency ωnom assumed to be the midpoint of the interval.
To handle the uncertainty in ω we define a grid of Nω
Chebyshev points, which are more efficient for polynomial
approximation, Stewart (1996),

ωk =

(
ωmax + ωmin

2

)
−
(
ωmax − ωmin

2

)
cos

(
(k − 1)π

Nω − 1

)
, (18)

with k = 1, ..., Nω. Then the objective function can be
formulated as

f(x) =
1

Nω

Nω∑
k=1

V (ζ, ωk)2. (19)

By (17), the objective function is expressed by

f(x) = xᵀHx, (20)

where

H =
1

Nω

Nω∑
k=1

e2ζωkτn<{L(ζ, ωk)∗L(ζ, ωk)} . (21)

The standard task for the inequality constraints is to
ensure the non-negative character of the impulse response,
leading to

Ai > 0 (22)

for all the gains i = 0..n for (4). For the distributed delay
shaper (13), the inequality (22) is required only for i = 0.
Then, the following inequalities are to be satisfied

−
l∑

k=1

Ak ≤ 0 for l = 1, 2, ..., n− 1. (23)

The primary task within the equality constraints is to
impose the unity static gain of the shaper. For the lumped
delay shaper (4), it leads to (2). For the distributed delay
shaper (13), it leads to

n∑
k=1

Ak = 0, A0 −
n∑
k=1

Akτk = 1. (24)

In order to compensate a specific oscillatory mode r
entirely, a complex zero of the shaper is placed at the
position of the oscillatory mode. Due to its complex
nature, it leads to {

<(S(r)) = 0,
=(S(r)) = 0.

(25)

The entire procedure outlined above is fully described in
Pilbauer et al. (2016) for the distributed delay shaper
(13). In that paper, the problem was extended by con-
sidering uncertainties also in ζ and optimizing the shaper
action time T = τn via modified objective function. It
also included the software implementation and validation
example.

4. CHANCE CONSTRAINED DESIGN BASED ON
PROBABILITY DISTRIBUTIONS OF UNCERTAIN

PARAMETERS

The interval uncertainty based design which include the
minimax, EI, and SI class of Input Shapers, with lumped or
distributed delays, only require knowledge of the support
of the uncertainty. In numerous applications such as hard
disk drives, one might gather enough samples of vibra-
tion characteristics of the read-write arms to generate a
probability distribution function which can be exploited
in the design of Input Shapers. Pao et al. (1997) consid-
ered uniform and Gaussian distribution for the uncertain
parameters and formulated a cost function which is the ex-
pected value of the residual energy to determine the Input
Shaper impulse sequence. Since minimizing the expected
value alone does not correspond to reducing the variance,
the resulting input shaper can lead to a residual energy
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distribution with a large variance which is undesirable.
If higher moments of the distribution of the stochastic
cost (Residual Energy) can be determined, they can be ex-
ploited to formulate performance metrics which are a func-
tion of the statistics of the stochastic cost. One popular
approach for estimating the statistics of the evolving states
and consequently the residual energy is generalized Poly-
nomial Chaos (gPC), a popular approach for developing
surrogate probabilistic models for a stochastic dynamical
systems. The germ of the approach was first investigated
by Norbert Wiener in his article Wiener (1938) where he
approximated states of a Gaussian process with an infinite
series expansion with Hermite polynomials as bases and
called the approach Homogeneous Chaos. Subsequently,
pioneering works by Cameron and Martin (1947), Ghanem
and Spanos (1991) and Xiu and Karniadakis (2002) have
resulted in significant progress of PC concepts. It has
allowed for the development of surrogate models which can
emulate the original stochastic system inexpensively and
has been used to determine statistics (for example mean
and variance) of states accurately.

Consider the linear state space model:

ż(t, ξ) = A(ξ)z(t, ξ) +B(ξ)u (26)

where z ∈ Rñ, is the state vector which is a function of ξ,
a vector of uncertain variables whose probability density
function (pdf) is known.

From gPC theory, the states of the system in equation (26)
can be expressed as

z(t, ξ) =

∞∑
i=0

z:,i(t)Ψi(ξ) (27)

where, Ψi(ξ) is a complete set of multivariate orthogonal
(w.r.t the pdf of ξ) polynomials and z:,i ∈ Rñ is the time
varying coefficient vector (i.e. z:,i = [z1,i . . . zñ,i]

T ) of
Ψi(ξ). Depending on the desired level of accuracy, typically
the infinite series is truncated as an approximation:

z(t, ξ) ≈
N∑
i=0

z:,i(t)Ψi(ξ). (28)

The objective here in this modelling technique is to eval-
uate the unknown vectors z:,i(t) over time. They can be
determined by either intrusive methods or by non-intrusive
methods, Kim et al. (2013). Intrusive methods require
an analytical knowledge of the system model while non-
intrusive methods can treat models as black boxes. In this
development, since the models of interest are linear: the in-
trusive Galerkin projection is considered and investigated.

On substituting equation (28) in equation (26), we get
N∑
i=1

ż:,i(t)Ψi(ξ) = Az(ξ)

[
N∑
i=0

z:,i(t)Ψi(ξ)

]
+Bz(ξ)u(t).

(29)

Taking the Galerkin Projection of equation (29) over the
basis function space, a deterministic system of equations
is derived

MPCŻPC = APCZPC +BPCu(t) (30)

where ZPC = [zT:,0, z
T
:,1, ..., z

T
:,N ]T .

It has been well recognized that as the number of uncertain
variables increase, the intrusive approach of generating the

Polynomial Chaos based surrogate models which requires
evaluation of high dimensional indefinite integrals, is com-
putationally burdensome and is a drawback of intrusive
polynomial chaos. Nandi and Singh (2019) demonstrated
that for linear systems, using Lagrange interpolation func-
tion as the basis functions for gPC, one can generated a
surrogate model by sample runs of the uncertain model,
which exactly matches the surrogate model derived using
the intrusive approach.

The moments of the states can now be estimated from the
augmented state vector z:,i(t):

E[zm(t, ξ)] = E[(

N∑
i=0

z:,i(t)Ψi(ξ))
m], i = 1, . . . , N. (31)

For an orthogonal basis {ξ} with ξ0 = 1, the first two
moments of the actual state vector z can be estimated
analytically, as follows:

E[z(t)] = E[

N∑
i=0

z:,i(t)Ψi(ξ)] = z:,0(t) (32)

E[(z(t)− z:,0(t))2] =
N∑
i=1

c2i z
2
:,i(t) (33)

where

〈Ψi(ξ),Ψj(ξ)〉 =

∫
Ω

Ψi(ξ)Ψj(ξ)f(ξ)dξ = c2i δij . (34)

For precision motion control, the maneuver is often a rest-
to-rest maneuver and, the residual energy at the end of the
maneuver is a germane cost function. The residual energy
at the final time tf , which is a function of the uncertain
parameter ξ can be defined as:

V (tf , ξ) =
1

2
(z− zf )

T

[
K 0
0 M

]
(z− zf ) (35)

where M and K are the mass and stiffness matrices and the
first half of the state vector z are the displacement states
and the second half are the velocity states. zf corresponds
to the desired final states. If K is not positive definite,
the cost function V (tf , ξ) has to be augmented with a
quadratic term to ensure that the cost function is positive
definite. The resulting cost function is:

V (tf , ξ) =
1

2
(z− zf )

T

[
K 0
0 M

]
(z− zf ) +

1

2
(zr − zrf )2

(36)
where zr refers to the rigid body displacement and zrf is
the desired final position.

The simplest cost function would be to minimize the mean
of the residual energy:

J = E[V (tf , ξ)] =

∫
Ω

V (tf , ξ)f(ξ)dξ (37)

and a more general cost function which consists of a
weighted sum of multiple moments of the residual energy,
Singh et al. (2010):

J =

(
α1E[V (tf , ξ)] +

P∑
i=1

αi

∣∣∣E[(V (tf , ξ)−E[V (tf , ξ)])
i
]
∣∣∣)

(38)
where αi > 0 are weighting parameters.
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Fig. 3. gPC Uniform distribution (2 delays filter)

Consider the Input Shaper design for the undamped sys-
tem:

mẍ+ kx = ku (39)

where k is a time-invariant uniformly distributed random
variable over the range:

0.7 ≤ k ≤ 1.3. (40)

and the mass is m = 1. The input-shaper/time-delay filter
parameterized as:

S(s) =

2∑
i=0

Aie
−sTi (41)

where T0 = 0 and the parameters A0, A1, A2, T1 and T2

is solved for to minimize statistics of the residual energy,
with the constraint that A0 +A1 +A2 = 1.

Solving the three-impulse Input Shaper (two time-delay
filter) where the following cost functions were considered:
i) the mean of the residual energy, ii) equally weighted
mean and deviation of the residual energy, iii) equally
weighted mean, deviation and cube root of the absolute
value of the skew, results in optimal parameter listed in
Table 1.

Figure 3 compares the performance of the gPC based
design to the standard minimax controller design, which
endeavors to minimize the maximum magnitude of the
residual energy over the domain of spring stiffness uncer-
tainty. It is clear from Figure 3 that as higher moments
are included in the design process, the resulting solutions
tend toward the minimax solution.

The Input Shapers described above either consider the
nominal model and the sensitivity of the model to pertur-
bations in the proximity of the nominal model, or consider
the support of the uncertainty to pose a worst case design
to develop robust controllers. One can imagine a scenario
where a low probability realization of the uncertain vector
drives the performance of the robust controller at the cost
of not considering the high probability realizations of the
uncertain vector. It is thus not difficult to motivate a
problem where the user can specify a tolerable level of
risk, which corresponds to a bound on the probability of
violating a prescribed threshold of the cost, while mini-
mizing the cost over the domain of the high probability
space, Nandi and Singh (2017).

A probabilistic or chance constraint is represented by the
equation:

P (h(x, ξ) ≤ 0) ≥ η (42)

where η ∈ [0, 1] is the probability level, x corresponds
to the decision variable(s) and ξ represents the random
variable(s). For ε ∈ [0, 1] representing the acceptable risk,
Equation (42) can be rewritten as Calafiore and El Ghaoui
(2006):

P (h(x, ξ) ≤ 0) ≥ 1− ε. (43)

For a linear chance constraints of the form:

P
(
ξTx ≤ b

)
≥ η (44)

where ξ ∼ N
(
ξ,Σ

)
, ξ and Σ are the mean and the

covariance of the Gaussian random variable ξ respectively,
we can represent:

P
(
ξTx− b ≤ 0

)
= Φ

(
b− ξTx
xTΣx

)
(45)

where Φ represents the cumulative distribution function of
a normal distribution with 0 mean and unit variance. This
permits rewriting the linear chance constraint as:

P
(
ξTx− b ≤ 0

)
≥ η ⇐⇒ b− ξTx ≥ Φ−1 (η) ‖Σ1/2x‖.

(46)
Equation (46) is a cone constraint and is convex for
η > 0.5 Ben-Tal et al. (2009).

However, when the linear chance constraints is a function
of a random variable whose pdf is not Gaussian or cannot
be characterized by a well known pdf, the problem of
imposing the exact chance constraint is challenging. This
is often the scenario one encounters when imposing chance
constraints on states of a dynamic system with uncertain
model parameters. The issue, however, can be dealt with a
robust version of the chance constraint as detailed below.
Calafiore and El Ghaoui (2006) provide an approach to
rewrite the linear probabilistic inequality:

P
(
ξTx+ b ≤ 0

)
≥ 1− ε (47)

where ξ and x are the vectors of random variables and
decision variables respectively, as a convex deterministic
constraint. In their work, they illustrate that if ξ and b
are random variables with known means and variances,
the constraint in equation (47) is equivalent to the convex
constraint√

1− ε
ε
{var[ξTx+ b]}1/2 + E[ξTx+ b] ≤ 0 (48)

where ε represents the risk level i.e. the probability with
which the constraint is permitted to be violated. It should
be noted that the constraint is conservative since it sub-
sumes all distributions with the same mean and variance.
Therefore, if only the first 2 moments of the random
variables (ξ, b) are known, equation (48) allows one to
enforce equation (47) no matter what the true distribution
of (ξ, b) is. However, since this constraint is robust to all
distributions, it can yields conservative solutions.

Consider the single spring-mass system whose dynamics
are defined by Equation (39), where the mass of the system
is m = 5 and k is a time-invariant uniformly distributed
random variable over the range:

0.7676 ≤ k ≤ 1.2324. (49)

Assuming an acceptable risk ε of 30%, which results in
the probabilistic cost of minimizing the acceptable residual
energy R:

P (V (tf , k) ≤ R) ≥ 0.7 (50)
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Cost A0 A1 A2 T1 T2

E[V (T2)] = µ 0.2545 0.4909 0.2545 3.1416 6.2831

µ+
√

E[(V (T2)− µ)2] 0.2554 0.4892 0.2554 3.1416 6.2830

µ+
√

E[(V (T2)− µ)2] + | 3
√

E[(V (T2)− µ)3]| 0.2557 0.4886 0.2557 3.1415 6.2836

Table 1. Moment Based Optimal Input Shaper Design (2 Delays), Equation 38

which ensures that the probability of all realization satis-
fying the residual energy bound of R is greater than 70%.
The maneuver time tf is assumed be one period of the
natural frequency of the system permitting the chance
constrained design to be compared to the ZVD input
shaper. Figure 4 illustrates the relative performance of the
chance constrained Input Shaper design (solid blue line)
to the ZVD shaper (red dashed line). Over the range of the
uniformly distributed uncertain spring stiffness, the grey
region illustrates the domain where any system realization
will satisfy the required probabilistic threshold. The dark
grey region is where the system realization do not satisfy
the required threshold. The conservative nature of the
resulting solution can be gauged from the 10.4% fraction of
the uncertain domain not satisfying the required residual
energy threshold when the acceptable risk was 30%. It is
also clear from the figure that the performance of the Input
shaper within the domain of acceptable risk is significantly
better than the ZVD shaper’s performance.

Fig. 4. Chance Constrained Input Shaper (2 delays filter),
Equation 50

5. INPUT SHAPERS WITHIN FEEDBACK LOOPS

Besides reference shaping, input shapers have proven to be
applicable within feedback loops. The motivation is mainly
in extending the capability to pre-compensate the flexible
modes responses induced by disturbances.

5.1 Shaper spectral properties

Before the overview and brief analysis of available feedback
solutions, we point to spectral properties of the shaper
zeros which play an important role once the shaper is
placed within a feedback loop. First, consider the lumped
delay shaper with the transfer function (4). Due to the
exponential terms arising from the Laplace-transforms of
the delayed variables, the equation

S(s) = A0 +

n∑
i=1

Aie
−sτi = 0 (51)

has infinitely many roots, determining the shaper zeros.
The function S(s) in the form (51) corresponds to a
characteristic function of a delay-difference equation, Hale
and Lunel (1993). Such a function is known to have neutral
spectrum of zeros ri distributed in a vertical strip of the
complex plane α < <(ri) < β,α ∈ <, β ∈ <. As a
consequence, the shaper can have infinitely many zeros
close to the imaginary axis or even located to the right of
the imaginary axis.

Considering the most common type of the distributed
delay shaper (13), its zeros are determined by the equation

S(s) = A0 +
1

s

n∑
i=1

Aie
−sτi = 0,

which has the same distribution of zeros as

S̄(s) = A0s+

n∑
i=1

Aie
−sτi = 0 (52)

except S̄(s) has an additional root at the origin of the
complex plane. Unlike for (51), the spectrum of S̄(s)
zeros is retarded, Hale and Lunel (1993). With increasing
magnitude of zeros, the zeros tend to depart to the left
of the imaginary axis, following asymptotic exponential
curves, Vyhlidal and Źıtek (2009). Thus, as a consequence,
the equation (52) has at most a finite number of right-half-
plane zeros.
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Fig. 5. Comparison of the retarded spectra of zeros (◦)
of the distributed delay shaper (13) (Vyhĺıdal and
Hromč́ık (2015)) with the neutral spectra of zeros (+)
of Two-Hump EI shaper(Singhose et al. (1997))

Difference between spectrum distribution is demonstrated
in Fig. 5, adopted from Vyhĺıdal and Hromč́ık (2015). The
retarded spectrum of a distributed delay shaper is com-
pared with neutral spectrum of a Two-Hump EI shaper
designed in Singhose et al. (1997). Note that both the
shapers have analogous residual vibration characteristics
(see Fig. 8 of Vyhĺıdal and Hromč́ık (2015)). As can be
seen, the Two-Hump EI shaper has many right-half plane
zeros (in fact infinitely many due to spectrum periodicity).
If the shaper is applied just for reference shaping as in
Fig. 1, the distribution of shaper zeros have no effect on
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the closed loop stability. However, if the shaper is placed
within the feedback loop, the distribution of the shaper
zeros plays a significant role in the distribution of closed
loop poles, Vyhĺıdal et al. (2016).

In what follows, the effect of a shaper on closed loop
stability is outlined together with the ability of compen-
sation of the flexible mode in responses to system out-
put disturbance do and the sensor disturbance ds. In the
closed loop schemes, we assume that the main body of the
system G(s), which is controlled by the controller C(s)
is decoupled from the flexible subsystem F (s) with the
oscillatory modes to be compensated and for which the
shaper is designed. Naturally, the most common scheme
in Fig. 1 with the shaper outside the loop is ineffective in
mode compensation induced by any of the disturbances.

F
ys

ShaperController Main body

Flexible
r
− GC S

y
di do

ds

Fig. 6. Feedback interconnection with control input shaper

5.2 Control input shaper

The control scheme with the control-input shaper in Fig.
6 was analysed in Hung (2003). Closed loop stability
issues related to this setup were discussed by Staehlin
and Singh (2003) using root locus diagrams, and by Huey
and Singhose (2009). In all these work, it is reported that
the closed loop synthesis is considerably complicated due
to time delays which are integral to the shaper. In Huey
et al. (2008), it is shown that the architecture is effective
in suppressing the sensor disturbances, but ineffective in
suppressing the oscillations themselves as they are excited
by the output disturbance. It is also shown in Huey et al.
(2008) that the actuator saturation can be handled by the
scheme in Fig. 6, if an artificial saturation (with the same
threshold as the real saturation) is placed between the
controller and the shaper.

From the sensitivity analysis, it results that

Tysdo(s) =
1

1 + C(s)S(s)G(s)
F (s), (53)

Tysds(s) =
C(s)G(s)

1 + C(s)S(s)G(s)
S(s)F (s). (54)

As can be seen, the active zeros of S(s) can compensate the
effect of oscillatory pole of F (s) only in the Tys,ds transfer
function, which shows its proper functioning in responses
to sensor disturbance. However, for compensating the
effect of output disturbance, which is more likely to happen
in real applications, the scheme is not effective.The closed
loop dynamics determined by the characteristic equation

1 + C(s)S(s)G(s) = 0 (55)

is retarded for both the shaper types, except the case when
both the controller and the system are bi-proper. In this
case, the closed loop with the lumped delay shaper (4)
is a neutral time delay system, Vyhĺıdal et al. (2016),
with all the risky stability consequences. Before moving
further, let us point to recently proposed SHAVO (SHAper
+ serVO) control scheme, Beneš et al. (2019), where the

actuator control loop is used to correct the differences
between true and modelled shaped outputs of the flexible
system, including those induced by disturbances during
the transient response.

F

Shaper unit Compensator

Flexible

Controller Main body

ys

S − 1 1 + R
CG

r

−

−
−

GC
y

di do

ds

Fig. 7. Smith-like compensation scheme

5.3 Smith’s scheme with delay compensator

The next scheme, shown in Fig. 7 originates from the
scheme proposed already by Smith (1958). The slight mod-
ification towards extending its applicability was performed
in Vyhĺıdal et al. (2016). The modified Smith’s scheme has
the sensitivity functions

Tysdo(s) =
1

S(s)(1−R(s)) + C(s)G(s) +R(s)
S(s)F (s)

(56)

Tysds(s) =
C(s)G(s)− S(s)R(s) +R(s)

S(s)(1−R(s)) + C(s)G(s) +R(s)
F (s) (57)

where R(s) is a low-pass filter added to the Smith’s
scheme by Vyhĺıdal et al. (2016). As can be seen, the
performance is converse to the scheme in Fig 6. Due to the
term S(s)F (s) in Tys,do , the mode can be compensated in
responses induced by do. This is not however the case for
the ds → ys channel. Due to the characteristic equation

S(s)(1−R(s)) + C(s)G(s) +R(s) = 0 (58)

the closed loop system is of neutral type for lumped
delay shaper (4), whereas it is of more convenient re-
tarded type for distributed delay shaper (13). Besides, for
the roots with high magnitude, considering C(s)G(s) is
strictly proper, the roots of (58) tend to match the high-
magnitude roots of S(s) = 0. Therefore, the application of
lumped delay shaper (4) is rather risky from the stability
perspective. For example, if the Two-Hump EI shaper with
zeros distribution shown in Fig. 5 is applied, the closed
loop system would have infinitely many unstable poles
with high magnitude. On the other hand, the application
of distributed delay shaper (13) does not bring such a
stability risk. Thus, it should be preferred in the Smith’s
scheme.

Before proceeding further, let us discuss the purpose and
properties of R(s) filter. Note that in the original Smith’s
scheme R(s) = 1. This has positive consequences to the
closed loop dynamics as the shaper transfer function S(s)
(with delay terms) is fully compensated in the denomina-
tors of the closed loop transfer functions. However, this
can be applied if and only if both C(s) and G(s) are bi-
proper, which is very unlikely in practice. The primary role

of R(s) is to make R(s)
G(s)C(s) implementable if C(s)G(s) is

strictly proper. In order to preserve S(s)-compensation at
the low frequency range, the cut-off frequency of the filter
R(s) should be considerably larger than ω.
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5.4 Feedback inverse shaper

The last inverse shaper scheme shown in Fig. 8 was
proposed by Vyhĺıdal et al. (2016). As can be seen from
the sensitivity analysis

Tysdo(s) =
1

S(s) + C(s)G(s)
S(s)F (s) (59)

Tysds(s) =
C(s)G(s)

S + C(s)G(s)
F (s) (60)

analogously to the Smith’s scheme, the mode compensa-
tion takes place in the responses induced by do, but it
does not in the responses induced by ds. The characteristic
equation

S(s) + C(s)G(s) = 0 (61)

is neutral for the lumped delay shaper (4), and retarded
for distributed delay shaper (13). In both cases the high
magnitude roots tend to match the high magnitude zeros
of the shaper. Thus, the application of distributed delay
shaper is much safer from the stability perspective. Unlike
in the Smith’s scheme, the controller C(s) design needs
to be performed taking into consideration the infinite
dimensionality of the closed loop. A controller design for
the inverse shaper scheme by spectral optimization was
proposed in Pilbauer et al. (2018).

F

Inverse shaper

Flexible

Controller Main body

ys

1
S

v

r
− GC

y
di do

ds

Fig. 8. Feedback interconnection of an inverse shaper
according to Vyhĺıdal et al. (2016)

In the above schemes, no coupling was considered between
the flexible subsystem and the main body. If this happens,
the flexible mode can be deflected from the mode of the
flexible part. A systematic approach to derive the flexible
mode of the coupled system to be targeted by the inverse
shaper was proposed by Hromč́ık and Vyhĺıdal (2017) and
experimentally validated by Pilbauer et al. (2018).

Let us also point to the effect of the input disturbance di in
the above analysed schemes. As Tysdi(s) = Tysdo(s)G(s),
the conclusions obtained for do apply also for di. In Alikoç
et al. (2017) it was demonstrated that the inverse shaper
functions well under the control saturation, which in some
sense can be represented by the input disturbance. Con-
cerning the shaper functioning in reference changes, be-
cause Tysr(s) = Tysdo(s)C(s)G(s) for Smith’s and inverse-
shaper schemes, and Tysr(s) = Tysdo(s)C(s)S(s)G(s) for
the control input shaper scheme, the mode is compensated
in all the considered schemes for this w → ys channel.

6. CONCLUSIONS

The vast majority of interest in reference shapers has
focused on those outside a feedback loop and some recent
work has addressed the shaper design within the feedback
loop. Minimal attention has been directed at the concur-
rent design of feedback controller and reference shapers.

Preliminary work on second order systems has resulted in
counter-intuitive results such as the need for the feedback
controller to result in an undamped closed loop response
since the reference shaper can eliminate the vibratory
modes, and the lack of damping can reduce the transition
time. Generalizing the design and incorporating uncertain-
ties into the design is an area looking for attention.

Even though rudimentary attention has been paid to
shaper performance under various non-linearities, further
research is needed in this aspect. In the most common
feed-forward layout, the linearity of the whole system is
the key assumption for the oscillatory mode compensation.
Most attention so-far has been paid to handling the
actuator saturation. For the scheme in Fig. 6, it can be
handled under slight adjustment of the scheme, Huey et al.
(2008), whereas the inverse shaper schemes Fig. 8 handles
the saturation effect directly, Alikoç et al. (2017). More
attention needs to be paid to other constraints, such as
limiting the actuator rate, acceleration and jerk. These
can be embedded as constraints in the optimal design of
the shaper. However, the complexity of optimal design can
be restrictive for some applications. Further on, systematic
attention should also be paid to the effects of dead-zone
and friction phenomena.

In the optimal design, powerful convex optimizers are
available for the shaper structure with prescribed delay
lengths. This however often leads to enhanced demands on
the compensator implementation. Approaches to achieve
desired shaper performance under minimal parameteriza-
tion in a convex programming framework are yet to be in-
vestigated. Concerning the shaper implementation within
feedback loop, more attention should be paid to spectrum
optimization due to the link to closed loop stability, Kun-
gurtsev et al. (2017). For the closed loop shaper imple-
mentations, robust controller design is to be addressed in
more detail taking into account infinite dimensionality of
the closed loop. This leads to another challenging topic,
which is targeting the shaper and the controller within
a unified design framework. Another research direction is
in applying the delays related to the oscillation period
directly to the controller structure, Vyhĺıdal et al. (2017).
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Vyhĺıdal, T., Anderle, M., Bušek, J., and Niculescu,
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