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Abstract: The paper presents the design of parameter varying input and output transfor-
mations for Linear Parameter Varying systems, which make possible the control of a selected
subsystem. In order to achieve the desired decoupling the inputs and outputs of the plant are
blended together, and so the MIMO control problem is reduced to a SISO one. The new input
of the blended system will only interact with the selected subsystem, while the response of
the undesired dynamical part is suppressed in the single output. Decoupling is achieved over
the whole parameter range, and no further dynamics are introduced. Linear Matrix Inequality
methods form the basis of the proposed approach, where the minimum sensitivity is maximized
for the subsystem to be controlled, while the H∞ norm of the subsystem to be decoupled is
minimized. The method is evaluated on a flexible wing aircraft model.
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1. INTRODUCTION

Since its appearance, Linear Parameter Varying (LPV)
systems theory became a well established field in control
systems design with numerous application possibilities.
Recent trends in systems engineering are pointing in
the direction of reducing the complexity of the control
problem. This can be achieved by reducing the order of
the controller (Nwesaty et al., 2015), by designing fixed
structure controllers (Adegas and Stoustrup, 2012), or by
decoupling. The paper focuses on the latter one, where our
general aim is to control a certain fraction of the system,
without affecting other parts.

Various decoupling approaches can be found in the lit-
erature for LPV systems to achieve input-output decou-
pling. (Mohammadpour et al., 2011) designs a static input-
output decoupling by pre- and post- compensators based
on the singular value decomposition of the steady state
transfer function matrix. The method does not introduce
further dynamics to the open loop, however it does not
guarantee decoupling over the whole frequency range. (Lan
et al., 2015) applies a dynamic decoupling based on con-
vex optimalization with Linear Matrix Inequality (LMI)
constraints. The H∞ norm of a virtual system which is
composed by the controlled system and the no coupling
reference model is minimized.

In the present paper we focus on subsystem decoupling
for LPV systems. In recent years various approaches were
introduced in order to assure decoupled control of selected
dynamical modes of a system. However to the best of the
knowledge of the authors, these methods have not been
extended to Linear Parameter Varying (LPV) systems.
The common point for many of these methods is that they
introduce input and output blending vectors to decouple
modes and accordingly reduce the control design into a
Single Input Single Output (SISO) problem. (Danowsky
et al., 2013) determines an optimal blend for the measure-
ments which assures the isolation of the selected mode, and
simultaneously computes an optimal blend for multiple
control inputs to suppress the selected mode via a negative
optimal feedback, while minimizing the control’s effect on

other modes. (Pusch, 2018) introduces a joint H2 norm
based input and output blend calculation method which
assures the controllability, observability and the indepen-
dent control of selected modes.

In a recent paper (Baár and Luspay, 2019) the authors
presented a novel sensor and actuator blending approach
for LTI systems, in order to assure decoupled control
of individual modes with simple SISO controllers. The
present paper extends these results to LPV systems. Our
approach is based on the H− index and the H∞ norm for
LPV systems, by seeking parameter-dependent input and
output blend vectors which are maximizing the minimum
sensitivity for a given mode, while minimizing the maximal
one for the other subsystem. This way decoupling can be
achieved between the dynamical modes.

The outline of the paper is as follows. Section 2 describes
the problem formulation, followed by Section 3 presenting
the necessary mathematical tools. The mode decoupling
algorithm is presented in Section 4. Numerical examples
are reported in Section 5, followed by the concluding
remarks.

2. PROBLEM FORMULATION

2.1 Linear Parameter Varying Systems

Our starting point is the state space formulation of con-
tinuous time LPV systems, given as:

G(ρ(t)) :

{
ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t),

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t),
(1)

with the standard notation of x(t) ∈ Rnx , u(t) ∈ Rnu
and y(t) ∈ Rny being the state, input and output vector,
respectively, depending on the continuous time variable
t. The trajectories of the time-varying scheduling vector
ρ(t) ∈ Rnρ are unknown apriori, but measurable on-line,
and they are assumed to be constrained in the parameter
variation set

FVP = {ρ(t) ∈ Cl(R+, R
nρ) : ρ(t) ∈ P, ρ̇(t) ∈ V,∀t ≥ 0},

(2)
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Fig. 1. Proposed closed loop control scheme

where Cl is the class of piece-wise continuously differen-
tiable functions, P := {ρ ∈ Rnρ : ρi ∈ [

¯
ρi, ρ̄i]}, and

V := {ν ∈ Rnρ : νi ∈ [
¯

νi, ν̄i]} 1 .

We assume that the system matrix functions are given in
the following subsystem form:

A(ρ) =

[
Ac(ρ) 0

0 Ad(ρ)

]
, B(ρ) =

[
Bc(ρ)
Bd(ρ)

]
,

C(ρ) = [Cc(ρ) Cd(ρ)] , D(ρ) = [D(ρ)] .

(3)

For Linear Time Invariant (LTI) systems this form is called
the modal form, which can be achieved by a suitable
state transformation (Kailath, 1980). A similar structure
for LPV systems has been developed, along with the
construction of the corresponding parameter-dependent
state transformation in (Luspay et al., 2018a), resulting
in a block-diagonal and continuous A(ρ) function, where
each block represents a dynamical mode of the dynamics.
For the ease of presentation, and without loss of generality,
assume that the system consists of only two subsystems,
one which we would like to control (subscript c) and the
one which should be decoupled (subscript d). The latter
may contain multiple modes. In (3) coupling between the
subsystems appears through the input-output, which we
intend to resolve.

Our goal is to create the environment denoted by the
dashed frame in Figure 1, which allows the control of the
Gc(ρ) subsystem by a Cc(ρ) controller, without effecting
the other one, Gd(ρ). This is formalized as maximizing
the minimum sensitivity from ū to ȳ through Gc(ρ) while
minimizing the maximum sensitivity through Gd(ρ). For
this purpose we introduce ku(ρ) ∈ Rnu and ky(ρ) ∈ Rny :
the normalized (i.e. ‖ku(ρ)‖ = ‖ky(ρ)‖ = 1, ∀ρ) input
and output blending vector functions, respectively. These
blending functions transform the u and y signal vectors
onto a single dimension, consequently reducing the control
problem into a SISO one. In Figure 1 the control input
ū ∈ R is distributed between the plant’s inputs (u =
ku(ρ)ū) in a way that they only excite the subsystem which
one wishes to control. Similarly the controller’s input
ȳ = kTy (ρ)y ∈ R is calculated such that the information
content from the subsystem which has to be decoupled, is
minimized. Formally the blending problem is as follows.

Problem 1. Find normalized ku(ρ) and ky(ρ) vector func-
tions such that

||kTy (ρ)Gc(ρ)ku(ρ)||[¯ω,ω̄]
− > β (4)

is maximized and
||kTy (ρ)Gd(ρ)ku(ρ)||∞ < γ (5)

1 Time dependence is omitted in the rest of the paper to ease the
notation.

is minimized over the selected frequency range [
¯
ω, ω̄]. Here

β and γ are two positive constants referring to the minimal
sensitivity and induced L2 norm, respectively.

3. MATHEMATICAL BACKGROUND

Basic mathematical definitions are given in the section,
which are used throughout the paper.

3.1 Minimum sensitivity

A key notion in the decoupling approach is the minimum
sensitivity (H− index) of a system, which for LPV systems
over a finite frequency range is defined as (Sun et al., 2013):

||Gc(ρ)||[¯ω,ω̄]
− := inf

ω∈[
¯
ω,ω̄] ¯

σ [Gc(ρ)] , ∀ρ ∈ FVP , (6)

with σ denoting the minimum singular value and
¯
ω, ω̄

being the minimal and maximal frequency of interest. The
computation of (6) can be done based on the General-
ized Kalman-Yakubovich-Popov (GKYP) lemma by using
convex optimization, involving Linear Matrix Inequality
(LMI) constraints. The time-domain interpretation is

inf
ρ∈FVP

inf
||u||2 6=0

||y||2
||u||2

> β (7)

over inputs u ∈ Lnu2 , such that the following holds:
∞∫

0

(
Ψ11ẋ

T ẋ+ Ψ12ẋ
Tx+ Ψ21x

T ẋ+ Ψ22x
Tx
)

dt ≥ 0 (8)

with x(0) = 0. Here the matrix Ψ represents the low,
middle and high frequency ranges respectively as:

Ω |ω| ≤ ω̄l
¯
ω ≤ ω ≤ ω̄ |ω| ≥ ωh

Ψ

[−1 0
0 ω2

l

] [
−1 jωm

−jωm −
¯
ωω̄

] [
1 0
0 −ω2

h

]

where ωm = (
¯
ω + ω̄)/2. For further details on the time-

domain interpretation see (Iwasaki et al., 2005). The
following lemma provides the LMI formulation of the H−
index for LPV systems, based on (Sun et al., 2013).

Lemma 3.1. Consider the LPV system given by (1). Let

Π =

[
−I 0
0 β2I

]
∈ R(nx+ny)×(nx+ny). Assume that (1) is

asymptotically stable, and there exists β ≥ 0 and Ψ ∈ H2.
If there exists Pc(ρ), Q ∈ H2 such that Q � 0 and

[
A(ρ) B(ρ)
I 0

]T [ Ψ11Q Pc(ρ) + Ψ12Q
Pc(ρ) + Ψ21Q Ṗc(ρ) + Ψ22Q

] [
A(ρ) B(ρ)
I 0

]

+

[
C(ρ) D(ρ)

0 I

]T
Π

[
C(ρ) D(ρ)

0 I

]
≺ 0,

(9)

holds for all ρ ∈ FVP , then ||G(ρ)||[¯ω,ω̄]
− ≥ β to a restricted

class of input signals specified by (8) with x(0) = 0.

In the rest of the paper we will use the middle frequency
formulation, and apply the following notation

Ξ =

[
Ψ11Q Pc(ρ) + Ψ12Q

Pc(ρ) + Ψ21Q Ṗc(ρ) + Ψ22Q

]
. (10)

Although stability of the LPV plant is assumed in the
derivation of Lemma 3.1, it can be extended and used for
unstable systems also. In this case, a stabilizing solution
of the parameter-dependent Riccati Inequality is used for
computing the minimal sensitivity (see (Liu et al., 2005)).
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Fig. 2. Input blend calculation

3.2 Maximum sensitivity

The second mathematical tool that we use in the paper
is the maximum sensitivity, the induced L2 norm of LPV
systems. The definition reads as:

sup
ρ∈FVP

sup
||u||2 6=0

||y||2
||u||2

< γ, (11)

which can be efficiently computed using the Bounded Real
Lemma for LPV systems (Wu, 1995).

Lemma 3.2. Given the LPV system in (1). If there exists
a matrix function Pd(ρ) � 0 and a positive scalar γ such
that (12) is satisfied for all ρ ∈ FVP , then ||G(ρ)||2 ≤ γ iff

[
Pd(ρ)A(ρ) + �+ CT (ρ)C(ρ) + Ṗd(ρ) ?

BT (ρ)Pd(ρ) +DT (ρ)C(ρ) DT (ρ)D(ρ)− γ2I

]
≺ 0,

(12)

where � = AT (ρ)Pd(ρ) and ? is a placeholder for the
transpose of the symmetric off-diagonal term. The proof
can be found in (Wu, 1995) and is omitted here.

The LMIs (9) and (12) form an infinite number of con-
straints over the admissible set of the scheduling param-
eter. Therefore for numerical reasons they are evaluated
over a finite grid. More precisely, the parameter variation
set is discretized and the corresponding LTI dynamics are
obtained. Then, the LMI constraints are written for the
finite set of systems, taking into account the bounds of
the change in the scheduling parameter. More details can
be found in (Wu, 1995).

4. THE PROPOSED DECOUPLING ALGORITHM

The decoupling approach presented in the paper is carried
out in two consecutive steps. First an optimal parameter-
dependent input blend is found, and applied to the system,
next a corresponding output blend function is calculated.

4.1 Input blend calculation

The aim of the subsection is to find an input blend
vector function ku(ρ), which maximizes the excitation of
the selected LPV subsystem, while minimizes the impact
on the one to be decoupled. In this step only the state
dynamics are considered, as it is shown in Figure 2.

Before going into the details side notes has to be taken.
It follows from the definition of the H− index and the L2

gain that:

||Gc(ρ)||[¯ω,ω̄]

{−,∞} = ||G∗c (ρ)||[¯ω,ω̄]

{−,∞}, (13)

where ∗ represents the conjugate system. In other words,
the H− index and the induced L2 norm of the system

and its conjugate are the same. The use of the conjugate
representation assures the linearity in the design process.

At the same time, note that the H− index can only be
calculated for tall or square systems (Li and Liu, 2010).
However, in case the inputs are blended into a scalar
ū signal, then the dual representation would be a wide
system. The problem is converted to a square system, by
defining the performance output as the sum of the states.

If one writes the LMI constraints of (9) and (12) for
the dual system then expresses the formulas in terms of
the original representation, one gets (14) and (15), where

Π =

[
−Ku(ρ) 0

0 β2I

]
. Here we have introduced the new

parameter dependent matrix Ku(ρ) = ku(ρ)ku(ρ)T ∈
Rnu×nu , as the dyadic product of the parameter-dependent
input blend vectors. Note that the term D(ρ) = 0.

Note that the Ku(ρ) terms are appearing in the matrix
inequalities because of the conjugate representation, oth-
erwise we would be facing a bilinear (and quadratic) ma-
trix problem. The conjugate form ensures linearity, while
preserves the corresponding sensitivity values. The newly
introduced variable Ku(ρ) has rank 1 for all ρ ∈ FVP , which
has to be taken into consideration in the solution. The
input blend calculation is summarized in Proposition 4.1.

Proposition 4.1. The optimal ku(ρ) input blend for the
system given in the form of (1) can be calculated as the
left parameter dependent singular vector corresponding to
the largest singular value of the Ku(ρ) blend matrix, where
Ku(ρ) satisfies the following optimization problem

minimize
Pd(ρ), Ku(ρ), Pc(ρ), Q, β2, γ2

− β2 + γ2

subject to (14), (15), 0 � Ku(ρ) � I, Pd(ρ) � 0,

Q � 0, and rank (Ku(ρ)) = 1, ∀ρ ∈ FVP

(16)

with I being the identity matrix.

Proposition 4.1 is a multi-objective optimization problem,
which is frequent in mixed H−/H∞ fault detection ob-
server design (see e.g. (Wei and Verhaegen, 2008)). Since
Ku(ρ) is a parameter dependent matrix, ku(ρ) can be cal-
culated through an analytic singular value decomposition
(Mehrmann and Rath, 1993), which takes into account the
parameter dependency and ensures continuity.

The arising rank constraint is satisfied by an alternating
projection method. It is taken from (Grigoriadis and
Beran, 2000), where the authors applied it for satisfying
a coupling rank constraint in a fixed-order H∞ control
design problem. For the solution of the present problem,
the basic idea is the following. Let us denote with Γconvex

the convex set which is formed by the LMIs (14) and
(15) without the rank constraint on Ku(ρ). Denote this
non-convex rank constraint on Ku(ρ) by the set Γrank.
Suppose that the sets have a nonempty intersection, and
one wishes to solve the problem by finding a matrix
function in the intersection: fulfilling both convex and non-
convex constraints. The classical alternating projection
scheme states that this problem can be solved by a
sequence of orthogonal projections from one set to the
other. Each step assures that the projected matrix in the
corresponding set has the smallest distance from the one
it was projected from. The orthogonal projection theorem
also assures that each projection is unique (Luenberger,
1997). However, even if the intersection exists, global
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[
ATc (ρ) CTc (ρ)
I 0

]T
Ξ

[
ATc (ρ) CTc (ρ)
I 0

]
+

[
BTc (ρ) DT (ρ)

0 I

]T
Π

[
BTc (ρ) DT (ρ)

0 I

]
≺ 0 (14)

[
Pd(ρ)ATd (ρ) +Ad(ρ)Pd(ρ) +Bd(ρ)Ku(ρ)BTd (ρ) + Ṗ (ρ) Pd(ρ)Cd

T (ρ) +Bd(ρ)Ku(ρ)DT (ρ)
Cd(ρ)Pd(ρ) +D(ρ)Ku(ρ)BTd (ρ) D(ρ)Ku(ρ)DT (ρ)− γ2I

]
≺ 0 (15)

Γrank(ρ) Γconv(ρ)

Ku0
(ρ)

K?
u(ρ)

Fig. 3. An alternating projection sequence

convergence cannot be guaranteed in our case, due to the
non-convex Γrank set. Nevertheless local convergence of the
proposed algorithm to a matrix which satisfies the above
constraints is guaranteed (Grigoriadis and Beran, 2000).

The approach consists of various sequences of alternating
projections. In each sequence the rank of the solution is
reduced by one (starting from nu, until rank(K?

u(ρ)) = 1
is achieved). The process of a single projection sequence
is illustrated in Figure 3. Next, the solution of Proposi-
tion 4.1 based on an alternating projection algorithm is
presented in details. For this we borrow the following two
lemmas from (Grigoriadis and Beran, 2000), and extend
them to parameter dependent matrices.
Lemma 4.2. Orthogonal projection to a lower dimensional
set. Let Z(ρ) ∈ Γn×nrank and let Z(ρ) = U(ρ)S(ρ)V T (ρ)
be a parameter dependent singular value decomposition
of Z(ρ), calculated according to (Mehrmann and Rath,
1993). The orthogonal projection, Z?(ρ) = ProjΓn−k

rank
Z(ρ),

of Z(ρ) onto the Γn−k×n−krank dimensional set is given by

Z?(ρ) = U(ρ)Sn−k(ρ)V T (ρ), (17)

where the Sn−k(ρ) diagonal matrix function is obtained by
replacing the smallest k singular value functions by zeros.

Note that the analytic SVD ensures the continuity of the
blend vector, in contrast with local solutions. This feature
is important from an implementation perspective.
Lemma 4.3. Projection to a general LMI constraint set
Γ. Let Γ be a convex set, described by an LMI. Then
the projection X?(ρ) = ProjΓX(ρ) can be computed as
the unique solution Y (ρ) to the semidefinite programing
problem

minimize trace(S(ρ))

subject to

[
S(ρ) Y (ρ)−X(ρ)

Y (ρ)−X(ρ) I

]
� 0,

Y (ρ) ∈ Γ, S(ρ), Y (ρ), X(ρ) ∈ Rn×n,

(18)

with S(ρ) = ST (ρ), ∀ρ ∈ FVP .

4.2 Input blend calculation algorithm

Now we are in the position to present the numerical
algorithm to Proposition 4.1. We are using a grid based
solution of the problem. LMIs (14), (15) are written as a

group of LMIs, with continuously differentiable functions
Pc(ρ) and Pd(ρ) evaluated over the finite grid, leading
to a finite dimensional convex problem. The following
algorithm summarizes the input blend calculation.

Algorithm 1 Input blend calculation

1: The subsystems Ĝc and Ĝd are given in the form as
shown in Figure 2.

2: A β iteration is carried out in order to find the
largest value of β for which the following optimization
problem can be solved without rank constraint.

minimize
Pd(ρ), Ku(ρ), Pc(ρ), Q, β2, γ2

− β2 + γ2 + trace(Ku(ρ))

subject to (19), (20), Pd(ρ) � 0, Q � 0,

0 � Ku(ρ) � I, ∀ρ ∈ FVP
(21)

Set the counter variable to k = 1
3: Alternating projection. Once reached, this point is

iterated till convergence is achieved by a suitable
selected error metric, such as the relative change in
the solution. The previously obtained values of β and
γ are kept constant during the iteration, which consists
of two steps.
a: Project Ku(ρ) to an nu − k dimensional subset by
Lemma 4.2 to obtain K?

u(ρ).
b: Project the achieved reduced rank K?

u(ρ) to the LMI
constraint set by the following optimization problem

min
Pd(ρ), Ku(ρ), Pc(ρ), Q, S(ρ)

trace (S(ρ))

s.t.:(20), (19), 0 � Ku(ρ) � I, Q � 0,[
S(ρ) Ku(ρ)−K?

u(ρ)
Ku(ρ)−K?

u(ρ) I

]
� 0 for ∀ρ ∈ FVP .

4: Set k = k + 1 and return to step 3, until rank 1 is
achieved, then go to step 5.

5: Project Ku(ρ) to an nu − k dimensional subset by
Lemma 4.2. The results is K?

u(ρ).
6: Calculate ku(ρ) as the singular vector corresponding to

the largest singular value in the parameter dependent
Singular Value Decomposition of K?

u(ρ).

Once ku(ρ) is found, it is applied to the subsystems to
give Ā{c,d}(ρ) = A{c,d}(ρ), B̄{c,d}(ρ) = B{c,d}(ρ)ku(ρ),

C̄{c,d}(ρ) = C{c,d}(ρ), D̄(ρ) = D(ρ)ku(ρ). This notation
is used next, to calculate the corresponding output blend.

4.3 Output blend calculation

The output blend will maximize the information of the
mode to be controlled to the single output, while it
suppresses the effects of the undesired dynamics. The
blend calculation process is shown in Figure 4. The direct
feedthrough was not involved in the input blend calcula-
tion and so it is neglected here. Its effect can be corrected
by a ky(ρ)TD(ρ)ku(ρ) feedforward term from ū to ȳ once
the output blend is found, by to the following proposition.

Proposition 4.4. The optimal ky(ρ) output blend for the
system shown in Figure 4 can be calculated as the left pa-
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Pd(ρ)Ad(ρ) +ATd (ρ)Pd(ρ) + CTd (ρ)Cd(ρ) +

nρ∑

i=1

±
(
vi
∂Pd
∂ρi

)
Pd(ρ)Bd(ρ)

BTd (ρ)Pd(ρ) −γ2I


 ≺ 0 (19)

[
Ac(ρ) Bc(ρ)
I 0

]T



Ψ11Q Pc(ρ) + Ψ12Q

Pc(ρ) + Ψ21Q Ψ22Q±
(
vi
∂Pc
∂ρi

)


[
Ac(ρ) Bc(ρ)
I 0

]
+

[
Cc(ρ) 0

0 I

]T
Π

[
Cc(ρ) 0

0 I

]
≺ 0 (20)

Ĝc(ρ)

Ĝd(ρ)

B̄c(ρ)
∫

Āc(ρ)

C̄c(ρ) ky(ρ)
+

+ ȳc

B̄d(ρ)
∫

Ād(ρ)

C̄d(ρ) ky(ρ)
+

+

ȳd

ū

Fig. 4. Problem layout for output blend calculation

rameter dependent singular vector function corresponding
to the largest singular value of the Ky(ρ) blend matrix,
where Ky(ρ) satisfies the following optimization problem

minimize
Pd(ρ), Ky(ρ), Pc(ρ), Q, β2, γ2

− β2 + γ2

subject to (23), (24), 0 � Ky(ρ) � I, Pd(ρ) � 0,

Q � 0, and rank (Ky(ρ)) = 1, ∀ρ ∈ FVP

(22)

with I being the identity matrix with appropriate dimen-

sions, and Π =

[
−Ky(ρ) 0

0 β2I

]
.

Note that D̄ = 0 in (23) and (24). The calculation of the
output blend vector function can be carried out in a same
way as in Algorithm 1, hence it is omitted here.

5. NUMERICAL RESULTS

The presented algorithm was tested on a flexible winged
aircraft model, which has been developed in (FLEXOP
project, 2015). The aircraft is equipped with eight ailerons
(four on the left and four on the right wings) and two
ruddervators on each side. Measurements are given at the
90% spanwise location on the left and right trailing edge,
providing information about the vertical acceleration (az)
and the angular rates (ωx, ωy) around the lateral and
longitudinal axis of the aircraft respectively.

The model has 5 standard aircraft rigid body modes, and
two additional flutter modes arising from the coupling
of the aerodynamic and structural forces. These flutter
modes are responsible for the oscillatory motions of the
wing, and they are becoming unstable over a certain
airspeed. Further details of the modeling can be found
in (Luspay et al., 2018b). An LPV model was created
based on the nonlinear one by trimming and linearization,
and the indicated airspeed was selected as the scheduling
parameter (ρ). The modal form given in (3) was achieved
by applying the algorithm of (Luspay et al., 2018a),
which was followed by a parameter varying model order
reduction. The obtained low order LPV model is used for
illustrating the proposed decoupling methodology.

We aim to decouple the rigid body dynamics of the aircraft
from the asymmetric flutter mode over the ρ = [45, 56]

m/s airspeed range. This would assure that a controller
designed for the asymmetric flutter mode, will not interact
with the rigid body modes and the corresponding baseline
controller. To achieve this, the computation of continu-
ous ku(ρ) and ky(ρ) blend vector functions is required.
For the parameter-dependent solution a quadratic basis
function was selected as P{c,d}(ρ) = P0 + P1ρ + P2ρ

2.
The parameter dependence of the Ku(ρ) and Ky(ρ) blend
matrix functions were selected to be linear. The value of
ρ̇ represents the longitudinal acceleration of the aircraft,
and its maximum value was selected to be half of the
gravitational acceleration. The LPV theory then assures
that the decoupling is achieved when the airspeed is in the
designed range, it is changing according to the prescribed
basis functions, and

¯
ρ̇ 5 ρ̇ 5 ¯̇ρ.

Figure 5 shows the maximal singular values for the sub-
systems to be controlled and decoupled at various airspeed
values. This indicate that there is a certain amount of
coupling between the subsystems, because the same input
could excite their outputs with a similar magnitude. After
solving the blending problem as described in Section 4, the
ku(ρ) and ky(ρ) blending vector functions were successfully
determined and applied to the subsystems. It is possible to
evaluate these blending functions at certain airspeed val-
ues (frozen parameter): this results in a family of singular
value plots corresponding to the decoupled subsystems.
This is shown in the lower subfigure. The transfer through
the controlled subsystem is also reduced as the blends are
suppressing the undesired dynamics.

The transition between grid points is evaluated by time
domain simulations. A step input (ū = 1(t)) has been
applied to the blended subsystems, while the scheduling
parameter has been varying as ρ(t) = sin(ωt) with ω
satisfying conditions on ρ̇ used throughout the design.
The responses of the two blended subsystems are shown in
the lower subfigure of Figure 6. Clearly by the input and
output blends, the excitation of the asymmetric flutter
mode is higher than the rigid body modes, and so a
controller will interact with this mode only. The calculated
blending functions are continuous and smooth functions of
the parameter, and their evolution is also plotted in Figure
6.

6. SUMMARY

A method for individual control of a selected subsystem
was presented for LPV systems. It relies on suitably de-
signed input and output blend vector functions, which are
transforming the underlying MIMO plant into a SISO one.
The advantage of the method is that, it does not introduce
further dynamics into the system. The effectiveness of the
method has been validated by a time domain simulation
of a flexible wing aircraft. The flexible subsystem was
successfully decoupled from the rigid body modes.
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[
Āc(ρ) B̄c(ρ)
I 0

]T
Ξ

[
Āc(ρ) B̄c(ρ)
I 0

]
+

[
C̄c(ρ) D̄(ρ)

0 I

]T
Π

[
C̄c(ρ) D̄(ρ)

0 I

]
≺ 0 (23)

[
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B̄Td (ρ)Pd(ρ) + D̄T (ρ)Ky(ρ)C̄d(ρ) D̄T (ρ)Ky(ρ)D̄(ρ)− γ2I

]
≺ 0 (24)
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