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Ivanovitch Silva ∗ Luiz A. Guedes ∗ Gustavo Leitão ∗

Diego Silva ∗

∗ Federal University of Rio Grande do Norte, Natal, Brazil
{aguinaldo,greati,vinihcampos}@ufrn.edu.br,{ivan,gustavo.leitao}@imd.ufrn.br,

affonso@dca.ufrn.br, diego@ect.ufrn.br

Abstract: Industries are considered data rich but information poor environments. Mainly due
to systems design restrictions, to the lack of adequate processing power and to a sector culture
notably focused on collecting, selecting, storing and preserving historical series in on-demand
access repositories, massive data generated in industrial operations is traditionally neglected (or
simply took aside). This huge amount of unprocessed data resting in these repositories is a latent
and rich source of information that could be used to improve industrial processes. This work
then proposes an approach in which an elastic processing engine is designed to be plugged-
in to currently installed industrial information infrastructure to provide it with the ability
of performing visual analytics on massive industrial data. A case study where an interactive
visualization application is made possible in real-world industrial data scenario of over 100
million records is presented to attest the effectiveness and potential of the proposed approach
in enabling interactive visualizations to Industrial Big Data.

Keywords: Knowledge discover (data mining), intelligent decision support systems in
manufacturing, industrial Big Data, visual analytics, distributed and parallel processing.

1. INTRODUCTION

Current trends in modern manufacturing point towards
the undeniable reality of data orientation, in which pro-
cessing data into timely and valuable information is a
requirement to support decision making and continuous
improvement of industrial processes. As the possibilities
to collect and store data increase at a faster rate than
the ability to use it in decision making, data acquisition is
no longer the driving problem. There remains, therefore,
the challenges related to the acquisition of the ability to
identify methods and models that can turn the data into
reliable and provable knowledge (Keim et al., 2008).

In this context, Industry 4.0 emerges as a watershed in
manufacturing, from the synergy of available innovative
information technology with the consumer demand for
high quality and customized products. Referring to the so-
called 4th industrial revolution, Industry 4.0 is an umbrella
term which outlines a series of paradigm shifts by which
industries have been going through to ensure survival in a
high competitiveness global scenario (Bartodziej, 2017).
Although the term is defined from various and diverse
perspectives, a convergence point is that it represents
a revolution towards digitization and computerization of
manufacturing which is transforming production and man-
agement (Bartodziej, 2017).

As a natural and direct consequence of these paradigm
shifts, volume, velocity and variety of data industries
⋆ The authors would like to thank Federal University of Rio Grande
do Norte and Petróleo Brasileiro S.A. for supporting this work.

have to manage is exploding at really high rates (Obitko
et al., 2013). This information overload and the inability
of dealing properly with enormous data volumes make
data exploration and analysis a laborious task for humans,
obfuscating improvement opportunities in the sector.

To cope with that, some enabling Big Data technologies
which have been typically and solidly employed in the
Information Technology (IT) domain, have been also ap-
plied to establish an infrastructure capable of embracing
this mass of data while attaining industrial reality and
needs (Gokalp et al., 2016). However, direct and large-scale
application of mainstream big data tools and methods is
not a trivial task, due to domain-specific challenges such as
diverse communication standards, proprietary information
and automation systems, heterogeneous data structures
and interfaces, inflexible governance policies, allied with
the lack of inherent support from those tools and methods
to industrial applications (Gokalp et al., 2016).

Recent literature have come on Industrial Big Data subject
with a particular regard to problems and challenges to
be overcome in face of the indefeasible absorption of this
new paradigm in automation. In this field, a significant
challenge is to provide the ways to simply and effec-
tively unveil hidden knowledge and value resting in those
large, unexplored and potentially precious industrial data
repositories. Upon this premise, the development of data
visualization and exploration strategies for information
seeking in large amounts of data constitutes a fundamental
objective to be pursued in industry. Analytical reasoning
and effective understanding of large industrial datasets can
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be facilitated by combining automated analysis techniques
with interactive visualizations (Keim et al., 2008). Visual
analysis of industrial data can assist production operators
with intuitive production monitoring and on-site trou-
bleshooting and also provide production managers with
deep insights into non-real-time historical data for process
improvement and innovation (Zhou et al., 2019).

Providing on-the-fly scalable visualizations, navigation
and analysis over large, great variety and dynamic data
constitutes a challenge in this data-driven era (Bikakis
et al., 2016) as most existing data visualization ap-
proaches do not scale well from small datasets to enormous
ones (Godfrey et al., 2016). Apart from the common visual
scalability issues incurred when proceeding visualization
of huge amounts of data such as data occlusion and dis-
play overloading (Shneiderman, 1996), also emerges data
processing difficulties regarding processing power, storage
space, bandwidth and display resolution necessary to com-
puting the visualization of large size and dimensionality
data (Godfrey et al., 2016). The endeavor gets even more
challenging considering interactive visualizations, which
impose to the underlying infrastructure a severe processing
demand to enable properly data navigation, once an action
result should be quickly visible (Limet et al., 2014).

Thence, to reach timely, smooth and flexible data visual-
izations, the underlying computational infrastructure must
have the ability of processing large-scale data within an in-
terval congruent with human reasoning. Still, visualization
on large datasets requires coupling efficient exploration
techniques with mechanisms for information selection, ab-
straction, aggregation and summarization (Bikakis et al.,
2016), as well as the appropriate usage of automatic data
analysis techniques such as clustering and classification as
preprocessing stage (Keim et al., 2008).

Assessing the aforementioned challenges, this work pro-
vides a brief review regarding the subject of Industrial Big
Data, with particular focus on its related infrastructure
and data visualization. Then, it is introduced an approach
in which mainstream open-source tools are teamed to
setup an engine meant to be plugged-in to conventionally
installed industrial infrastructures, providing them with
the ability to perform graphically-rich Big Data analysis
over large industrial data repositories. Then, a case study
focused on demonstrating engine processing capabilities in
a visual analytics application scenario is carried out.

The remainder of the paper is structured as follows. In
Section 2, paper background subject of industrial Big
Data infrastructure is discussed. Section 3 introduces our
approach to cope with massive industrial data. In Section
4, a case study with some test scenarios and their respec-
tive results are presented. Finally, Section 5 concludes the
paper and envisions future directions.

2. INDUSTRIAL BIG DATA INFRASTRUCTURE

Data-driven approaches have been supporting decision-
making over the last years in a myriad of sectors and
this was enabled by technologies pioneered in the IT
realm (Obitko et al., 2013). Not unlike, data-driveness has
also made its path through industry and rapidly gained
prominence (Diez-Olivan et al., 2019). It happened in a

gradual and natural way, once manufacturing generates
and stores more data than any other sector (Brian Hart-
mann and Narayanan, 2015; Obitko et al., 2013) and
given the already customary and well-accepted industry
convergence with IT-technologies.

Current industrial computing infrastructure, in terms
of management and processing of plant-related data, is
mainly focused on collecting, selecting and storing data
at appropriate rates, preserving historical series in on-
demand access repositories (Obitko et al., 2013). Mostly
due to a design restriction, any additional processing such
as deeper queries or analysis are beyond the capacity of
typically installed computing infrastructure. Thus, to put
industrial systems on track of this data inundation sce-
nario, a current trend is to use Big Data precepts as a mean
to enable processing of a huge and dormant amount of
data generated in industrial plants, generally not suitable
for processing in conventionally installed infrastructure.

Industrial Big Data is an already well-known concept
that refers essentially to the absorption of Big Data in
Industry. It inherits the defining characteristics of general
purpose Big Data concept such as volume, variety, velocity,
variability and veracity (5 Vs), as well as extends this
concept by adding two new Vs: visibility, which regards to
the discovery of unexpected insights of existing processed
data; and value, which puts emphasis on creating new
value from massive data (Basanta-Val, 2018).

Perform collection, aggregation, handling and processing
of such a data mass is indeed a challenge to be overcome.
To make most data-driven approaches feasible and viable
in such a voluminous data and time-restricted scenario, a
hardware and software infrastructure capable of meeting
the great computational demands of those approaches is
needed. Literature confirms this matter as a high relevance
interest topic and some progress has been accomplished
in expanding industrial processing abilities to the new
demands, mainly in terms of high performance, distributed
and parallel computing, online processing, cloud comput-
ing, distributed file systems, fast and robust communica-
tions infrastructure, as well as an analysis systematization
based on the specific plant knowledge (Wan et al., 2017;
Basanta-Val, 2018; Geng et al., 2019).

3. INDUSTRIAL VISUAL ANALYTICS

In most industries, since research and production costs are
extremely high, operation efficiency and safety are major
concerns. The advances of Industry 4.0, with the exponen-
tial growth and increasing complexity of manufacturing
data that hinders analytical tasks, opens up unprecedented
opportunities for manufacturers to engage in data-driven
science (Wu et al., 2018) and make the need for extract-
ing useful information from data even more urgent than
before (Zhou et al., 2019). The ability of processing large-
scale data within a short period of time (online analysis) is
therefore a current requirement in the manufacturing in-
dustry that, if satisfied, can broaden its horizons for a wide
range of prognosis, diagnosis and prediction scenarios.

In this context, visualization has become an important
aspect in complex data analysis, which can effectively com-
bine machine intelligence with human intelligence to gain

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11314



insight from the data to support informed decision-making
under (Zhou et al., 2019). Many scientific visualization
researches within the industrial domain focus in providing
both additional means for better understanding of process
operation and novel visualization schemes for effectively
communicating results from industrial data analysis (Al-
Dabbagh et al., 2018; Bezerra et al., 2019; Dorgo et al.,
2018). However, much less has been suggested as to how
these industrial data visualization approaches can be made
possible given the large size that commonly characterizes
industrial datasets. The larger the dataset to be handled
gets, the more difficult it gets to manage, analyze, and
visualize data effectively (Keim et al., 2008).

With that regard, visual analytics, an approach for ef-
fective understanding, reasoning and decision making on
the basis of large and complex data, is propitiated by
interactive visual interfaces (Keim et al., 2008). It takes full
advantage of advanced computational power and human
cognitive abilities in a semi-automated analytical process,
where humans and machines interact and collaborate using
their respective distinct capabilities for the most effective
results (Keim et al., 2008; Wu et al., 2018). It therefore
represents a human-in-the-loop system in which extensive
professional knowledge and domain experience are aggre-
gated to ensure more granular and intelligent industrial
data analysis (Zhou et al., 2019), sustaining a more effi-
cient evaluation and improvement of processes and models.

Visual analytics tools must support smooth and flexible
use of visualizations at rates resonant with the pace of hu-
man thought (Heer and Shneiderman, 2012) in a massive
data environment where interacting with it is onerous and
potentially of high latency. A valuable guidance in the area
is the celebrated Shneiderman’s visual information seeking
mantra, namely overview first, zoom and filter, then details
on demand (Shneiderman, 1996), describes a clearly iter-
ative process, where users launch visual analysis, browse
and navigate through interactions and highlight or select
areas of the visualization for further study. Under this
mantra and relying on an adequate underlying process-
ing infrastructure, visual analytics in large-scale industrial
data proves to be viable task.

4. INDUSTRIAL BIG DATA PROCESSING ENGINE

Industry is an inherently conservative sector with respect
to its policies, methods and procedures. Thus, besides
being a current top-priority topic for most industries, the
pursuit for Industry 4.0 is a progressive and forward-
looking continuous improvement process that has just
started and has a long way ahead. A plausible move in
this gradual approach to Industry 4.0 is to improve op-
erational performance and governance by proactively and
timely exploring the great amount of potential valuable
information hidden in massive industrial data repositories
such as loggers and historian servers.

As a step towards this scenario, this work proposes the
establishment of a plugable industrial Big Data processing
engine that is capable of dealing with those voluminous
data repositories without interfering on or impacting cur-
rent industrial processes and plant. This engine, here-
after referred to as Industrial Big Data Processing Engine
(IBiDaPE), is a work-in-progress meant to be a process-

ing and visualization engine targeted to those industrial
data repositories and to be attached to currently installed
industrial information infrastructure.

IBiDaPE is primarily conceived to provide the manage-
ment/planning layer (layer 3 of the classical automation
pyramid), mainly composed by Process Information Man-
agement Systems (PIMS) and Manufacturing Execution
Systems (MES), with the ability of extracting value from
large amounts of mostly neglected data. Data representa-
tives in this layer are (although not limited to) the logs of
plant events and alarms from alarm management systems,
mostly fated to be dormant in a logger SQL-based server.
Figure 1 outlines the placement and role of IBiDaPE in
the functional scope of the automation pyramid.
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Data Storage
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IBiDaPE

Visual Analytics

Data Ingestion

Fig. 1. IBiDaPE role in the automation pyramid.

IBiDaPE is a processing engine built on top of mainstream
open-source software solutions. The gears that make up
IBiDaPE rely on a locally-installed container orchestration
environment based on Kubernetes (Hightower et al., 2017),
a portable, extensible, open-source platform for managing
containerized workloads and services in a computer clus-
ter. Kubernetes then provides an elastic and self-healing
infrastructure of containerized applications for the engine,
taking care of scaling and fail-over to allow continuously
and resiliently running of the whole system components
as well as ensuring a more rational and flexible use of
available computational resources.

IBiDaPE makes use of vertical and horizontal scaling
capabilities of the supporting elastic infrastructure to
establish on-demand processing capability for interactive
visualization applications, enabling diverse and complex
Big Data analysis and visual analytics tasks. IBiDaPE is
structured in a 4-layered application stack illustrated in
Figure 2 and further detailed.

4.1 Data Ingestion Layer

The Data Ingestion Layer (1) is the bridge between cur-
rent installed information infrastructure and IBiDaPE. It
continuously and asynchronously gathers stored data from
industrial SQL-based event and alarm loggers and makes
it available in the distributed file system of the engine.
It uses Sqoop (Oussous et al., 2017) as data ingestion
tool to automate bi-directional data transfer between the
Hadoop Distributed File System (HDFS) (Shvachko et al.,
2010), a fast and reliable distributed file system, further
on explained, and conventional relational databases.
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Fig. 2. IBiDaPE architecture.

4.2 Data Storage Layer

The Data Storage Layer (2) depends on a fast and reliable
data storage system capable of handling voluminous data
supporting replication and redundancy for fault tolerance.
It relies on HDFS, a wide adoption distributed file system
that met the requirements of the layer, to speed up file sys-
tem jobs over massive volumes of both structured and un-
structured data. HDFS is designed for high-latency batch
processing operations and has great portability and scala-
bility across commodity hardware and software platforms
(Oussous et al., 2017). MapReduce programming model is
employed in file system operations to ensure effective and
timely access to data, reducing network congestion and
increasing system performance by moving computations
near to data storage (Oussous et al., 2017). HDFS then
provides redundant, fault tolerant and fast data access for
the Data Processing Layer of IBiDaPE.

4.3 Data Processing Layer

Data Processing Layer (3) implements a parallel process-
ing cluster to speed up general computations over mas-
sive data volumes and counts on Dask (Daniel, 2018),
a flexible library for distributed and parallel computing
written in Python language. Dask is suited to solve a
wide variety of large data handling and analysis problems
in scientific computing and general-purpose distributed
computing. It can natively scale other well-established
Python libraries which comprise the Python Open Data
Science Stack (PODSS) such as NumPy, Pandas, and
Scikit-Learn (Daniel, 2018) to allow an easy switching from
single-node to cluster computing power as data size scales.

In Dask, directed acyclic graphs (DAGs) are used to
compose, express and manage the execution of parallel
computations (Daniel, 2018). Dask then endows IBiDaPE
with the ability of splitting and distributing computing
tasks demanded by the applications at the top of the stack
across the nodes of a parallel processing cluster.

4.4 Visual Analytics Layer

The Visual Analytics Layer (layer 4) leverages the pro-
cessing infrastructure provided by the lower layers to allow
building graphically-rich and large-data interactive visual-
ization applications. As such, massive data querying, han-
dling and processing operations demanded by each class
of interactive visualization application are structured in
distributed file system and parallel processing operations,
triggered to deliver the desired results at a fast rate that
is expected from an interactive visual application.

An interactive visualization in this layer is a 3-component
application as also shown in Figure 2. The Canvas com-
ponent uses Hyper-text Markup Language (HTML) to
draw graphics and animations in a two-dimensional grid.
The Control component is responsible for capturing user
interactions with the application and turning them into
processing queries to the lower layers. Note that depending
on each interactive visualization specificities a different set
of intermediary queries, temporary tables and data buffers
may be required. Finally, the Renderer component takes
the results from those processed user-input interactions
and manipulates the Canvas component to produce their
respective visualizations.

5. CASE STUDY: AN INTERACTIVE VISUAL
ANALYTICS APPLICATION

5.1 Target Data

Target data in this case study is sourced from a production
industrial alarm and event SQL-based log database of a
petrochemical plant. Composed of time-stamped records,
the database reflects episodes regarding the operational
dynamics of industrial plant assets such as sensors, ac-
tuators, controllers, transceivers, among others. From the
source database, a snapshot of about 108 entries was se-
lected for this case study.

Table 1 shows some representative sample entries of the
target dataset in tabular format with some columns omit-
ted because of limited horizontal space and data sanitized
to safeguard sensitive information.

5.2 Sunburst Interactive Diagram

Assets in an industrial plant are arranged according to a
hierarchy that may be reflected in those alarm and event
logs. An hierarchy-awareness vision over plant episodes
favors a better reconnaissance of plant dynamics. Hierar-
chy can be more easily understood in a quantitative and
qualitative manner with the Sunburst diagram, a space-
filling native interactive visualization technique in which
items in a hierarchy are laid out radially, with the top of
the hierarchy at the center and deeper levels farther away
from the center (Stasko et al., 2000).

Sunburst diagram is setup so that each section arc in a
ring refers to a plant entity and has size proportional to
the frequency of the hierarchy entity appearance in the
logs. In this diagram, quantitative and qualitative aspects
of the 4-level hierarchy of plant assets referred in target
data, defined by columns Area, Subarea, Node and Module
are made explicit as shown in Figure 3.
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Table 1. Sample entries of dataset under analysis.

Date Time Typea Areab Subareab Nodeb Moduleb ... Levela Desc1c registry idd

19-02-21 14:16:04 EVENT AREA 01 SUBAREA C NODE 06 MDL-015783HIC ... NaN RATE 18794
19-02-23 08:45:36 EVENT AREA 25 SUBAREA E NODE 04 MDL-414572PID ... INFO ERROR CLEAR 12946
19-02-22 12:21:32 ALARM AREA 12 SUBAREA F NODE 17 MDL-45420VEC ... ADVISORY COMM FAIL 5948
19-02-23 15:38:42 ALARM AREA 07 SUBAREA G NODE 02 MDL-1557452DI ... CRITICAL HIHI 6397
19-02-22 16:41:19 EVENT AREA 23 SUBAREA M NODE 21 MDL-1029ASMB ... NaN MODBAD 24883
a Registry attributes; b Registry entities; c Registry description; d Registry unique identification.

The application permits the user to navigate through the
plant hierarchy tree translated into the Sunburst diagram.
Each arc section in the diagram is drawn from a contin-
gency table (frequency distribution table) calculated on-
the-fly from base data at each user interaction. The main
insight gained from this kind of diagram concerns the
importance (in this case, given by the frequency of appear-
ance) of different plant entities at different hierarchy levels
in the logs. Users can also interact with internal control
components of the graph such as limiting the levels of the
hierarchy or the percentage of the dataset under analysis.

Fig. 3. Sunburst Interactive Diagram.

5.3 Experimental Setup

Containerized applications in this experiment used compu-
tational resources made available by a 6-node Kubernetes
cluster composed of identical 8-core Intel Xeon machines
with 16 GB of RAM memory each. From now on, archi-
tecture elements referred as nodes correspond directly to
containers running on the Kubernetes cluster.

The experiments were conducted in a fixed but enough
configuration for the Ingestion (1 node running Sqoop) and
Storage (4 HDFS datanodes under the default replication
setting) layers, since fine tuning for these layers proved
not to significantly affect the processing performance of
the visual analytics application. The Processing Layer is

then set up with identical Dask nodes allowed to make
full usage of Kubernetes node resources, thence running
one processing thread per available core and using near
all available memory. The cluster is horizontally scaled,
starting from a minimum working set of nodes (3 nodes)
to the maximum set of nodes available for the experiment
(5 nodes).

Thus, the considered experimental variables were the num-
ber of Dask nodes, with values in {3, 4, 5}, and the frac-
tion of dataset size expressed in percentages, with values
{25, 50, 75, 100}. The diagram application was executed 30
times under each combination of those variables and the
running time of each execution was recorded.

5.4 Results

The average running times for each configuration are
expressed in Figure 4, alongside with the corresponding
confidence intervals represented by error bars (95% of con-
fidence level). The main observation about these results is
that the proposed architecture, under the considered con-
figuration, enabled the interactive visualization of about
108 entries of industrial categorical data in approximately
5s per interaction loop, an acceptable response time for
scenarios of interactive visual analysis of massive data.

25 50 75 100
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3.5
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4.5

5

3 Dask nodes (24 workers)
4 Dask nodes (32 workers)
5 Dask nodes (40 workers)

Dataset size (%)

Ru
nn
in
g 
ti
me
 (
s)

Fig. 4. Running times per dataset size and number of Dask
worker nodes.

Another important fact is that the intrinsic overhead of the
proposed architecture – mainly caused by network latency
and memory management, common in distributed com-
puting scenarios – hinders the performance when dealing
with quantities of data entries about 25% of the dataset.
This phenomena is also observable for amounts of data ex-
ceeding about 100% of the dataset, indicating that a more
robust configuration of the computing cluster is necessary,
as occurred for the cases of 50% and 75% of the dataset,
in which increasing the cluster size in one node caused a
great performance impact.
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6. CONCLUSION AND FUTURE WORKS

This paper discussed the use of interactive visual ana-
lytics in industry to support systematic reasoning. The
proposed solution demonstrated to be a simple and flexible
approach in providing the capability of timely analyzing
and visualizing large industrial data volumes to current in-
stalled industrial information infrastructure. The Sunburst
diagram, implemented as a case study, showed that the
proposed architecture can enable diverse visual analytics
applications over large volumes of industrial data.

It is opportune to clarify that although IBiDaPE was
conceived and tested as an attachable engine to the man-
agement level, the approach can be extended to be used
in other levels of the automation pyramid. As well, many
other visual analytics applications can be implemented
according to the analysis needs for those levels, relying
on the underlying processing infrastructure.

Work on fine-tuning the building blocks of the solution is
a subsequent step towards improving its performance and
reliability. Future work also includes endowing the archi-
tecture with the ability of dynamically and automatically
scaling the elastic containerized infrastructure according
to the size and complexity of the demanding visualization
applications.
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