
A Knowledge Based System for Managing
Heterogeneous Sources of Engineering

Information ?

Felix Ocker ∗ Birgit Vogel-Heuser ∗ Matthias Seitz ∗

Christiaan J. J. Paredis ∗∗

∗ Institute of Automation and Information Systems, Technical
University of Munich, Garching, 85748 Germany (e-mail: {felix.ocker;

vogel-heuser; matthias.seitz}@tum.de)
∗∗ BMW Chair in Systems Integration, Clemson University, Greenville,

SC 29607 USA (e-mail: paredis@clemson.edu)

Abstract: As ever increasing amounts of engineering information become available, engineers
require novel ways to manage this information. Especially in mechatronic engineering, e.g.,
the engineering of Cyber-Physical Production Systems, engineers from various disciplines are
involved, and they represent their knowledge in heterogeneous ways. To be able to efficiently
gain an overview of the available information and find the information required, engineers need
support. Additionally, awareness regarding interdisciplinary dependencies should be increased
to reduce late changes. Such dependency analyses allow engineers to better identify and thus
manage potential inconsistencies, which can be expected to reduce development time. The
Knowledge Based System presented supports engineers during the design process of production
systems by providing an overview of available engineering knowledge, its representation, and
associated stakeholders. Additionally, engineers can leverage the underlying holistic information
model to create and manage digital twins.

Keywords: Knowledge Based Systems; Mechatronic Systems; Modeling; Information Model;
Digital Twin

1. INTRODUCTION

Digitization leads to an increasing amount of information
becoming easily available. This is valid specifically for
production systems engineering, which is subject to a con-
tinuous increase in complexity and specialization, leading
to various stakeholders with heterogeneous views being
involved. For the knowledge intensive domains of business
in an international context, such as engineering, digiti-
zation is a promising development. This is because the
exchange of information is greatly facilitated even across
the globe, and automated processing of the information
can, in principle, be realized. Also, advanced technological
ideas can be supported, such as the concept of a digital
twin, i.e., a “dynamic virtual representation of a physical
object or system across its lifecycle” (Bolton et al., 2018).
However, such large amounts of heterogeneous information
may be overwhelming if not managed properly. This makes
purposeful information management crucial not only for
interdisciplinary engineering, but also for distributed par-
tial digital twins, which have to be integrated to mirror a
larger system. An information model provides the means
to cope with several resulting challenges. First, it allows
engineers to find information when many stakeholders with
heterogeneous backgrounds are involved (C1). Second, it

? This work was supported in part by the BMBF via the project
DAVID and in part by the German Research Foundation via the
project CRC 768 T5.

enables dependency analyses among different information
concretizations, such as files (C2). This is valuable because
duplicate information and dependencies between informa-
tion, i.e., information that is stored in several information
concretizations, may result in inconsistencies which need
to be managed. Third, the information model supports
compatibility checks between the form in which informa-
tion is available and the available tools (C3). The form is
characterized by the language the information is expressed
in and the format it is stored in. This is particularly im-
portant whenever information is exchanged across the sup-
ply chain. In such cases, the different stakeholders might
well use very different engineering tools, resulting in the
information being expressed in diverse ways. Fourth, the
information model can increase awareness of how changes
propagate (C4). These insights may be used to inform
other stakeholders about changes that affect their design
decisions. Finally, the information model serves as a basis
on which digital twins may be built.

This paper is structured as follows. Section 2 gives an
overview of related work. Subsequently, we introduce a
Knowledge Based System (KBS) to support engineers that
revolves around an information model. Section 4 gives
details on the use case and the implementation, describes
the feasibility study, and discusses the results. This paper
concludes with a summary and an outlook in Section 5.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10646



Table 1. Overview of notions used in related work

Ceusters and Smith (2015) Giese et al. (2011) Bézivin (2005)
information information content entity abstract syntax model information
information concretization information quality entity concrete syntax model model
information carrier information artifact - -
format - concrete syntax -
language - language language
actor agent - -
system (entity) system system (/ object)

2. RELATED WORK

This section defines the term “information model” for the
scope of this work and gives an overview of information
created throughout the design process of production sys-
tems. Subsequently, it introduces a more philosophical
perspective on information models and concludes with
a discussion of concrete examples of information models
from the engineering domain.

A model, as understood by Pidd (2003), is a “representa-
tion of reality intended for some definite purpose”. Models
are often used in systems engineering, with a system being
defined as a “combination of interacting elements organized
to achieve one or more stated purposes” (Haskins, 2006).
This kind of representation typically comes with some form
of abstraction, i.e., reduction to what is considered im-
portant. In software engineering, models are usually clas-
sified into structural, behavioral, and information mod-
els (Bourque and Fairley, 2014, p. 9-5). While structural
models describe the physical or logical composition of a
system’s elements, behavioral models define the functions
of the same system. In contrast, an information model is
“an abstract representation that identifies and defines a
set of concepts, properties, relations, and constraints on
data entities”. Here, we think of information as know-what
(Rowley, 2007). This is contrasted by the terms “data”,
which are symbols, and “knowledge”, which refers to know-
how, i.e., the application of information (Rowley, 2007).
The additional layer of “wisdom”, as proposed by Rowley
(2007) is still controversial (Fricke, 2009).

In systems engineering in general, and in production sys-
tems engineering in particular, vast amounts of informa-
tion are created in the design process. This trend has
been intensified with the spread of effective Model Driven
Engineering (MDE) approaches such as the one by Priego
et al. (2015). Feldmann et al. (2019) highlight the hetero-
geneity of the stakeholders involved in the design process
of Cyber-Physical Production Systems (CPPSs), and give
an overview of the information created. This information
includes, but is not limited to, requirements, Systems
Modeling Language (SysML) models, Simulink models,
P&IDs, data sheets, sensor and actuator lists, mechanical
3D models, and, e.g., state charts to describe the sys-
tem’s intended behavior. Koltun et al. (2019) identified
47 models expressed in diverse languages and stored in
various ways, which had been developed over the course of
twelve years within a single collaborative research center.
To cope with this degree of heterogeneity, Feldmann et al.
(2019) propose an approach to managing inconsistencies
specifically between SysML models, Simulink models, and
planning models.

From a more philosophical perspective, we want to high-
light three papers we consider to be crucial for this work.
Ceusters and Smith (2015) developed the Information Ar-
tifact Ontology (IAO) as a “domain-neutral resource for
the representation of types of information content entities
such as documents, data-bases, and digital images”. The
IAO core notion is the information content entity, which
is about, i.e., describes, some entity. According to Ceusters
and Smith (2015), information artifacts bear the con-
cretizations of information content entities. With a back-
ground in Model Based Systems Engineering (MBSE),
Giese et al. (2011) present the results of the Workshop
on Multi-Paradigm Modeling. They distinguish abstract
syntax models, which contain the essence of a model, from
concrete syntax models, which correspond best to the con-
cretizations of information content entities. A metamodel
is understood as a model of a language which does not
cover semantics (Giese et al., 2011). Bézivin (2005) elabo-
rates on MDE and highlights the differences between the
core notions in object technology and MDE. While object
technology is based on inheritance and instantiation, MDE
builds on the idea that a system is represented by a model,
which in turn conforms to a metamodel. The relation
represented by is inverse to the relation is about used
by Ceusters and Smith (2015). It should be noted that
literature with a background in MBSE focuses on models,
but does not consider information carriers. To increase the
understandability of the notions chosen for the information
model developed here, we give an overview of how these
notions fit in with the previous work in Table 1.

In contrast to these rather philosophical papers, some more
specific frameworks have also been proposed to address
the challenges C1 - C4 for several domains. The most
generic one is possibly the lifecycle record of technical
objects (DIN, 2018) which proposes a holistic approach
to manage information created throughout the design of
technical systems. The lifecycle record intends to capture
information contained in document and data sets, and the
physical objects, i.e., plants and their parts, described by
this information. The lifecycle record also aims to support
different viewpoints and suggests structuring principles to
check the completeness of information, which distinguishes
it from the approach pursued in this work. Focusing on the
representation of physical systems, the OPC Foundation
has developed the OPC UA information model (OPC
Foundation, 2017). In contrast to this work, the OPC
UA information model is primarily applied within runtime
applications, though, e.g., using digital twins (Malakuti
et al., 2019). Also in the production context, Petersen
et al. (2017) propose an information model with a focus on
the system description based on the Resource Description
Framework (RDF). They focus on two use cases, tool

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10647



management and energy consumption, and three data
sources, namely sensor data, bills of materials, and data
from the Manufacturing Execution System (MES). In the
domain of space missions, Jenkins and Rouquette (2012)
and Rouquette et al. (2005) use an implicit information
model to support multi-view engineering and automate
inconsistency management. In order to support engineers
in the design of mechatronic products, Hehenberger et al.
(2010) propose an approach that relies on hierarchical
design models. However, this design process is not com-
bined with an information model that would link the var-
ious models developed. Rooted in software development,
the Open Services for Lifecycle Collaboration (Johnson
and Speicher, 2013) also contributes to the integration of
heterogeneous engineering tools (C2, C3). In production
systems engineering, model-based frameworks have been
developed, e.g., Priego et al. (2015), which support en-
gineers along the design process of such systems. Hilde-
brandt et al. (2018) present an approach to systematic
modeling for creating a common understanding of infor-
mation exchanged between technical systems. To do so,
Hildebrandt et al. (2018) distinguish and link behavioral,
functional, and structural information, but do not consider
how and where this information is originally captured. To
enable interdisciplinary data exchange, Lüder et al. (2019)
suggest using AutomationML (AML). AML is a valuable
contribution to the community but requires that all data
is represented in supported formats. In contrast to these
approaches, Kattner et al. (2019) address the challenge
of dependencies among heterogenous models by manually
mapping them.

Various frameworks have been proposed in the context of
challenges C1 through C4, some of which even introduce
information models. However, none of them can be consid-
ered to fully address all four challenges, especially in the
context of digital twins. Also, the domain specific infor-
mation models, which focus on the system, have not yet
been intertwined with the more philosophical perspective
on information. With this paper, we intend to contribute
to closing this gap.

3. KNOWLEDGE BASED SYSTEM FOR MANAGING
HETEROGENEOUS ENGINEERING INFORMATION

The KBS developed here relies on an information model
that links the heterogeneous information sources, cp. Fig-
ure 1. The information model revolves around the notions
defined in the following. To achieve a common understand-
ing of the terminology, we compared these with the notions
used in existing work, cp. Table 1. The second part of this
section describes the patterns we use to address challenges
C1 through C4.

3.1 Knowledge Representation

The core notion of the information model is, unsurpris-
ingly, information. This quite abstract term is understood
as defined by Merriam-Webster (2019):

information =def. “the communication or reception of
knowledge” (Merriam-Webster, 2019).

An alternative but not exclusive definition is that of
information being “know what”, i.e., information provides

Discipline B

Discipline A
Discipline C

Information 
model

Program C1

Actor A1

Model A1

File C1

Specification B1

Actor A2

Fig. 1. KBS for representing information from heteroge-
neous sources

answers to who, what, where and when questions (Rowley,
2007). This notion corresponds to that of an information
content entity defined by Ceusters and Smith (2015)
and the idea of an abstract syntax model (Giese et al.,
2011). We further distinguish structural and behavioral
information, e.g., the structure of a production system and
the processes it is able to execute, respectively. Information
itself is abstract and can be expressed in multiple ways,
i.e., using different languages. For instance, the behavioral
information of a robot’s movements may be expressed
using state charts or the natural language English.

language =def. set of valid sentences that can be used
to concretize information.

In order to represent how information is expressed, we
introduce the notion information concretization. An in-
formation concretization is expressed in a language and
may be stored using some specific format. Examples of in-
formation concretizations are digital files, but also mental
models existing only in human minds.

information concretization =def. concretization of
some information, i.e., some information being ex-
pressed in some language and possibly serialized in some
format.

Information concretizations are further described by their
status, which may be complete or incomplete, and a times-
tamp, which indicates when the information concretiza-
tion was created or changed last. In case an information
concretization builds on a previous version, this may be
expressed using the relation predecessor.
When thinking of information being stored digitally, we
also need to distinguish different formats. For example,
an ontology expressed in the Web Ontology Language
(OWL) may be stored using RDF/XML or it may be
serialized using Terse RDF Triple Language (Turtle). This
is equivalent to the notion of a concrete syntax (Giese
et al., 2011). Note that a format may be based on another
format, e.g., RDF/XML is based on XML.

format =def. the concrete syntax (Giese et al., 2011) in
which some information concretization is stored.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10648



structural 
info

actor

information

information 
carrier

behavioral 
info

describes

concretizes

provides / 
requires

publishes/
subscribes

system format

stored-as

language

expressed
-in

based-on

information 
concretization

captures

+status

+timestamp

predecessor
authored_by

Fig. 2. Class diagram of the information model

In order to describe where an information concretization
is captured, we use the notion information carrier.

information carrier =def. physical artifact that cap-
tures some information concretization.

Information carriers include devices such as hard drives,
but a stone wall or even the mind of a person could be
called examples of information carriers. Hence, the notion
of an information carrier is used as a surrogate for these
notions and many others.

Information is provided or required by actors. For instance,
humans and software programs can be actors. In order
to keep track of information, actors may subscribe to
information concretizations. When providing information,
actors do so by publishing information concretizations.
Note that the relation publishes is inverse to the relation
authored by.

actor =def. anyone and anything that provides or re-
quires information.

Within the scope of this work, we focus on information
that is used to describe systems.

system =def. “combination of interacting elements orga-
nized to achieve one or more stated purposes” (Haskins,
2006).

Figure 2 gives an overview of these notions.

3.2 Knowledge Extraction

Engineers may extract the knowledge necessary to cope
with challenges C1 - C4 when having a knowledge graph
at hand that conforms to the information model developed.

The information model allows engineers to systematically
identify relevant information. Knowledge extraction is es-
pecially useful to engineers in two scenarios. First, engi-
neers can more easily identify existing information they
require in the design process. Second, they can use the tar-
geted search for information to configure bespoke partial
digital twins. Such partial digital twins can be applied in
environments, where the computational power is limited.
In order to identify relevant information concretizations

?ic created by others (C1), engineers can search the in-
formation model based on the type of information info-
type-x they need, i.e., structural or behavioral information,
and the system system-x described. These restrictions are
expressed in the following pattern, which also includes the
information carriers in which the information concretiza-
tions are captured.

∀ (?ic, ?carrier)
∃ ?info is-a info-type-x

3 ?ic concretizes ?info u
?ic is-a info-concretization u
?info describes system-x u
?carrier is-a information-carrier u
?carrier captures ?ic

This pattern may be extended by explicitly searching for
information expressed in some specific language.
Similarly, engineers can identify information carriers ?ic
that capture the same information, even though this
information may be expressed in different ways (C2).
Such duplicate information is problematic because it is
likely to result in inconsistencies if not all concretizations
are updated in case of changes. To reduce this risk,
engineers can identify and handle unnecessary duplicates
of information, or at least monitor them. The following
expression also includes the information carriers ?carrier
by which these information concretizations are captured.

∀ ?duplicate-info
∃ ?ic is-a information-concretization u
∃ ?carrier is-a information-carrier

3 ?ic concretizes ?duplicate-info u
count(?ic) > 1 u
?carrier captures ?ic u
?duplicate-info is-a information

This second expression can be extended for chunks of
information that depend on each other. Whenever two
chunks of information describe the same system and are
of the same type, they are likely to overlap. In such cases
it becomes apparent that the KBS proposed is not a
monolithic structure, but would benefit greatly from being
combined with established approaches. For instance, when
such dependencies are detected, established approaches for
managing potential inconsistencies should be considered,
e.g., the one introduced by Feldmann et al. (2019).

Also, compatibility between the formats of the informa-
tion concretizations available in an organization and its
available tools can be checked (C3). We hereby distinguish
two cases. There might be formats, for which there are
no appropriate tools available, or the company in ques-
tion does not have the necessary licenses. Either way,
the organization cannot use the inaccessible information
concretization ?inacc-ic.

∀ ?inacc-ic
@ ?organization has-license-for/supports ?tool
3 ?inacc-ic expressed-as ?format u

?inacc-ic is-a info-concretization

This expression may be complemented by the following
optional triple.

?tool supports ?format

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10649



That way, tools can be identified that support the format
in question, but for which the organization does not yet
have licenses.

These compatibility checks are valuable when multiple
actors are involved in the design process who do not use the
same tools. This is often the case for production systems,
which are usually created by a complex supply chain.
Ensuring that all information is available allows engineers
to focus on engineering methods instead of having to deal
with tooling problems. Also, when complex digital twins
are created from partial ones, the information concretiza-
tions may be heterogeneous but must be integrated to
work together seamlessly.

To cope with challenge C4, engineers can use the informa-
tion model to track how changes propagate, even across
information concretizations and disciplines. Using this in-
formation, other actors who are affected by this change can
be identified and subsequently notified. For this to work,
we rely on the publisher/ subscriber model. Engineers can
manually subscribe to the information concretizations ?ic
they deem to be relevant for their own work. As soon as
a new information concretization info-concretization-x is
published, all the actors are identified who subscribed to
the information concretizations that concretize the same
chunk of information.

∀ (?affected-actor, ?ic)
∃ ?info rdf:type/rdfs:subClassOf* information

3 ?affected-actor rdf:type/rdfs:subClassOf* actor u
?affected-actor subscribes ?info-concretization u
?info-concretization concretizes ?info u
info-concretization-x concretizes ?info

The actors identified can then be notified efficiently. Addi-
tionally, we suggest automatically creating a subscription
whenever an engineer provides or changes some informa-
tion concretization.

4. IMPLEMENTATION AND FEASIBILITY STUDY

4.1 Use Case

Within the feasibility study, we use the lab-sized demon-
strator Extended Pick and Place Unit (xPPU). The orig-
inal Pick and Place Unit (PPU) comprises a stack, a
crane, a stamp, and a conveyor with ramps and pushers.
The demonstrator stamps and sorts white and black plas-
tic as well as metallic workpieces. The stack stores the
workpieces until they are picked up by the crane. The
crane can pick up and move single workpieces between
the stack, the stamp, and the conveyor. When the crane
places a workpiece on the conveyor, the conveyor moves it
to the ramp specified. When recognized by the sensors,
the workpiece is pushed into the ramp by a cylinder.
To distinguish workpieces of different colors and different
materials, the PPU uses optical and inductive sensors. A
detailed description of the PPU and its evolution scenarios
can be found in the technical report (Vogel-Heuser et al.,
2014). By now, the PPU has evolved into the xPPU, cp.
Figure 3.

In contrast to the PPU, the xPPU features a more ad-
vanced transport system which consists of conveyors for
re-feeding of workpieces and a linear handling module. To

Fig. 3. Extended Pick and Place Unit (Vogel-Heuser et al.,
2014)

create a realistic demonstrator, the xPPU also includes a
weighing module and safety cells. Various documentation
for the xPPU, including code, is available publicly 1 .

4.2 Implementation

We formalized the information model in OWL using the
python projects Owlready2 2 and RDFlib 3 . These inter-
faces also allowed us to create configurable SPARQL And
RDF Query Language (SPARQL) queries.

In order to increase reusability, we split the knowledge
graph into a generic part that includes the notions depicted
in Figure 2 and a more specific part which captures all
the notions and instances needed for the feasibility study.
All the queries developed are also available as individual
python implementations to improve modularization. The
entire implementation is available on github 4 .

We acknowledge that domain experts might have trouble
using Semantic Web Technologies (SWT) and the python
implementation. To enable these engineers to use this KBS
nonetheless, we implemented a prototypical interactive
user interface using the python module tkinter.

4.3 Feasibility Study

Various engineering information is available for the xPPU.
This makes it not only a realistic example, but also a
suitable use case for the KBS presented. We exemplarily
represented information necessary for the feasibility study
as described in Section 4.2.

Usually, the purchasing department needs structural infor-
mation of the plant to create a Bill of Materials (BOM).
In case of the xPPU, such information is available from
early design phases in the form of Unified Modeling Lan-
guage (UML) class diagrams. These could easily be reused,
but the purchasing department may be unaware of this
information. Using the query developed for C1, employees
from the purchasing department can purposefully search
1 https://https://github.com/x-PPU last accessed: 2020-05-06
2 https://bitbucket.org/jibalamy/owlready2/src/default/ last ac-
cessed: 2020-05-06
3 https://github.com/RDFLib/rdflib last accessed: 2020-05-06
4 https://github.com/felixocker/information-model-ifac2020 last
accessed: 2020-05-06

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10650



for structural information of the xPPU and will find the
UML class diagrams created in Eclipse Papyrus.

Just like in industrial practice, some of the information
describing the xPPU is available in the form of several
information concretizations. Specifically, the crane’s be-
havior has been prescribed using UML activity diagrams,
but was also implemented in IEC 61131-3 Structured Text
using the CODESYS development system and TwinCAT.
Additionally, PLCopen XML exports are available. To
make things worse, some of these information concretiza-
tions may be captured in different information carriers.
These redundancies may lead to potential inconsistencies
and should be resolved whenever possible. If this is impos-
sible, they should at least be monitored. Such monitoring
can be achieved using the query developed for C2. For
instance, the behavior of the xPPU’s crane is concretized
as a UML activity diagram, and in the form of code as
Structured Text created with the CODESYS development
system, created with TwinCAT, and in the exchange for-
mat PLCopen XML. Having identified these duplicates of
information, engineers can automate transformations to
avoid inconsistencies between the information concretiza-
tions.

An example for challenge C3, i.e., compatibility between
formats of available information concretizations and avail-
able tools, results from proprietary tools and formats. For
instance, suppliers might have created mechanical Com-
puter Aided Design (CAD) files for the xPPU’s crane in
CATIA, and made them available as CATProduct files.
If the institute does only have licenses for Inventor, they
would not be able to use these CAD files, even though
they are in principle available. By detecting such incom-
patibilities in format, suppliers can be encouraged to use
other tools or provide the information concretizations in
exchange formats, e.g., the Standard for the Exchange of
Product Model Data (STEP). This challenge also high-
lights the importance of research efforts regarding such
exchange formats for code, cp., e.g., Marcos et al. (2009).

The behavior of the xPPU’s crane also shows how different
engineers work with different information concretizations
that depend on each other. However, the engineers may
be unaware of the changes their colleagues make. This
problem is reinforced when several actors along the supply
chain work on dependent information concretizations. For
instance, an engineer may change the UML diagrams that
prescribe the crane’s intended behavior. If that engineer is
unaware of all the implementations created with the differ-
ent Integrated Development Environments (IDEs), it can
be assumed that these changes will not be incorporated
by all implementations. As a consequence, the different
implementations might behave in different ways leading
to unexpected behavior of the plant. The KBS developed
includes a query to identify all the actors, who are affected
by changes to a specific information concretization. In case
of the xPPU, a fictional employee named Eve might have
subscribed to the crane’s behavior expressed in Structured
Text using CODESYS, while both Matthias and Felix
subscribed to the crane’s behavioral description expressed
as a UML activity diagram. If other actors change the
UML activity diagram, all three employees are identified
as being affected by the change. This allows engineers who
make such changes to efficiently notify their peers.

4.4 Discussion

As demonstrated by the feasibility study, the KBS can be
expected to support engineers in coping with challenges
C1 - C4. This way, the KBS contributes to both the
interdisciplinary engineering and the creation of partial
and distributed digital twins. By aligning the information
model with abstract concepts from the modeling and the
ontology community increases its potential for usability
and reusability. Also, this degree of genericness greatly
reduces limitations, e.g., to represent information con-
cretized in the form of mental models in the minds of
people.

Creating a single but rather generic KBS also allows en-
gineers to combine it with existing approaches for the
individual challenges. An efficient way to find relevant
engineering information (C1) can be expected to be use-
ful for various scenarios, including feasibility feedback for
designers in early design phases (Ocker et al., 2019). Dupli-
cate information identified (C2) can be used as a basis for
more rigorous inconsistency management approaches, e.g.,
(Feldmann et al., 2019). Regarding change management,
the KBS could be combined with existing approaches for
change management, such as the one proposed by Rostami
et al. (2017).

Even though this KBS can be considered very promising
for the challenges specified, the creation of the ontology’s
assertional component remains as a core challenge. While
we populated the information model manually, this would
probably not be feasible for an industry-scale application.
Hence, further research should be conducted regarding
the automatic population of the information model. Here,
different kinds of information pose different challenges.
Lists of human actors can be reused from the human re-
sources departments, and both authors and timestamps of
information concretizations are meta data that can be ac-
cessed easily. Also, a file system crawler could analyze file
extensions to automatically relate information concretiza-
tions with certain tools. However, linking information con-
cretizations with abstract information is more challenging.
Even though natural language processing seems promis-
ing for analyzing textual information concretizations, we
might still require manual input of the engineer responsi-
ble.

5. SUMMARY AND OUTLOOK

This paper presents a KBS for supporting production sys-
tems engineering and the creation of partial, possibly dis-
tributed, digital twins using an information model. Specifi-
cally, the four challenges C1 - C4 are addressed to support
engineers in coping with the vast amounts of heterogeneous
information available nowadays. The information model
developed is aligned with more abstract terminology to
enable reuse and close the gap between the philosophical
perception of information and application oriented models
from MBSE. We formalized the information model using
OWL, and we populated it exemplarily for the use case
of the xPPU. To extract relevant information, we imple-
mented queries using SPARQL.

In future work, integration with established approaches for
coping with the challenges C1 - C4 should be pursued, as

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10651



described in Section 4.4. Also, further research is necessary
to automate the population of the information model.
Additionally, variant management and related similarity
analyses in the scope of the information model should
be researched in greater detail. From a more application
oriented perspective, the information model should be
extended to also support status checks of the information
created along the design process of production systems
and their digital twins. To do so, engineers would have
to specify when information concretizations are created.
Combined with milestones and status information, this
would allow managers to monitor the project’s progress.
Relevant information can be extracted, e.g., from existing
process descriptions in the form of Business Process Model
and Notation (BPMN) diagrams. Finally, extracting and
formalizing heterogeneous kinds of engineering knowledge
and integrating it with online data from production sys-
tems is a promising and necessary research direction in the
context of digital twins.

REFERENCES

Bézivin, J. (2005). On the unification power of models.
Software and Systems Modeling, 4(2), 171–188.

Bolton, R.N., McColl-Kennedy, J.R., Cheung, L., Gallan,
A., Orsingher, C., Witell, L., and Zaki, M. (2018). Cus-
tomer experience challenges: bringing together digital,
physical and social realms. Journal of Service Manage-
ment, 29(5), 776–808.

Bourque, P. and Fairley, R.E. (eds.) (2014). Guide to the
Software Engineering Body of Knowledge SWEBOK. A
Project of the IEEE Computer Society. IEEE, 3 edition.

Ceusters, W. and Smith, B. (2015). Aboutness: Towards
Foundations for the Information Artifact Ontology.

DIN (2018). Lifecycle record of technical objects - Part 1:
Structural and content-related specifications.

Feldmann, S., Kernschmidt, K., Wimmer, M., and Vogel-
Heuser, B. (2019). Managing inter-model inconsisten-
cies in model-based systems engineering: Application in
automated production systems engineering. Journal of
Systems and Software, 153, 105–134.

Fricke, M. (2009). The Knowledge Pyramid: a Critique of
the DIKW Hierarchy. Journal of Information Science,
35(2), 131–142.

Giese, H., Levendovszky, T., and Vangheluwe, H. (2011).
Summary of the workshop on multi-paradigm modelling:
Concepts and tools. Models in Software Engineering.

Haskins, C. (2006). Systems engineering handbook. IN-
COSE, 3 edition.

Hehenberger, P., Poltschak, F., Zeman, K., and Amrhein,
W. (2010). Hierarchical design models in the mecha-
tronic product development process of synchronous ma-
chines. Mechatronics, 20(8), 864–875.

Hildebrandt, C., Scholz, A., Fay, A., Schröder, T., Hadlich,
T., Diedrich, C., Dubovy, M., Eck, C., and Wiegand,
R. (2018). Semantic modeling for collaboration and
cooperation of systems in the production domain. In
International Conference on Emerging Technologies and
Factory Automation. IEEE.

Jenkins, J.S. and Rouquette, N.F. (2012). Semantically-
Rigorous Systems Engineering Modeling Using SysML
and OWL. In International Workshop on Systems &
Concurrent Engineering for Space Applications.

Johnson, D. and Speicher, S. (2013). Open Services for
Lifecycle Collaboration - Core Specification Version 2.0.
Technical report, Open Services for Lifecycle Collabora-
tion.

Kattner, N., Bauer, H., Basirati, M.R., Zou, M., Brandl,
F., Vogel-Heuser, B., Böhm, M., Krcmar, H., Reinhart,
G., and Lindemann, U. (2019). Inconsistency Manage-
ment in Heterogeneous Models - An Approach for the
Identification of Model Dependencies and Potential In-
consistencies. International Conference on Engineering
Design, 3661–3670.

Koltun, G.D., Romero Viturro, C.A., Buchholz, J., Wissel,
J., Zaggl, M., Ocker, F., and Vogel-Heuser, B. (2019).
Effective Innovation Implementation of Mechatronic
Product-Service Systems Considering Socio-Technical
Aspects. International Conference on Engineering De-
sign, 3051–3060.

Lüder, A., Pauly, J.L., Rinker, F., and Biffl, S. (2019).
Data Exchange Logistics in Engineering Networks Ex-
ploiting Automated Data Integration. In International
Conference on Emerging Technologies and Factory Au-
tomation. IEEE.

Malakuti, S., Schmitt, J., Platenius-Mohr, M., Grüner, S.,
Gitzel, R., and Bihani, P. (2019). A four-layer archi-
tecture pattern for constructing and managing digital
twins. In European Conference on Software Architec-
ture. Springer Verlag.

Marcos, M., Estevez, E., Perez, F., and Van Der Wal,
E. (2009). XML exchange of control programs. IEEE
Industrial Electronics Magazine, 3(4), 32–35.

Merriam-Webster (2019). Definition of Information.
Ocker, F., Vogel-Heuser, B., and Paredis, C.J.J. (2019).
Applying Semantic Web Technologies to Provide Feasi-
bility Feedback in Early Design Phases. JCISE, 19(4).

OPC Foundation (2017). OPC Unified Architecture - Part
5: Information Model. Technical report.

Petersen, N., Halilaj, L., Grangel-González, I., Lohmann,
S., Lange, C., and Auer, S. (2017). Realizing an
RDF-based information model for, a manufacturing
company – A case study. In International Semantic
Web Conference. Springer Verlag.

Pidd, M. (2003). Tools for thinking: Modeling in Manage-
ment Science. John Wiley and Sons Ltd, New York,
USA, 2nd edition.

Priego, R., Armentia, A., Estévez, E., and Marcos, M.
(2015). On applying MDE for generating reconfigurable
automation systems. In International Conference on
Industrial Informatics. IEEE.

Rostami, K., Heinrich, R., Busch, A., and Reussner, R.
(2017). Architecture-Based Change Impact Analysis in
Information Systems and Business Processes. In Inter-
national Conference on Software Architecture. IEEE.

Rouquette, N.F., Wasserman, G.M., and Carson, V.D.
(2005). OWL for Space Mission Systems development
at JPL with semantic architecture styles. In OWL:
Experiences and Directions.

Rowley, J. (2007). The wisdom hierarchy: representations
of the DIKW hierarchy. Journal of Information Science,
33(2), 163–180.

Vogel-Heuser, B., Legat, C., Folmer, J., and Feldmann,
S. (2014). Researching Evolution in Industrial Plant
Automation: Scenarios and Documentation of the Pick
and Place Unit.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10652


