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Abstract: A digital twin of a pharmaceutical company’s internal supply chain is presented,
along with a simulation-based rough cut capacity planning tool capable of giving estimates of
the required monthly capacity for the different areas of the organization on the long-term. The
work was a case study performed at a pharmaceutical company. The digital twin is delivered
through a graphical user interface containing both its visualization and simulation tools. The
proposed digital twin supplies accurate estimates of capacity needs to supply chain managers,
giving the ability to easily visualize the resources required from different involved areas in the
following 24 months.
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1. INTRODUCTION

1.1 Context

Current trends in logistics have placed the integrated sup-
ply chain (SC) as a process of unmatched capability in
improving the overall performance of the organizations’
SCs. The integrated SC considers all the phases of pro-
duction and support as dependent, resulting in a complex
network of people, machines, infrastructures and products.
The planning and logistics behind these structures have
undeniable impact but are extremely complicated. Strate-
gies for optimization and improvement of these activities
are being increasingly investigated.

An industry which has adopted the integrated SC is the
pharmaceutical industry. This industry has faced a shift
on its characteristics, e.g. the liberalization of the global
markets (exposing companies to global competition) or the
widespread appearance of generics [Shah, 2004]. Addition-
ally, the number of drugs in the companies’ portfolios has
been steadily increasing, on account of the yearly number
of approved drugs by the responsible entities being also
rising [Mullard, 2019]. Both these reasons have prompted
a shift in the industry: big pharma companies are nowa-
days more focused on research & development, leaving the
manufacturing of the drugs to contract manufacturing or-
ganizations (CMOs). These organizations operate by man-
ufacturing products by contract to other pharmaceutical
companies. Their large, diverse and ever mutating product
portfolios have created massive and complex SCs, which
increasingly require optimization for a smooth operation.

⋆ This work was supported by Hovione FarmaCiência SA and FCT
through IDMEC, under LAETA, project UID/EMS/50022/2019, to
whom the authors express their gratitude.

The 21st century has seen the rapid development of mod-
ern technologies and computational power has become
much cheaper. Concepts such as the Internet of Things
(IoT), enabling the collection of data at distinct levels
within an organization, have brought the required tools
to optimize the integrated SC. Forecasting models, much
more accurate than ever before, can now be developed,
using collected data to obtain models based on the perfor-
mance that has actually been previously achieved.

1.2 Related Work & Proposed Solution

The objective of this work is the creation of a Digital
Twin (DT) of the internal SC of a pharmaceutical CMO,
with the goal of increasing awareness to stakeholders and
decision-makers by delivering information regarding past
and present tasks and performance indicators. Addition-
ally, the DT incorporates a forecasting tool, capable of
performing simulation-based rough cut capacity planning
(RCCP).

Very few applications of DTs on the SC or intangible assets
were found. Kritzinger et al. [2018] provide a literature
review of scientific articles on DTs, but these appear to
be mostly DTs of tangible assets. Commercially available
RCCP tools are frequent but no occurrence of simulation-
based RCCP tools were found. Applied to the pharmaceu-
tical industry, Costigliola et al. [2017] developed a discrete
event simulation model of a QC laboratory, intended to
be used as a decision-support tool for scheduling and
planning (operational level); Lopes et al. [2018] presented
a benchmarking platform to estimate the performance of
new QC facilities (strategic level); Papavasileiou et al.
[2007] developed a Monte Carlo simulation approach to
task scheduling and cycle duration calculation.
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The presented solution is a DT to support the internal
SC of the pharmaceutical organization in study. The DT
largely follows the basic concept of DT provided by Ivanov
et al. [2019], where the authors describe DTs as a com-
bination of simulation, optimization and data analytics.
Unlike the solutions proposed by Costigliola et al. [2017]
and Lopes et al. [2018], the proposed tool is intended to
act as a decision support tool to the overall internal supply
chain and not only to the QC laboratories. Additionally,
the proposed solution aims at giving insights for a long-
term timeframe. It provides a framework for visualizing
operational information regarding the plant’s activities,
schedule operations and historical data and provide ac-
cessibility to the simulation tool. The simulation-based
RCCP tool calculates the approximate monthly utilized
capacity for the different areas, based on the performance
that has actually been previously achieved. Furthermore,
an approach similar to the one used by Papavasileiou
et al. [2007] was employed, in order to verify interferences
between tasks using assets considered to be bottleneck, in
the sense that they are constrained and can only be used
by one project at a time.

With the main goal of improving visibility into the internal
SC and predicting capacity utilization on the long-term, a
DT with a simulation-based RCCP tool was selected due
to its clear advantages over current capacity estimators,
which do not include any measure of variability. This
tool can aid the SC decision-makers in planning on the
long-term. Using the tool’s current and past information,
along with its capacity of generating capacity utilization
predictions, they can make decisions in a more data-driven
manner.

1.3 Digital Twin

A DT can be defined as a dynamic virtual representa-
tion of a physical object or system, using real-time data
to enable understanding, learning and reasoning [Bolton
et al., 2018]. Although its definition varies from source to
source, the basic idea consists on a digital representation of
an asset (being it tangible [entity] or intangible [system]),
which uses IoT to receive meaningful real-time data and
reaches conclusions based on both the developed model,
how it has performed in the past and how it is performing
at the present. The basic schematic of a DT is shown in
Figure 1.
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Fig. 1. Basic schematic of how a DT works. Note that the
automatic updates transition may be optional.

DTs are frequently confused with monitoring tools and
simulation models. In reality, DTs bring together both

concepts, effectively delivering a visualization tool with im-
proved simulation models [Madni et al., 2019]. DTs differ
from simulation models in the sense that they receive real-
time data to generate better predictions. Regularly, simu-
lation models have complete descriptions of the object or
system in study, but often lack its historical performance
and almost always lack their current state. By having both,
the generated simulations can be verified and improved by
simulating on past data and the predictions that the model
can create are based on current states, which will deliver
more data-driven and accurate responses. DTs also super-
sede monitoring tools in the sense that all the data that
these tools possess and display is also available by DTs.
Additionally, DTs have access to forecast data, created by
its simulation models.

1.4 Supply Chain

The internal SC of a CMO can be briefly summarised by
the schematic of Figure 2. It is comprised of 4 areas: man-
ufacturing (M), quality control (QC), quality assurance
(QA) and warehouse (WH). The production of a compo-
nent can be divided into two stages, the manufacturing
itself and the quality release (QR) which considers all the
stages after production and before shipment to the client.
During the manufacturing stage, the M area is producing
the components, while the WH area dispenses the raw
materials (once at the beginning and often a series of
times throughout the stage). Additionally, one or more in-
process control (IPC) tests are performed by the QC area.
The QR stage is characterized by two parallel workstreams
(besides the WH final product storage, which happens
once at the beginning): batch production record (BPR)
and QC. The first workstream starts with the BPR review
by the M area and ends with the BPR release by the QA
area. The QC workstream starts with the QC release (QC
R), followed by the QC release review (QC RV). There can
be multiple QC R-RV workstreams, but their QC R phase
always starts at the beginning of the QR stage and their
QC RV phase always starts after the corresponding QC R
finishes. Lastly, the QA area releases the QC analysis; this
step starts after the last QC RV phase finishes.

1.5 Rough Cut Capacity Planning

On a manufacturing organization, available capacity is
measured for a given production plant, area or workcenter
and for a specific range of time. It corresponds to the
total available time (in the considered period) multiplied
by the number of resources related to the selected scope.
For this work, capacity planning is done at the long-term
time horizon (up to 2 years).

Capacity planning can be defined as the process of deter-
mining and evaluating the amount of capacity required
for future manufacturing operations. This capacity can
often be in terms of labor, machinery, warehouse space
or supplier capabilities. The RCCP step comes as the
capacity plan at the tactical level, which regards the mas-
ter production schedule (the plan made by the company
at the long-term, regarding production, inventory and
workforce). RCCP is a capacity planning tool made at
the long-term, used to adjust the required and available
capacity and to change the master schedule or available
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capacity, if necessary. Using the results from an RCCP,
the master schedule can be modified in order to solve ca-
pacity inconsistencies by moving scheduled dates, increas-
ing/decreasing scheduled production quantities or subcon-
tracting additional workforce, for example.

2. IMPLEMENTATION

2.1 Data Extraction

Data was extracted from the company’s enterprise re-
source planner. This data was divided into 4 categories:

• Campaigns durations: for each campaign manufac-
tured in the production plant, information regarding
the project, manufacturing duration and quality re-
lease duration were extracted. The extracted data and
its relation to the reality can be graphically observed
in the timeline from figure 2.

● ● ● ● ●M

WH (FP)WH WH

IPCIPC
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QC R QC RV QA

Planned start  of

product ion
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into unrest ricted use
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Fig. 2. Extraction data points and their relation to the
real processes. The bars represent the real starts and
ends of the different stages, while the vertical lines
represent the dates that could be extracted.

• Planned Orders: orders that have been confirmed
and are within the long-term timeframe. The ex-
tracted information regarded the project, planned
start date, planned deadline and batch size.

• Required Resources: worker-hours and equipment-
hours required by each project. The extracted data
contemplated for each project all the tasks in the
project’s sequence of operations, which included in-
formation regarding the tasks area, effort and dura-
tion. The efforts were then aggregated by area and
project.

• Available Capacities: available capacity per area
and month.

2.2 Distributions Fitting

To model the variability inherent to the processes, the
collected data regarding manufacturing and QR durations
was studied, with the objective of fitting a theoretical
probability distribution function (PDF) to the observed
durations, in such a way that allowed their values to be
randomly sampled by the simulation tool. Note that for
confidentiality reasons, the time units are not particu-
larized, expressed instead in [TU ]. The basic steps for
choosing theoretical PDFs and fitting them to the observed
data were:

(1) Selecting the set of contender PDFs: since the
extracted data did not have sufficient granularity for
continuous distributions, only discrete PDFs were
considered. Law [2015] proposes the use of the pois-
son, binomial and negative binomial distributions.

Note that these PDFs belong to the exponential dis-
tributions family, which do not take negative values,
having a lower bound at 0. Since the observed pro-
cesses duration frequently also had a lower bound
(inherent to chemical processes), an offset was applied
to the theoretical PDFs, in such a way that x became
x− x0.

(2) Preprocessing the data: given the similar nature of
the processes, it can be assumed that all the projects
duration follow approximately the same behaviour;
to this end, only projects with more than 30 observa-
tions (representative) were used to discover the most
representative theoretical PDF.

(3) Removing outliers: due to the relatively small
datasets, with projects having no more than 500 ob-
servations, Tukey’s fences were used to remove out-
liers, setting the value k = 1.5. This outlier removal
algorithm showed good results, with outliers correctly
(and conservatively) removed and manifestations of
variability correctly kept.

(4) Statistical study: an empirical method for deter-
mining the PDF based on the distributions’ statistical
properties is through the Cullen and Frey graph. This
method considers the kurtosis and the squared of the
skewness to make a prediction about the most appro-
priate PDF, in the manner depicted in figure 3. As can
be seen from the figure, the negative binomial PDF
appears to be the most appropriate one, according to
the existing data.
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Fig. 3. Cullen and Frey graph for the projects in study

(5) Fitting the theoretical PDFs to the data: to
fit the theoretical PDFs to the existing data, an
optimization process is performed, with the objec-
tive of minimizing a goodness-of-fit (GoF) test. The
GoF chosen was the Chi-Squared (CS), due to its
widespread use. The mathematical formulation of the
optimization is as shown in equation 1. Note that it
assumes pix with x as being one of the 3 PDFs and
the optimization parameters {s, t, λ, p} according to
the chosen PDF.

min
t,s,λ,p

χ2 =

n
∑

i=1

(Oi −Npix)
2

Npix

s.t. t, s, λ > 0

p ∈ [0, 1]

(1)

The average CS values of the optimization were 324.2
for the Poisson PDF, 476.3 for the binomial PDF
and 46.3 for the negative binomial PDF. Given
the results of the fitting process and the conclusions
from the statistical analysis, the Negative Binomial
PDF can be seen as the most appropriate PDF, for
the processes being modeled.
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2.3 Simulation-based RCCP Implementation

The first consideration made for the construction of the
RCCP algorithm was the adoption of an upper bound for
the obtained PDFs, point at which these are truncated.
Since a lower bound already exists, the adoption of an
upper bound removes the possibility of obtaining far-out
values, which could badly influence the results of the
simulation.

The simulation-based RCCP tool was based on Monte
Carlo simulation. This class of computational algorithms
relies on random sampling of values in order to find a
pattern or tendency, and theoretically, is able to solve
any problem with probabilistic interpretation. In the
case at hand, it was seen that the manufacturing and
QR durations had probabilistic characteristics that could
be measured, which are propagated to the area’s ef-
forts. The mathematical formulation of the Monte Carlo
method is done through the problem’s probability space
(sample space and function that assigns probabilities to
the events), which can be seen in expression 2 (N ≡
number of orders).



























Ω = {DM1
,DQR1

, DM2
, DQR2

, · · ·

· · · , DMN
, DQRN

},Ω ∈ N

P (x) =

N
∏

i=1

P (DMi
, sMi

, pMi
, x0Mi

)·

P (DQRi
, sQRi

, pQRi
, x0QRi

)
j

(2)

with P (x, s, p, x0) ≡ Negative Binomial PDF

Regarding the probability space of each PDF, each value
of DMi or DQRi corresponds to a duration in terms of
manufacturing or QR, corresponding to project i, taking
a value from {Dmini

, · · · , Dmaxi
}|M,QR. Note that the

maximum value derives from the truncation that was
previously mentioned.

For a simulation as the one whose results are shown in sec-
tion 3.3, a total of 547 orders were considered, resulting in
a sample space with around 101392 scenarios. Calculating
the monthly capacities for every scenario and observing
the most probable utilized capacity for every month and
every area would be computationally unfeasible. The use
of Monte Carlo simulation is justifiable in such a situation.

The implemented algorithms are based in the earliest due
date (EDD). The EDD method settles the start dates
and then adds the manufacturing duration plus the QR
duration to arrive at the earliest due date. The algorithms
were ran using parallel computation, to improve their
efficiency. These can be subdivided into 5 sections:

• Sampling: considering the set of planned orders,
each campaign’s manufacturing and QR durations
are sampled from their respective PDFs. The values
are re-sampled until being contained within the con-
fidence level set.

• Monthly utilized capacity: for each planned order,
the corresponding daily required capacity for each
area is calculated (based on the sampled values and
on the efforts from the recipes). After all the planned

orders are considered, the capacities are aggregated
by month.

• Bottleneck asset (BA) utilization: given a set of
assets considered to be BAs, the tasks on each BA
regarding every project are obtained, by being scaled
according to their duration on the recipes and on the
sampled manufacturing duration.

• Aggregation of simulations: both the monthly
utilized capacity and the BA utilization have to be
aggregated, since a series of i independent results
exist, with i being the number of Monte Carlo it-
erations chosen. For the monthly utilized capacities,
the aggregated results are the median of the monthly
capacities, with a deviation of plus or minus 1 IQR.
Regarding the BA utilization, the start date and
duration of each process are used, with the start being
its median plus or minus its IQR, and the end being
the median plus or minus IQR of the sum of start and
duration.
One last step is performed, which is detecting the

interferences between BAs utilization. The process
is done after the aggregation and is done BA-wise,
with different BAs being independent. The algorithm
detects if there are any interference between two tasks
of the same BA. If so, the tasks are considered to have
interferences. Additionally, tasks that have interfer-
ences but only on their extended length (considering
the minimum IQR of the start and the maximum IQR
of the end), are considered to have possible interfer-
ences. All the other tasks have no interference.

• (Optional) Optimization: the optimization process
is optional and has the objective of removing any
interference between the tasks. It can be performed
by the median, correcting the interferences between
BAs themselves or by a factor of the IQR, either 0.25,
0.5, 1 or 2. This way the method basically operates
by considering the tasks as an extended version of
each, by the chosen factor. After the optimization,
the resulting monthly utilized capacities are also
calculated. Consider BA = {BA1, · · · , BAm} =
{BAi}, i ∈ [1,m] as the set of BAs, chosen by the
user. i corresponds to the index of the BA, and m is
the total number of BAs. Each BA features a series
of activities from different projects; considering the
BA with index i (BAi), Pi = {P1i

, P2i
, · · · , Poi} =

{Pji}, ji ∈ [1, oi]. Here, ji corresponds to the index
of each activity (for BAi), with the number of tasks
being oi.

min
n

n =
∑

[Pji ∩ Pki
6= ∅]

s.t. i ∈ [1,m]

ji, ki ∈ [1, oi]

ji 6= ki
n ≥ 0

(3)

3. RESULTS

3.1 Convergence

Evaluating the convergence of the results is a fundamental
step, since it can give clear insights into whether or not
the simulation is in fact trying to reach a representative
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solution. In theory, the more simulations ran, the greater
the confidence of an average value being the most represen-
tative. For a specific scenario, the simulation was ran for a
series of different number of iterations, ranging from 10 to
50000. Considering that the medians of utilized capacities
for each area at 50000 iterations are certainly the best
estimates of the monthly utilized capacities (named as the
50000-result), the relative error between each iteration’s
median and the 50000-result was calculated, and the area-
wise total is presented in table 1. The relative error be-
comes neglectable from 500 iterations on.

Iterations Total Relative Error

50 6.0%
500 0.7%
5000 0.5%

Table 1. Total relative error between the areas
at each number of iterations and the 50000-

result.

Regarding the BAs, the convergence was studied in a
slightly different manner: the number of interferences,
possible interferences and no interference was recorded
per simulation and its evolution with the number of it-
erations was obtained. The results showed that initially,
the number of interferences decreases while the number of
no interferences remains constant and the number of pos-
sible interferences increases. At around 500 iterations, this
convergence stops and there is no more fluctuation in the
number of interferences. This behavior can be explained
by asset utilizations that become better defined, reducing
the number of interferences; these former interferences
become possible interferences which explain the rise in
such category. After stagnating, increasing the number
of iterations will reduce the variance which leads to a
reduction in possible interferences, resulting in an increase
in the number of assets without interferences.

3.2 Validation

The process of validating the model is important to verify
whether or not the simulations obtained are trustworthy,
and how they perform when compared with the baseline
estimations, obtained without simulation, using the most
common durations of the processes. The data used for
the validation regarded a period of 9 months at the phar-
maceutical company in study. Note that these capacities
were not explicitly available and were therefore calculated
according to the rules described in section 2.3 from the real
processes’ durations. Additionally, the first 3 months are
not considered since they are comprised of orders within
the short and medium terms. To benchmark the results of
the simulation were compared against the baseline estima-
tions. The results for the Manufacturing area are shown in
figure 4.

The results show that the simulated capacities are a better
approximation than the baseline estimations and that
the simulated values are within an acceptable distance
from the real utilized capacities. Numerically, the overall
relative error between the simulated capacities and the
validation data is 6.75%, while the baseline estimation’s
error is 14.64%. This shows a significant reduction in
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Fig. 4. Capacities validation and benchmarking, for the
manufacturing area. Note that the grey regions indi-
cate the actual utilized capacity.

the error using the simulation and that the simulated
results are actually within reasonable distance to the
actual results. Considering all the areas, the simulation
error is 13.10%, while the baseline error is 17.42%. While
this shows less significant improvements, it is worth noting
that the manufacturing results are the most important
due to the fact that its absolute values are much higher
than the remaining areas. Additionally, it was possible
to observe that the errors from simulation tended to be
frequently by excess, while the errors from the baseline
estimate tended to be by deficit. Errors by excess tend to
be preferable than by deficit, which is another advantage
of the simulation-based RCCP.

3.3 Forecasting

To test the forecasting capabilities of the simulation-
based rough cut capacity planning tool, a specific scenario
was ran, corresponding to a series of planned orders
and orders on short/medium term (current orders), with
their respective project and planned start date. While
the current orders cannot be modified in any way, it
is important to consider them in the simulation since
they affect the utilized capacity in the following months.
A total of 299 planned orders and 248 current orders
were considered, for 500 iterations. The resulting monthly
capacity utilization graphs for manufacturing is shown in
figure 5. Regarding the BAs utilization, the Gantt chart
represented in figure 6 shows a set of assets considered
unique and unchangeable, with the clashes between tasks
depicted.
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Fig. 5. Forecasted capacity evolution per month on the
manufacturing area. The full color bars correspond
to the actual simulated capacity for the month and
area in question, with an error bar indicating ±
1 IQR. The grey bars correspond to the capacities
from the current orders. The shaded background area
corresponds to the limit capacity of each area.

An optimization step is then possible. The user can select
the desired scope of the optimization, whether by the
median or by 0.25, 0.5, 1 or 2 IQRs. The objective of this
process is detecting and removing clashes between tasks
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Fig. 6. Gantt chart of the BA’s utilization. Tasks color-
coded as grey signify that they are current orders,
which can no longer be modified.

by their median value or by a factor of their IQR and
calculating the resulting utilized capacity. Considering the
example previously described and an optimization by 0.5
IQRs, the resulting Gantt chart is as shown in figure 7.
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Fig. 7. Gantt chart of the BA’s utilization after opti-
mization. Grey tasks ≡ (un-optimized) current orders;
green tasks ≡ planned orders (optimized or not).

In terms of monthly utilized capacity, it could be seen that
while before being optimized, the results tended to be more
concentrated on the initial months, greatly decreasing
to near zero values afterwards, after being optimized
the utilized capacities tended to be more distributed.
This makes complete sense since the tasks are also more
distributed, leading a greater distribution of the projects
and consequently to capacities less concentrated on the
initial months.

3.4 User Interface

Besides being a platform for delivering the simulation-
based RCCP tool, a graphical user interface (UI) was
built with the objective of delivering clear, intuitive and
customizable ways of showing information on a global
view, regarding operations per building or project, the
key performance indicators and their evolution, and the
schedule of activities, both that happened in the past, or
that will happen in the near future. Additionally, the UI
features a Project database containing a series of informa-
tion regarding each project. All of these allow the users
to observe past tendencies and patterns, enabling stake-
holders to have decisions more data-driven. The user in-
terface was developed using the R programming language
and its capabilities for front-end application development,
through the shiny package.

4. CONCLUSIONS

The developed tool was successful in delivering its two
components: visualization and simulation. Its visualization

capabilities can improve the users’ awareness into the
supply chain status, intuitively observe the scheduled tasks
on the near future and deduce patterns of e.g. seasonality,
given the historical behaviour. Regarding simulation, the
results obtained were promising, delivering better esti-
mates than non-simulation RCCP tools. This can be bene-
ficial in a company since it allows decision-makers to better
negotiate changes to the master schedule at the long-term,
reducing the necessity for solving capacity deficiencies or
surpluses at the short/medium-term, which is often riskier
and more expensive. The methodologies here employed can
be applied to other industry domains with little need for
extensive modifications. Only the mapping of the internal
SC (such as the one shown in figure 2) is industry, and
often company-dependent.

The main limitation of this method is its inability to
correctly deal with certain situations which are common
but frequently cannot be reflected in the numerical data.
Additionally, the simulation tool does not account for
differences in the planned versus actual start date.
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