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Abstract: Motivated by the potential for parallel implementation of batch-based algorithms
and the accelerated convergence achievable with approximated second order information a
limited memory version of the BFGS algorithm has been receiving increasing attention in recent
years for large neural network training problems. As the shape of the cost function is generally
not quadratic and only becomes approximately quadratic in the vicinity of a minimum, the use
of second order information by L-BFGS can be unreliable during the initial phase of training,
i.e. when far from a minimum. Therefore, to control the influence of second order information
as training progresses, we propose a multi-batch L-BFGS algorithm, namely MB-AM, that
gradually increases its trust in the curvature information by implementing a progressive storage
and use of curvature data through a development-based increase (dev-increase) scheme. Using
six discriminative modelling benchmark problems we show empirically that MB-AM has slightly
faster convergence and, on average, achieves better solutions than the standard multi-batch L-
BFGS algorithm when training MLP and CNN models.
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1. INTRODUCTION

In the last twenty years significant advances have been
made towards making artificial neural networks able to
compete with their biological counterparts (Dodge and
Karam (2017)). A factor that is critical to the perfor-
mance of artificial neural networks is the network training
algorithm, which determines the sequence of computa-
tions to be performed in order for the network to learn
the underlying relationships in the dataset of interest.
Many training algorithms have been proposed over the
years to achieve this goal, typically trading off computa-
tional complexity with rate-of-convergence and/or qual-
ity of solutions obtained (McLoone et al. (1998); Good-
fellow et al. (2016); Ruder (2016)). In general, training
algorithms fall into three categories: first order meth-
ods, which calculate the loss function and its derivative
at each iteration, e.g. stochastic gradient descent (SGD)
and Adam (Kingma and Ba (2014)), second order meth-
ods, which also calculate second derivative information,
and quasi-Newton methods, which evaluate an approx-
imation of the second derivative instead of computing
it directly, e.g. the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) (Liu and Nocedal (1989)).
Whenever the amount of data to be processed is large,
state-of-the-art performance is usually achieved with well-
tuned first order methods thanks to regularization tech-
niques such as batch normalization and dropout (Bol-
lapragada et al. (2018)). Regularization and stable ap-
proximated curvature updates in L-BFGS methods are
currently an active area of research due to the accelerated
? The first author gratefully acknowledges the financial support
provided by Irish Manufacturing Research (IMR) for this research.

convergence achievable with curvature information and
the ability to exploit parallelism with large batch sizes
to achieve efficient algorithm implementations (Berahas
et al. (2016); Yousefian et al. (2017)). Agarwal et al. (2014)
proposed a hybrid approach where training is initially per-
formed with a fast and regularized first order method and
then switched to a full batch method to exploit parallelism.
The L-BFGS method we propose can be seen as a hybrid
approach where the batch size is kept fixed as in Berahas
et al. (2016), but the use of approximated second order
information is gradually increased during training thereby
enhancing convergence. Initially, when little second order
information is used, the method is essentially first order
and becomes increasingly second order in nature as more
and more curvature information is incorporated into the
weight updates.

Our contributions: Motivated by recent interest in pro-
gressive training strategies (Smith et al. (2017); Bollapra-
gada et al. (2018)), we propose an approach based on
progressive curvature trust for the multi-batch L-BFGS
algorithm of Berahas et al. (2016) by adding two algo-
rithmic ingredients: a progressive storage (and use) of
curvature information, and periodic resetting. Based on
the development-based decay (dev-decay) scheme for first
order methods (Wilson et al. (2017)), we propose a dev-
increase scheme to control the progression of the memory
size for curvature information and its resetting. For com-
parison purposes, we develop three variants of the multi-
batch L-BFGS and experimentally compare them with the
multi-batch L-BFGS and Adam algorithms for training
multilayer perceptrons (MLPs) and convolutional neural
networks (CNNs) on six case study datasets.
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The paper is organized as follows: Section 2 describes the
multi-batch L-BFGS algorithm of Berahas et al. (2016)
as this is the reference algorithm to which we add two
algorithmic ingredients; Section 3 explains the concept of
progressive curvature trust and the proposed algorithm;
Section 4 describes the case studies and experiments con-
ducted to evaluate the proposed algorithm and discusses
the results obtained. Finally, Section 5 gives the conclu-
sions.

Hereinafter, matrices and vectors are indicated with bold
capital and bold lowercase letters, while lowercase italic
font denotes scalars. The sets are indicated by italic capital
letters.

2. MULTI-BATCH L-BFGS

Let us consider a classification task defined by the set

B = {x(i), l(i)}i=1,2,...,|B|,

where x(i) ∈ Rn is an input sample (e.g. an image) of size n
and l(i) ∈ N is an integer representing its class (i.e. label).
A neural network relates the input to the output label via
a mapping p(θ,x(i)) : Rn 7→ N, with network parameters
θ ∈ Rd optimally adapted to B using a training algorithm.
Full-batch algorithms learn θ by considering the complete
dataset B, therefore they optimize a deterministic function
C(B), that is

min
θ

1

|B|
∑
i∈B

c(x(i), l(i); p(θ,x(i))) = min
θ
C(B),

where c(·) is a cost (i.e. loss) function chosen to measure

the distance between the model prediction l̂(i) = p(θ,x(i))
and the expected output l(i) when given the sample x(i) as
input. In contrast, in multi-batch mode a random subset
Sk ⊂ B is used at each iteration and the optimal θ
is estimated by iteratively minimizing a stochastic cost
function C(Sk), that is

min
θk

1

|Sk|
∑
i∈Sk

c(x(i), l(i); p(θ,x(i))) = min
θk

C(Sk), (1)

where k is the iteration counter. The L-BFGS algorithm
updates the parameters with the rule

θk+1 = θk − ηH−1k gSkk (2)

where η is the learning rate (i.e. step length), gSkk is the
gradient defined as

gSkk =
∂C(Sk)

∂θk
(3)

and H−1k is the inverse Hessian matrix approximation
updated according to (Nocedal and Wright (2006))

H−1k+1 = V >k H
−1
k Vk + ρksks

>
k

ρk = (t>k sk)−1

Vk = I − ρktks>k
sk = θk+1 − θk (4)

tk = gSkk+1 − g
Sk
k . (5)

The storage of H−1k requires O(d2) memory, which is
prohibitive with large neural networks, therefore in L-
BFGS a two-loop recursion is used to directly compute the
product H−1k gSkk such that only a predefined number of

curvature pairs (sk, tk) need to be stored. The maximum
number of stored pairs, m, is usually fixed between 3
and 20 (Nocedal and Wright (2006)). Once the limit m
is reached the oldest pairs are replaced by the newest
ones. Given the stochastic nature of the evaluation of
the gradient using (3), to achieve a stable computation of
the curvature tk (see (5)) Berahas et al. (2016) proposed
having overlapping consecutive batches, i.e. Ok = Sk−1 ∩
Sk 6= ∅. This overlap is defined with the hyperparameter

o = |Ok|
|Sk| , which is usually chosen in the range 0 < o < 0.5.

3. ADAPTIVE MEMORY MULTI-BATCH L-BFGS

3.1 Local Approximation of the Cost Function

An important feature of gradient-based optimization algo-
rithms is the computation of the search direction used to
find an updated parameter vector θk+1. Newton and quasi-
Newton methods such as L-BFGS define the direction
approximating the exact cost function C with a quadratic
model, obtained by truncating the cost function Taylor
series expansion at the third term, that is:

C(θk + yk) ≈ C̄k =

= C(θk) + g>k (θk)yk +
1

2
y>k Hk(θk)yk.

Then, differentiating with respect to yk and setting it
equal to zero we find the direction leading to the minimum
of C̄

yk = −H−1k gk,

which motivates the weight update rule in (2). However, if
around the point θk+yk the function is significantly differ-
ent from a quadratic-like model, the use of the curvature
information could be detrimental to stable and reliable
parameter updates. Moreover the curvature evaluation is
computationally demanding as it requires the computation
of d(d + 1)/2 derivatives, thus it is only worth using if it
actually improves the algorithm convergence.

Now we observe that as we approach a minimum point of
a nonlinear multi-modal function the quadratic approxi-
mation becomes increasingly valid, and this occurs at the
more advanced stages of training, i.e.

lim
k→∞

C − C̄k = 0.

In contrast, at the beginning of the training process
it is difficult to say how well a quadratic model will
approximate the true cost function.

Therefore, we propose an algorithm that implements a pro-
gressive use of curvature information: initially only a few
curvature pairs (e.g. one or two) are stored and used, with
the older pairs discarded to reduce the computational cost;
then, when the algorithm gets closer to the minimum, we
increase the storage and use of second order information.

3.2 The Algorithm

The pseudo-code of the proposed method is presented in
Algorithm 1, which is the result of the combination of three
building blocks:

Block 1: The basic structure is the multi-batch L-BFGS
of Berahas et al. (2016) described in Section 2 which
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performs stable curvature updates by overlapping consec-
utive batches. A PyTorch implementation is available on
GitHub 1 .

Block 2: To regulate the use of approximated second
order information during training the memory mk used
to store the curvature pairs is increased as the number of
iterations increases, in a fashion similar to the progressive
batching approach proposed in Bollapragada et al. (2018).
The rule defining when to increase mk is based on the
development of the validation loss in a similar fashion
to the dev-decay scheme of Wilson et al. (2017) applied
to the step length. Adapted to implement a progressive
curvature trust, it becomes a dev-increase scheme. It is
executed between Step 11 and Step 18, with α denoting
the memory scaling factor. The macro-condition (6) is
typically satisfied when the validation loss is approaching
a local minimum. The parameter mval defines how many
previous validation losses are stored and, if increased,
makes the satisfaction of Q more difficult, thus delaying
the increase of mk. The lower and upper limits of mk are
m0 and mmax, respectively, i.e. m0 ≤ mk ≤ mmax. Note
that the extra memory required to store the validation
losses is negligible with large datasets/models because vk
is a scalar and mval is a relatively small number (e.g.
mval ≤ 10).

Q : {∆k−mval+j > ∆k−mval+j+1}j=0,1,...,mval−2 (6)

with
∆k = vk−1 − vk.

Block 3: To further mitigate the impact of using un-
representative curvature information, the resetting of the
memory proposed in McLoone and Irwin (1999) is imple-
mented. Adapted to implement a progressive curvature
trust, the resetting is applied just for smaller k accord-
ing to the development of mk, which in turn follows the
validation loss development. This third building block is
implemented between Step 19 and Step 21, where qk is the
current number of stored curvature pairs and mreset is the
memory size below which resetting is applied.

4. EXPERIMENTS

4.1 Experimental Setup

In this section two implementations based on Algorithm 1
are considered: multi-batch L-BFGS with adaptive mem-
ory and without resetting (MB-AM), i.e. mreset = 0,
and multi-batch L-BFGS with both adaptive memory and
resetting (MB-AMR), i.e. mreset > 0. In addition, a
multi-batch L-BFGS with constant memory and periodic
resetting, as proposed in McLoone and Irwin (1999), is
considered. This variant, denoted as MB-R, performs re-
setting whenever the maximum memory size is reached.
For benchmarking purposes, two additional methods are
considered, namely, standard multi-batch L-BFGS (MB),
and Adam. Therefore in total five methods are compared.

The six datasets and six experiments considered are de-
tailed in Table 1 and Table 2, respectively. The MLP is
a single-hidden layer fully connected feedforward neural
network with h neurons in the hidden layer. The CNN
has two 2D convolutional layers followed by two fully
connected layers. Each convolutional layer is followed by

Algorithm 1 Adaptive Memory Multi-Batch L-BFGS

1: Input: θ0 (initial iterate), B = {(x(i), l(i)), for i ∈ B}
(training set), r (i.e. |Sk|), o (overlap ratio), η, α, m0,
mmax, mval, mreset

2: Initialisation: k ← 0, qk ← 0, mk ← m0

3: Randomly select a batch S0 ⊂ B
4: Repeat until convergence
5: Compute Ck

6: Compute gSkk

7: Compute Hkg
Sk
k via L-BFGS two-loop recursion (No-

cedal and Wright (2006))
8: Update the parameters as in (2)
9: Select a new batch Sk+1 ⊂ B with overlap ratio o

10: Compute the new curvature pair (sk, tk) as in (4), (5)
11: Compute the new validation loss vk
12: if number of stored vk == mval then
13: Remove the oldest vk
14: end if
15: Store the newest validation loss vk
16: if mk < mmax & Q then
17: mk ← αmk

18: end if
19: if qk == mk then
20: if mk ≤ mreset then
21: Delete all stored pairs and qk ← 0
22: else
23: Remove the oldest pair and qk ← qk − 1
24: end if
25: end if
26: Store the newest pair and qk ← qk + 1
27: k ← k + 1

a ReLU and a 2D max pooling layer. The function C(·)
in (1) minimized during training is the cross-entropy loss
function (Bishop (2006)), with c(·) defined as

c(l(i), l̂(i)) = −{l(i) ln(l̂(i)) + (1− l(i)) ln(1− l̂(i))}.
The algorithms were written in PyTorch. The data aug-
mentation of the TRASH dataset was performed using
Keras. The experiments with the CNN were executed on
an nVidia P40-4Q virtual GPU, while the experiments
with the MLP were executed on a local desktop with
an Intel i7-6700 CPU and 16 GB of RAM. The code is
available on GitHub 2 .

Two metrics are used to assess algorithm performance:
the correct classification rate (CCR) and the rank (RNK).
CCR is defined as

CCR =
100

|T |
∑
i∈T

z(i), z(i) =

{
1, if l(i) = l̂(i)

0, otherwise

where T is the test set. To evaluate RNK, for each simu-
lation (60 in our experiments) we rank the five candidate

1
https://github.com/hjmshi/PyTorch-LBFGS

2
https://github.com/fedezocco/AdaMemLBFGS-PyTorch

3 Downloaded from: https://scikit-learn.org/stable/datasets/
4 Downloaded from: https://www.cs.ucr.edu/~eamonn/time_series_data/
5 MNIST-R is a rescaled version of MNIST, which has 28 × 28 × 1 features.
6 Downloaded from: https://keras.io/datasets/
7 TRASH-RA is a rescaled and augmented version of TRASH, which has

512 × 384 × 3 features and 2527 images in total.
8 Downloaded from: https://github.com/garythung/trashnet
9 Kernel size = 5×5, kernels per layer = 1, stride = 1, dilatation = 1, padding

= 0, pool size = 2×2, pool stride = 2.
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Table 1. Overview of the case study datasets.

Dataset # samples (train; test) # features # classes Source

CANCER (484; 85) 30 2 Street et al. (1993) 3

ETCH (1865; 329) 2046 3 Puggini and McLoone (2015)
WAFERS (6164; 1000) 152 2 Olszewski (2001) 4

MNIST-R 5 (60000; 10000) 32 × 32 × 1 10 LeCun et al. (1998) 6

CIFAR10 (50000; 10000) 32 × 32 × 3 10 Krizhevsky (2009) 6

TRASH-RA 7 (45107; 7960) 32 × 32 × 3 6 Yang and Thung (2016) 8

Table 2. Description of the design of the six experiments considered, where parameters h, m̄,
nBFGS , and nAdam are the number of MLP hidden layer neurons, the maximum memory size
for L-BFGS algorithms when m is constant (i.e. MB and MB-R), the number of iterations used

for L-BFGS methods, and the number of iterations used for Adam, respectively.

Dataset Model Hyperparameters

Experiment 1 CANCER MLP
α = 2, m0 = 1, mmax = 32, mval = 5, mreset = 8 | nBFGS = 200, o = 0.45, m̄ = 10,
rBFGS = 256, ηBFGS = 0.5 | nAdam = 200, rAdam = 64, ηAdam = 0.02 | h = 35

Experiment 2 ETCH MLP
α = 2, m0 = 1, mmax = 32, mval = 5, mreset = 8 | nBFGS = 300, o = 0.45, m̄ = 10,
rBFGS = 512, ηBFGS = 0.5 | nAdam = 300, rAdam = 64, ηAdam = 0.03 | h = 320

Experiment 3 WAFERS MLP
α = 2, m0 = 1, mmax = 32, mval = 5, mreset = 8 | nBFGS = 60, o = 0.4, m̄ = 10,

rBFGS = 512, ηBFGS = 1 | nAdam = 70, rAdam = 64, ηAdam = 0.03 | h = 5

Experiment 4 MNIST-R CNN 9 α = 2, m0 = 1, mmax = 32, mval = 5, mreset = 8 | nBFGS = 70, o = 0.25, m̄ = 10,
rBFGS = 8192, ηBFGS = 1 | nAdam = 80, rAdam = 128, ηAdam = 0.001

Experiment 5 CIFAR10 CNN 9 α = 2, m0 = 1, mmax = 32, mval = 5, mreset = 8 | nBFGS = 500, o = 0.25, m̄ = 10,
rBFGS = 8192, ηBFGS = 1 | nAdam = 1000, rAdam = 128, ηAdam = 0.001

Experiment 6 TRASH-RA CNN 9 α = 2, m0 = 1, mmax = 32, mval = 5, mreset = 8 | nBFGS = 900, o = 0.25, m̄ = 10,
rBFGS = 8192, ηBFGS = 1 | nAdam = 1200, rAdam = 128, ηAdam = 0.001
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Fig. 1. Plot of the memory size mk (left) and the number
of stored curvature pairs qk (right) as a function of k
for selected experiments in Fig. 2.

methods in descending order such that the one with high-
est CCR gets RNK = 1, and the one with the lowest CCR
gets RNK = 5. Thus, 1 ≤ RNK ≤ 5.

4.2 Results

Fig. 1 shows mk and the number of stored curvature pairs
as a function of the number of iterations, k, while Fig. 2
shows the training loss, the test loss and the CCR as a
function of k for a single training run of each experiment.
Even though these figures do not permit statistically
significant conclusions to be drawn because they depict a
single simulation, they are useful in revealing the general
behavior of the algorithms.

To evaluate the regularizing property of each method 60
Monte Carlo simulations were performed. Table 3 reports

the mean and standard deviation of the final test CCR
and RNK over these simulations, where “final” means the
value once the training is completed. The last row of the
table gives the mean and standard deviation over all six
experiments, summarising the overall performance of each
training algorithm.

The results vary considerably across the six experiments,
with no single algorithm dominating. Adam achieves the
best mean CCR performance in experiments 1, 3 and 6,
MB-AM in experiments 4 and 5, and MB in experiment
2. Overall, MB-AM, MB-AMR and Adam yield similar
mean CCR performance (74.1%-74.7%), with Adam hav-
ing much lower variance in performance across the Monte
Carlo simulations than the L-BFGS methods. MB-R is
the worst performing training algorithm with a CCR of
69%, followed by MB at 71.4%. The fact that MB is more
prone to converging to inferior solutions than the adaptive
memory L-BFGS implementations is also reflected in the
higher standard deviation in CCR (17.7% versus 11.9% for
MB-AM, for example).

In terms of the rank metric, RNK, which considers the
relative performance of each algorithm and is therefore
less susceptible to outliers than CCR, MB-AM is the most
consistently performing algorithm with a mean rank of
2.55, followed by MB-AMR with a mean rank of 2.58. MB
is third at 2.8 and Adam is fourth at 3.2.

Table 4 shows the mean training computation time and,
in parentheses, the mean time per iteration of the L-BFGS
algorithms over the 60 Monte Carlo simulations normal-
ized by the corresponding mean times for Adam. The
algorithms have similar computation times for the three
smaller dimension (MLP based) experiments, whereas
MB-AM and MB-AMR are marginally faster than MB
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Fig. 2. The evolution of the training and test dataset cross-entropy loss and the test dataset CCR for a single simulation
of each the six experiments considered in the study.

Table 3. Mean (standard deviation) of CCR and RNK over 60 Monte Carlo simulations. The
best results for each experiment are highlighted in bold.

MB MB-AM MB-R MB-AMR Adam
CCR RNK CCR RNK CCR RNK CCR RNK CCR RNK

Exp. 1 80.9(15.8) 3.3(1.48) 85.0(13.8) 2.5(1.44) 84.7(13.4) 3.0(1.36) 85.8(12.3) 2.6(1.32) 90.1(1.4) 1.9(1.23)

Exp. 2 65.0(21.3) 2.3(1.45) 61.5(15.5) 2.6(1.14) 59.6(15.7) 2.4(1.17) 58.2(19.8) 2.7(1.31) 53.5(0.0) 4.1(0.87)

Exp. 3 87.5(21.6) 3.8(1.22) 91.5(19.3) 2.7(1.46) 95.9(9.8) 2.9(1.40) 95.0(12.5) 2.2(1.43) 97.8(1.1) 3.3(1.07)

Exp. 4 87.6(26.1) 1.8(1.24) 92.4(15.4) 2.8(1.14) 85.0(28.2) 2.7(1.23) 92.1(15.2) 3.1(1.05) 91.6(0.9) 4.6(0.72)

Exp. 5 57.9(9.2) 1.9(1.10) 59.5(1.8) 2.0(0.75) 48.9(9.3) 4.6(0.52) 57.8(6.8) 2.3(1.04) 53.1(1.2) 4.1(0.64)

Exp. 6 49.6(12.2) 3.4(1.03) 55.7(5.6) 2.7(0.89) 39.9(5.0) 4.9(0.37) 55.5(6.4) 2.6(0.89) 62.4(1.6) 1.3(0.70)

Mean 71.4(17.7) 2.8(1.25) 74.3(11.9) 2.6(1.14) 69.0(13.6) 3.4(1.01) 74.1(12.2) 2.6(1.17) 74.7(1.0) 3.2(0.87)
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Table 4. Mean training times (and in paren-
theses, the mean time per iteration) for each
L-BFGS algorithm normalized with respect to

the corresponding values for Adam.

MB MB-AM MB-R MB-AMR

Exp. 1 2.0(2.0) 2.1(2.1) 1.9(1.9) 2.1(2.1)

Exp. 2 5.3(5.3) 5.8(5.8) 5.1(5.1) 5.8(5.8)

Exp. 3 2.7(3.1) 2.6(3.0) 2.7(3.1) 2.6(3.0)

Exp. 4 23.2(26.5) 22.3(25.5) 23.0(26.2) 22.2(25.4)

Exp. 5 15.6(31.2) 14.8(29.7) 15.6(31.2) 14.9(29.8)

Exp. 6 22.0(29.4) 21.2(28.3) 22.0(29.3) 21.3(28.4)

when training the larger CNN based problems (3%-4%).
This is a consequence of the low memory usage in early
iterations which speeds up the L-BFGS two-loop recursion
computation. The use of large batches and the computa-
tion of the approximated second order information make
the L-BFGS methods substantially more computationally
intensive than Adam and the advantage of the latter in-
creases for the larger experiments. For example, Adam is
more than 22 times faster than the L-BFGS algorithms for
the MNIST case study (Experiment 4).

5. CONCLUSIONS

This paper has proposed three variants of the multi-batch
L-BFGS algorithm of Berahas et al. (2016) based on the
idea of progressive use of curvature information through
a dev-increase scheme, and periodic memory resetting as
introduced in McLoone and Irwin (1999). The experimen-
tal results show that the dev-increase adaptive memory
scheme improves the generalisation performance and con-
sistency of results obtained with L-BFGS and also slightly
reduces its computational complexity. Periodic memory
resetting is shown to be detrimental to performance, with
MB-AMR marginally inferior to MB-AM and MB-R sub-
stantially inferior to MB. The overall ordering of algo-
rithms in terms of generalisation performance is MB-AM,
MB-AMR, MB, Adam and MB-R. In contrast, in terms
of computational efficiency the order is Adam, MB-AM,
MB-AMR, MB-R, and MB, with Adam vastly superior to
the other training algorithms. Therefore, Adam remains
the algorithm of choice for training large neural networks,
and only when the resulting accuracy is not satisfactory,
should the use of MB-AM be considered.

MB-AM has the drawback of requiring three additional hy-
perparameters compared to MB (α, m0/mmax and mval).
The values used in this study are empirically defined and
appropriate for a first investigation of the method. Future
research will look at the automated selection of these
parameters, and the potential for integrating MB-AM with
progressive batching (Bollapragada et al. (2018)).
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