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Abstract: This paper deals with the problem of local state-feedback stabilization for continuous-time
nonlinear systems represented by Takagi–Sugeno (T–S) fuzzy models. The approach is based on a
polytopic representation for the gradient of the membership functions but, differently from most of the
available methods, bounds for the time-derivatives of the membership functions are not required. A two
step strategy is proposed for the control design. First, a sufficient condition provides a stabilizing state-
feedback gain for the dual system. Although there is no guarantee of stability for the original system, the
controller is used as an initial condition for the second step of the method. If a feasible solution is found,
a stabilizing state-feedback controller and an estimate of the domain of attraction are certified by means
of a fuzzy Lyapunov function with polynomial dependence on the membership functions. The proposed
conditions, given in terms of parameter-dependent linear matrix inequalities (LMIs) with a scalar search,
can be solved by LMI relaxations with optimization variables considered as homogeneous polynomials
of fixed degree. Examples based on T–S models borrowed from the literature illustrate that the method
performs better than other existing approaches in terms of providing stabilizing gains associated with
larger estimates for the domain of attraction.

Keywords: Continuous-time Takagi-Sugeno fuzzy systems; local state-feedback stabilization; fuzzy
Lyapunov functions; region of attraction; LMI relaxations

1. INTRODUCTION

The control of nonlinear systems based on Takagi-Sugeno (T–
S) fuzzy models (Takagi and Sugeno, 1985) has been an im-
portant topic of research in the last two decades. Thanks to the
exact representation of nonlinear systems in a compact set of
the state-space, by the so-called sector nonlinearity approach
(Tanaka and Wang, 2001), stability analysis and control design
can be performed using quadratic Lyapunov functions, that also
provide level sets yielding compact and invariant regions in the
state space as estimates of the domain of attraction of the origin.
Most of the works in the T–S literature performs the stability
analysis and the control synthesis by means of quadratic Lya-
punov functions with a fixed (membership-independent) Lya-
punov matrix, yielding the so-called Parallel Distributed Com-
pensation (PDC) control law (see Feng (2006) and references
therein). The main difficulty of using fuzzy (i.e., membership-
dependent) Lyapunov functions (Tanaka et al., 2003) comes
from the presence of the time-derivatives of the membership
functions (that depend on the states) in the design conditions.
The simplest approach is to guess upper bounds for the time-
derivatives of the membership functions that hold in the domain
of validity of the T–S model (Lam, 2009; Mozelli et al., 2009;
Tognetti et al., 2011; Xie et al., 2015). However, this strategy is
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not efficient in the design of controllers, since the actual bounds
cannot be known in advance and, therefore, an a posteriori test
must be performed to verify if the domain of validity of the
model is entirely contained in the region where such bounds
are valid.

In a sense, this drawback is overcome in the works of Lee
et al. (2012); Pan et al. (2012b). In Lee et al. (2012); Lee and
Kim (2014), the intersection of the domain of validity of the
T–S model with the space defined by the bounds on the time-
derivatives of the membership functions is taken into account
in the design conditions, providing sharper estimates for the
domain of attraction. However, there is no recipe for guessing
the values of the upper bounds used in the design. In Pan
et al. (2012b,a); Márquez et al. (2017), guesses for the upper
bounds are proposed, while indirect bounds are established in
Bernal and Guerra (2010); Guerra et al. (2012) by considering
constrained input signals. Although some works concerning
stability analysis avoid the use of bounds on the time-derivative
of the membership functions (Lee et al., 2014; Gomes et al.,
2019), extensions for control design are still an open issue.

This paper follows a different strategy to cope with the con-
trol design problem for continuous-time T–S fuzzy systems, in
the sense that the explicit knowledge of bounds on the time-
derivative of membership functions is not required. Local sta-
bility analysis conditions from (Lee et al., 2014; Campos, 2015;
Gomes et al., 2019), that explicitly consider a polytope repre-
senting the domain of validity of the T–S model in the stability
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conditions, are extended to provide synthesis conditions for the
T–S fuzzy system. Due to the difficulty of manipulating the
conditions in order to obtain a linear matrix inequality (LMI)
optimization problem for control design, a two-step procedure
is proposed.At the first step, a stabilizing state-feedback control
law is computed for the dual system. Although there exists
no guarantee of stability for the original system, the obtained
controller is used as input data in a second condition that, if sat-
isfied, assures the closed-loop stability of the T–S fuzzy original
system, providing a stabilizing state-feedback controller and an
estimate of the domain of attraction inside the region of validity
of the model. Both steps are solved by means of LMI relax-
ations based on homogeneous polynomial matrices of arbitrary
degree. In the first step a scalar parameter is introduced as an
extra degree of freedom, and in the second step slack variables
help to reduce the conservatism for the estimation of the domain
of attraction. Numerical examples from the literature illustrate
that the proposed technique can provide better results in terms
of larger estimates for the domain of attraction when compared
with other approaches, with the additional advantage of not
requiring the knowledge of bounds for the time-derivatives of
the membership functions.

Notation: The set of real matrices with dimension n rows and
m columns is denoted by R

n×m, MT means the transpose of
matrixM and He(M) = M+MT . M > 0 (M < 0) indicates that
matrixM is positive (negative) definite, the symbol ⋆ represents
a symmetric block in a matrix.

2. PRELIMINARIES

Consider the nonlinear system

ẋ = f (x)x+ g(x)u (1)

where the origin is as equilibrium point for u = 0, that is,
f (0) = 0, x ∈ R

n, and f (·), g(·) are assumed to be bounded
and smooth in a compact set of the state-space. Using the sector
nonlinearity approach (Tanaka and Wang, 2001), the nonlinear
system (1) can be represented in an exact way by means of the
T–S fuzzy system

ẋ = A(α(z))x+B(α(z))u, ∀x ∈ X , (2)

where x ∈ R
n is the state, u ∈ R

m is the control, A(α(z)) ∈
R

n×n, B(α(z)) ∈ R
n×m and X is a compact set in the state-

space. Variable z ∈ R
p, the premise variable of the T–S fuzzy

model, depends on the states (i.e., z = z(x)) and represents the
p nonlinearities of the original system. Moreover,

A(α(z)) =
N

∑
i=1

αi(z)Ai, B(α(z)) =
N

∑
i=1

αi(z)Bi,

where Ai, Bi, i = 1, . . . ,N are supposed to be known and α(z) =
[α1(z) · · ·αN(z)]T ∈ ΛN ,

ΛN =
{

ξ ∈R
N :

N

∑
i=1

ξi = 1, ξi ≥ 0, i = 1, . . . ,N
}
.

The weighting functions wℓ j, ℓ= 1, . . . , p, j = 1,2, are given by

wℓ1(zℓ) = (zℓ(x)− z̄ℓ)/(z̄ℓ− zℓ), wℓ2(zℓ) = 1−wℓ1(zℓ),

where z̄ℓ = max(zℓ) and zℓ = min(zℓ). Then, the entries of the
membership function α(z) are constructed as

αi(z) =
p

∏
ℓ=1

wℓ j(zℓ), i ∈ {1, . . . ,N}, j ∈ {1,2}, N = 2p.

The T–S fuzzy model (2) is valid inside the following poly-
tope (Boyd et al., 1994)

X =
{

x ∈R
n : aT

k x ≤ ck, k = 1, . . . ,q
}

(3)
where ak ∈R

n and ck ∈R, k = 1, . . . ,q, are given vectors, with
the linear constraints that define X guaranteeing that 0 ∈ X .
The setX can alternatively be written as

X = co{h1,h2, . . . ,hκ}, (4)
where the vectors hi, i= 1, . . . ,κ can be systematically obtained
through the linear constraints in (3) using, for instance, a vertex
enumeration algorithm (Avis and Fukuda, 1992). Thus, any
x ∈ X can be represented by

xγ =
κ

∑
k=1

γkhk, γ ∈ Λκ . (5)

Since the premise variables depend on the states, one has

α̇(z) = J(θ )ẋ, J(θ ) = ∇xα(z) =
ϑ

∑
i=1

θi(x)Ji (6)

where θ (x) ∈ Λϑ ,

[∇xα(z)]i j =
∂αi

∂x j

and Ji are matrices obtained from the knowledge of α(z) and
setX (Tanaka and Wang, 2001).

The asymptotic stability of the origin of system (2) (with u = 0)
can be investigated by means of a fuzzy Lyapunov function 1

given by
V (x,α) = xT P(α)x (7)

where P(α) is a positive definite symmetric fuzzy Lyapunov
matrix to be determined. The result is presented in next lemma.
Lemma 1. If there exists a parameter-dependentmatrix P(α) =
P(α)T > 0 such that

He
(

A(α)T P(α)+ (1/2)∇αγ P(α)J(θ )A(α)
)

< 0, (8)

where

∇αγP(α) =

[
∂P(α)xγ

∂α1
· · ·

∂P(α)xγ

∂αN

]

, (9)

holds for all α ∈ Λr, θ ∈ Λϑ and γ ∈ Λν , then the origin of
system (2) is asymptotically stable.

Proof. For system (2) with u = 0, the time-derivative of the
Lyapunov function in (7) yields

V̇ (x,α) = ẋT P(α)x+ xT P(α)ẋ+ xT Ṗ(α)x

= xT (A(α)T P(α)+P(α)A(α)+ Ṗ(α)
)

x

Considering only the quadratic term involving Ṗ(α), using (5),
(6) and (9), one has

xT Ṗ(α)x = xT
(

∂P(α)

∂α1
α̇1+ · · ·+

∂P(α)

∂αN
α̇N

)

x

= xT

(
N

∑
i=1

α̇i
∂P(α)

∂αi

)

x =
N

∑
i=1

xT
(

∂P(α)

∂αi

)

xα̇i

= xT ∇αγ P(α)J(θ )A(α)x

= xT (He
(
(1/2)∇αγ P(α)J(θ )A(α)

))
x (10)

Therefore, if condition (8) holds with P(α) = P(α)T > 0 for all
α ∈ Λr, θ ∈ Λϑ and γ ∈ Λν , one has

V̇ (x,α) = xT (He
(
A(α)T P(α)

+ (1/2)∇αγP(α)J(θ )A(α)
))

x < 0
1 The dependence of α(z) on z is omitted for brevity.
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and the proof is completed.

Note that in the third step presented in (10), the state x (that
multiplies α̇i) has been replaced by xγ , valid inside X , which
is the main feature of the approach. Remark also that, in order
to search for a feasible solution for Lemma 1, the structure of
P(α)must be defined (see Section 4 for a discussion concerning
numerical implementation of the proposed conditions).

The problem to be addressed in this paper is: find a state-
feedback control law u = K(α)x such that the origin of the
closed-loop T–S fuzzy system

ẋ =
(
A(α)+B(α)K(α)

)
x, ∀x ∈ X , (11)

is asymptotically stable, also providing an estimate for the
region of attraction insideX .

3. RESULTS

The first contribution of the paper is a local state-feedback
synthesis condition assuring the asymptotic stability of the
origin of the dual system of (11).

Theorem 1. If there exist parameter-dependentmatricesP(α)=
P(α)T > 0, L(α), a matrix S and a scalar ξ such that
[
He
(
A(α)P(α)+ (1/2)∇αγP(α)J(θ )A(α)T +B(α)L(α)

)
⋆

L(α)T B(α)T 0

]

+He

([
0

ξ I

]
[
P(α)+ (1/2)J(θ )T ∇αγ P(α)T − S −S

]
)

< 0

(12)

holds for all α ∈ ΛN , θ ∈ Λϑ and γ ∈ Λκ , then Kd(α) =
L(α)S−1 is a state-feedback gain assuring that the asymptotic
stability of the origin of

v̇ =
(

A(α)+B(α)Kd(α)
︸ ︷︷ ︸

Acld
(α)

)T
v, ∀v ∈ X . (13)

Proof. Multiplying (12) on the right byB⊥ and on the left by
BT

⊥, with

B⊥ =

[
I

S−1
(
P(α)+ (1/2)J(θ )T ∇αγP(α)T

)
− I

]

one has

He
(

A(α)P(α)+ (1/2)∇αγ P(α)J(θ )A(α)T

+B(α)L(α)S−1P(α)

+ (1/2)B(α)L(α)S−1J(θ )T ∇αγ P(α)T
)

< 0

Considering Kd(α) = L(α)S−1 yields

He
(
Acld (α)P(α)+ (1/2)∇αγP(α)J(θ )Acld (α)T )< 0

and, therefore,

He
(
Acld (α)P(α)

)
+ Ṗ(α)< 0

which proves the asymptotic stability of the origin of sys-
tem (13).

The first remark about the conditions of Theorem 1 is that the
proposed algebraic manipulations would not work (at least, not
in an easy way) if the primal system had been considered. In
that case, congruence transformations involving the inverse of
the Lyapunov matrix would be necessary, and the manipulation
of Ṗ(α), using the model given in (10), would be much more
difficult to cope with. The different strategy used in this paper,

that is, to address the stabilization of the dual system (13),
is motivated by the fact that the stability of the original sys-
tem (11) is equivalent in the case of membership functions with
arbitrary rates of variation (Hu and Blanchini, 2010). Although
nothing can be guaranteed about the equivalence in the case
of bounded rates, the numerical experiments show that this
heuristic provides a good starting point for the main result of
the paper, presented next.
Theorem 2. LetKd(α) be a parameter-dependent state-feedback
gain. If there exist parameter-dependent matrices P(α) =
P(α)T > 0, L(α), F(α), G(α), and a matrix H such that

Q+He
(
XB

)
< 0, (14)

holds for all α ∈ ΛN , θ ∈ Λϑ and γ ∈ Λκ , with Q, X and B

given in (15)-(16) (top of next page), then K(α) = H−1L(α) is
a state-feedback gain that assures that the origin of the closed-
loop T–S fuzzy system (11) is asymptotically stable.

Proof. Multiplying (14) on the right byB⊥ and on the left by
BT

⊥ with

B⊥ =





I 0
0 I

H−1L(α)−Kd(α) 0



 .

Adopting K(α) = H−1L(α) and Acl(α) = A(α)+B(α)K(α),
one has
[
He
(
Acl(α)T F(α)T +(1/2)∇αγ P(α)J(θ )Acl(α)

)

P(α)−F(α)T +G(α)Acl(α)

⋆
−G(α)−G(α)T

]

< 0 (17)

Multiplying (17) by T on the left and by T T on the right with
T =

[
I Acl(α)T

]

yields

He
(
Acl(α)T P(α)+ (1/2)∇αγ P(α)J(θ )Acl(α)

)
< 0

and, therefore,
He
(
Acl(α)T P(α)

)
+ Ṗ(α)< 0

which proves that K(α) is a stabilizing gain. On the other hand,
performing the same steps but using

B
T
⊥ =

[
I 0 0
0 I 0

]

leads to He
(
Acld (α)T P(α)

)
+ Ṗ(α) < 0, implying that the

Lyapunov matrix P(α) also proves that Kd(α) is a stabilizing
gain.

If the conditions of Theorem 2 have a feasible solution, the
synthesized gain K(α) is actually stabilizing, certified by the
Lyapunov matrix P(α). Moreover, interestingly, the same Lya-
punov matrix also proves that the gain given a priori Kd(α)
(computed for the dual system) is also stabilizing. As a conse-
quence, the estimate for the region of attraction, proposed in the
sequence, is valid for both gains.

As an interesting property of Theorem 2, note that the resulting
gain K(α) could be used as a new input data, giving rise to
an iterative procedure, possibly improving the estimates for the
domain of attraction.

Regarding the computation of an estimate for the domain of
attraction, consider the set

Ω =
{

x ∈R
n : xT P(α)x ≤ 1

}
(18)

as the the largest invariant set contained in the polytope X .
The constraint Ω ∈ X holds if aT

k P(α)−1ak ≤ c2k , k =
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Q =





He
((

A(α)T +Kd(α)T B(α)T
)

F(α)T +(1/2)∇αγP(α)J(θ )(A(α)+B(α)Kd(α))
)

⋆ ⋆
P(α)−F(α)T +G(α)(A(α)+B(α)Kd(α)) −G(α)−G(α)T ⋆

B(α)T
(
F(α)T +(1/2)J(θ )T ∇αγP(α)T

)
B(α)T G(α)T 0



 , (15)

XT = [0 0 I] , B = [L(α)−HKd(α) 0 −H] , (16)

1, . . . ,q (Boyd et al., 1994). Applying a Schur complement, one
gets

[
P(α) ak

aT
k c2k

]

≥ 0, k = 1, . . . ,q, ∀α ∈ ΛN . (19)

Among several other possibilities, the enlargement of Ω can
be obtained by employing the following criterion (Kapila and
Grigoriadis, 2002)

minTr(W ), s.t. (19), P(α)≤W, (20)

Next corollary provides synthesis conditions associated with
the maximization of Ω inside the domain of validity of the T–S
fuzzy model.

Corollary 1. Let Kd(α) be a given parameter-dependent state-
feedback gain. If there exist parameter-dependent matrices
P(α) = P(α)T > 0, L(α), F(α), G(α), and a matrix H that
solve the optimization problem (20) subject to (14), for all
α ∈ ΛN , θ ∈ Λϑ and γ ∈ Λκ , then K(α) = H−1L(α) is a state-
feedback gain that assures that the origin of the closed-loop
T–S fuzzy system (11) is asymptotically stable and Ω ⊆ X

given by (18) is an invariant set that estimates the domain of
attraction.

4. FINITE DIMENSIONAL CONDITIONS

The conditions proposed in this paper are presented in terms of
parameter-dependent LMIs (in Theorem 1, ξ must be given),
which constitute infinite dimensional optimization problems.
Solutions computed through a finite set of LMIs can be obtained
by employing polynomial approximations for the optimization
variables (Bliman, 2004; Oliveira and Peres, 2007). Once a
fixed degree (on α) is chosen for all variables, the resulting
polynomial inequalities (depending on α , θ and γ) can be
tested using the well known “coefficients check approach”,
which comprises the application of the Pólya’s relaxations for
multiple simplexes (Oliveira et al., 2008). This procedure can
be automatically performed by the Robust LMI Parser (Ag-
ulhari et al., 2019), which is also capable to compute the
partial time-derivatives of P(α) (when a polynomial degree
is imposed) with respect to each αi. After the extraction of
the LMIs, any semidefinite programming solver can be used.
The notation Xg(α)means that the parameter-dependentmatrix
X(α) = Xg(α) is a homogeneous polynomial matrix of degree
g on α . All scripts implemented to obtain the numerical results
presented in the next section were written in Matlab version
9.4.0.813654 (R2018a) employing YALMIP (Löfberg, 2004)
and Mosek (Andersen and Andersen, 2000) through the inter-
face ROLMIP (version 3.0) (Agulhari et al., 2019) in an Intel
Core (TM) i7-7700 CPU @ 3.60GHz x 8 computer with 16GB
RAM.

5. NUMERICAL EXPERIMENTS

Example 1 Consider the nonlinear system

ẋ =






−
2+ a

2
+
2− a

2
sin(x1) −4

19

2
−
21

2
sin(x1) −2




x

+

[
1

10+ b

2
+
10− b
2

sin(x1)

]

u

that can be exactly represented as the T–S fuzzy system (2) in
the compact setX = {x ∈R

2 : |xi| ≤ π/2, i = 1,2}, with

A1 =

[
−a −4
−1 −2

]

, A2 =

[
−2 −4
20 −2

]

, B1 =

[
1
10

]

, B2 =

[
1
b

]

α1(z) =
1+ sin(x1)

2
, α2(z) = 1−α1(z)

The choices a = −4 and b = 1 reproduce (Lee et al., 2012,
Example 7) and (Lee and Kim, 2014, Example 3). Figure 1
presents the estimate of the invariant region for the closed-
loop system using Corollary 1, when Kd(α) is computed with
Theorem 1. In this scenario, the degree g of Pg(α) and Lg(α) is
set to g = 3, using ξ = 10 in the first stage and with Corollary 1
as the second stage. To illustrate the dynamic behavior of the
T–S system, a few trajectories for different initial conditions
are also plotted.

- /2 -1 0 1 /2
- /2

-1

0

1

/2

x1

x2

Fig. 1. Estimate of the domain of attraction obtained with
the proposed method (solid magenta), domain of validity
of the model (dotted gray), and trajectories (dot-dashed
black) starting in ◦ and ending at the origin (yellow square)
for Example 1.

Figure 2 and Table 1 show a comparison in terms of the esti-
mates for the domain of attraction obtained with the proposed
method, the ones from (Lee et al., 2012, Theorem 6) (using
φ1 = φ2 = 5) and (Lee and Kim, 2014, Theorem 2) (using
degree q = 3 and φ = φ∗ = 172.0994) and the corresponding
areas. Table 1 also shows the number of scalar variables V and
of LMI rows R for each method (including Theorem 1). No fea-
sible solution has been obtained with the conditions from (Pan
et al., 2012b, Theorem 2) for this example.

As can be seen in Table 1, the proposed approach provides
stabilizing gains associated with better estimates for the domain
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- /2 -1 0 1 /2
- /2

-1

0

1

/2

x1

x2

Fig. 2. Estimates of the domain of attraction obtained with the
proposed method (solid magenta), (Lee et al., 2012, Theo-
rem 6) (dashed blue), and (Lee and Kim, 2014, Theorem 2)
(dot-dashed green), and domain of validity of the model
(dotted gray), Example 1.

Table 1. Areas of the estimates of the domain
of attraction for Example 1, number V of scalar
variables and R of LMI rows for each condition.

Area V R
Theorem 1 – 24 168
Corollary 1 3.9215 40 392

(Lee et al., 2012, Theorem 6) 2.9982 44 30
(Lee and Kim, 2014, Theorem 2) 2.9432 129 180

of attraction, at the price of increasing (in terms ofV and R) the
computational complexity.

Example 2 The nonlinear system

ẋ =






−
7

2
−
3

2
sin(x1) −4

19

2
−
21

2
sin(x1) −2




x+

[
0

13

2
+
7
2
sin(x1)

]

u

can be exactly represented as the T–S fuzzy system (2) in the
compact setX = {x ∈R

2 : |xi| ≤ π/2, i = 1,2}, with

A1 =

[
−5 −4
−1 −2

]

, A2 =

[
−2 −4
20 −2

]

, B1 =

[
0
10

]

, B2 =

[
0
3

]

α1(z) =
1+ sin(x1)

2
, α2(z) = 1−α1(z),

as presented in Pan et al. (2012b). Figure 3 shows the estimate
for the domain of attraction provided by Corollary 1 (using
degree g = 2) and Theorem 1 at the first stage with ξ = 10
and g = 2, while Figure 4 illustrates the different estimates
for the domain of attraction obtained with Corollary 1, (Lee
et al., 2012, Theorem 6) with φ1 = φ2 = 5, (Pan et al., 2012b,
Theorem 2) (reproducing the curve presented in the paper) and
(Lee and Kim, 2014, Theorem 2) (using degree q = 3 and
φ = 10000). The corresponding areas are given in Table 2, with
the number V of scalar variables and R of LMI rows for each
condition. As in Example 1, the proposed method provides the
best estimates for the region of attraction.

6. CONCLUSION

A new strategy to compute stabilizing state-feedback control
laws and estimates of the domain of attraction for continuous-
time nonlinear systems represented by T–S fuzzy models is
proposed. The conditions are given in terms of parameter-
dependent LMIs that must be solved in two steps. In the first

- /2 -1 0 1 /2
- /2

-1

0

1

/2

x1

x2

Fig. 3. Estimate of the domain of attraction obtained with
the proposed method (solid magenta), domain of validity
of the model (dotted gray), and trajectories (dot-dashed
black) starting in ◦ and ending at the origin (yellow square)
for Example 2.

- /2 -1 0 1 /2
- /2

-1

0

1

/2

x1

x2

Fig. 4. Estimates of the domain of attraction obtained with the
proposed method (solid magenta), (Lee et al., 2012, Theo-
rem 6) (dashed blue), (Lee and Kim, 2014, Theorem 2)
(dot-dashed green), and (Pan et al., 2012b, Theorem 2)
(dotted red), and domain of validity of the model (dotted
gray), Example 2.

Table 2. Areas of the estimates of the domain
of attraction for Example 2, number V of scalar
variables and R of LMI rows for each condition.

Area V R
Theorem 1 – 19 134
Corollary 1 7.7244 35 284

(Lee et al., 2012, Theorem 6) 6.8524 44 30
(Lee and Kim, 2014, Theorem 2) 6.6008 129 180
(Pan et al., 2012b, Theorem 2) 5.2738 22 32

step, a gain that stabilizes the dual system is obtained. At the
second step, using this gain as an input, sufficient conditions
provide another state-feedback control gain associated with an
estimate for the region of attraction of the closed-loop system.
The closed-loop stability of the system and the invariance of
the domain are certified by means of a fuzzy Lyapunov function
with polynomial dependence of arbitrary degree. The approach
provides control laws that guarantee larger estimates of the
domain, when compared with other techniques and examples
borrowed from the literature. Extensions to cope with decen-
tralized and output feedback control are under investigation.
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