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Abstract: General problems of optimal trajectory generation and of optimal space-time ren-
dezvous for autonomous underwater vehicles affected by time-varying fluid flows are formulated
and solved in the framework of dynamic programming. The optimal solutions include optimal
trajectories, as well as departure times and positions.
The approach consists in using the principle of optimality (PO) to embed, for example, an
optimal time to reach a target problem from some fixed position and time into a more general
problem of finding the optimal time to reach a target from any point and time. The solution of
this general problem is given by the value function, the solution of a Hamilton-Jacobi-Bellman
equation (HJBE) which expresses the PO in an infinitesimal form. The HJBE is solved using
an efficient parallel numerical solver.
The problems of interest are solved either by minimizing the value function over one or more
variables (e.g., time) or by using level sets of the value function to coordinate departure times
for multiple vehicles to rendezvous at a given target.
The paper presents a description and an illustration of the approach and briefly discusses how
value-function-based calculations provide a very effective way to solve complex motion planning
and coordination problems. The discussion is aided by examples modeling real operational
scenarios using current velocity forecasts from a state-of-the-art model of the Sado river estuary
in Portugal.
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1. INTRODUCTION

Over the two past decades, autonomous underwater vehi-
cles (AUVs) have become a cost-effective mobile sensing
platform for ocean field studies. This is due to technologi-
cal advances thanks to which present day AUVs are suffi-
ciently reliable for this purpose. Robots are also capable of
collecting data at higher spatial-temporal resolutions and
in previously unreachable locations (Bellingham and Ra-
jan (2007); Wynn et al. (2014)), and multi-vehicle deploy-
ments enable new operational concepts and opportunities
for data collection (Ferreira et al. (2018)).

However, these vehicles have limited operational en-
durance due to energy constraints. Hence, it is desirable
to minimize the amount of energy expended during those
phases of the mission not related to data collection, e.g.
when the vehicle is commuting between its deployment
location and a survey location or between two survey
locations. To this end, there has been a great amount of re-
search activity on trajectory generation methods for AUVs
which take into account flow velocity forecasts produced
by hydrodynamic models (Inanc et al. (2005); Rhoads
et al. (2010); Lolla et al. (2014)). In some locations, such
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as estuaries, the speed of the currents is comparable to
the maximum speed of a typical AUV, so routing vehicles
through paths along which the flow velocity contributes
positively to the average speed leads to energy savings.

Most research focuses on planning a trajectory given a
fixed deployment time and position. When operating with
reasonably small-sized and portable robots, however, the
initial state (which, as the currents are time-variant, in-
cludes both the initial position and the time of deploy-
ment) can be seen as an additional degree of freedom for
planning. Dynamic programming based methods (Bellman
(1954)) are particularly suitable for this kind of analysis,
since they provide an efficient way of computing the solu-
tion for all initial states lying inside a given departure set.
That information is encoded in the value function, which
provides the optimal cost to the target from any given
state.

In this paper we present an innovative approach to mission
planning for operations with unmanned vehicle systems,
based on an implementation of an efficient numerical
method Aguiar et al. (2019) which allows us to compute
the value function associated to a minimum time control
problem encoding complex mission constraints and objec-
tives. In particular, we focus on two scenarios. In the first
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scenario, we consider how these value functions can be
used to plan the optimal deployment time and position in
a single-vehicle mission. The second scenario concerns the
selection of the deployment times and positions for a set
of n vehicles to rendezvous at a given target.

The rest of the paper is structured as follows: in Sec-
tion 2 we briefly review existing literature in optimal
trajectory planning for autonomous underwater vehicles,
and describe the method we have proposed in previous
work. Sections 3 and 4 discuss the use of value functions
to plan the deployment time and position of a single
vehicle, and the synchronized arrival of two vehicles at
a target position, respectively. This discussion is aided by
numerical examples using data from hydrodynamic models
and involving real operational scenarios in the coast of
Portugal. Finally, in Section 5 we summarize our findings
and discuss perspectives for future research.

2. TRAJECTORY OPTIMIZATION

2.1 Related Work

There is a significant amount of research on trajectory
optimization for AUVs, using a variety of methods. Inanc
et al. (2005) use a numerical optimal control solver to find
energy and time-optimal trajectories, using a receding-
horizon approach to model the time-variance of the ocean
currents. The approach is improved in Zhang et al. (2008),
where a fully time-varying model is used. These two
works also explore the relationship between the optimal
trajectories and Lagrangian Coherent Structures. Lolla
et al. (2014) use a level set method to find globally time-
optimal trajectories of an AUV, by tracking the boundary
of the set of states reachable from a given initial state.
Rhoads et al. (2010) compute the value function associated
to the minimum time problem using an extremal field
method, and use it to compute an optimal feedback
law. Other methods discussed in the literature include
nonlinear optimization (Kruger et al. (2007)) and graph
search methods (Kularatne et al. (2018)).

In the above, the focus is on the case where the deploy-
ment time and position is known in advance. A dynamic
programming-based method, however, produces a solution
in feedback form, which allows us to compute an optimal
trajectory from any initial time and position, and in turn
enables the comparison of the cost values associated to
different initial states.

2.2 Dynamic programming approach

Our work is focused on trajectory optimization for vehi-
cles moving in large areas affected by time-varying cur-
rents. The approach builds on the numerical solution of
the Hamilton-Jacobi-Bellman equation derived from the
application of the dynamic programming principle. Al-
though our approach does not preclude the consideration
of more complex vehicle models, simple models suffice for
the trajectory optimization problems under consideration.
This is because the optimal trajectories do not violate
the dynamic constraints of the AUVs. In what follows
we consider a kinematic model of the AUV’s motion, as
described by the differential equation

ẋ(t) = v(t,x(t)) + u(t), (1)

where x ∈ R2 is the vehicle’s horizontal position,
v : R×R2 → R2 is a vector field modeling the flow veloc-
ity and u : R → R2 is the control function. The control
values u(t) are bounded in (Euclidean) norm by r > 0, the
vehicle’s maximum speed.

If we consider the optimal control problem of control-
ling the vehicle to a closed target set Ω ⊂ R2 in
minimum time, applying the principle of optimality of
dynamic programming leads to the following Hamilton-
Jacobi-Bellman equation (Aguiar et al. (2018); Bardi and
Capuzzo-Dolcetta (1997)):

r ‖∇xV (t,x)‖ −

(

∂V

∂t
+∇xV (t,x) · v(t,x)

)

= 1, x /∈ Ω,

V (t,x) = 0, x ∈ Ω.

Here V is the value function associated to the optimal
control problem, i.e., V (t,x) is equal to the minimum time
taken to reach the target set if the vehicle is deployed from
position x at time t. If V is known, the optimal control
can be computed in feedback form:

u
⋆(t,x) = −r

∇xV (t,x)

‖∇xV (t,x)‖
(2)

This feedback law can be used directly, or one can pre-
compute trajectories which are used as references for the
vehicle’s motion control system, by substituting (2) for u
in (1) and integrating until the target set is reached.

In most cases, obstacles such as land regions must be
included in the formulation. If the set of obstacles at time
t is K(t) ⊂ R2, the following boundary condition is added:

V (t,x) = M, x ∈ K(t)

where M is a number so large that if the vehicle takes M
units of time to reach the target when it departs from x

at time t, the target is considered unreachable from that
initial condition (e.g., it suffices to set M larger than the
length of the time window considered for the mission).

2.3 Computation

We use a parallel C++ implementation of a fast sweeping
algorithm to compute a numerical approximation of the
value function V over a discrete grid of time-position
values. The implementation is open source and available
at https://github.com/mcpca/marlin, and to the best
of our knowledge is the first publicly available implemen-
tation of a numerical method of this type. For more details
see Aguiar et al. (2019).

3. MISSION PLANNING

In this and the following section, we consider AUV mis-
sions in the estuary of the Sado in Portugal (Figure 1).
We use a numerical model of the currents for the region,
which outputs a map of the velocity vectors defined over
a curvilinear spatial grid with an average resolution of
100 meters. The velocity is calculated with a 10 minute
sampling period. The velocity field models the behavior
of the estuarine flow for a twelve day period starting
September 10th, 2018. For a thorough description of the
hydrodynamic model used to produce the data used in
the results presented in this paper, see Aguiar et al.
(2018) and Ribeiro et al. (2016).
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Fig. 1. Operational area for the numerical examples

The operational area is depicted in Figure 1. Land and
shallow areas through which the AUV cannot navigate are
included as obstacles in the formulation, and are shown in
green in Figure 1. The AUV is to be deployed somewhere
outside the estuary, and the target set is a 100 meter radius
sphere around the point marked in red in Figure 1. Since
the flow in this region is tidal-driven and the vehicle must
go up the river in order to reach the target, we compute the
value function using the flow values for a 12 hour period
starting at low tide.

Fig. 2. Contours of the value function

One way to visualize the value of the cost at each point
over the operational area is to plot the spatial contours
of the value function, that is, the contours of V (t, ·)
for fixed values of t. This is exemplified in Figure 2,
which shows the spatial contours of the value function
at an instant of time one hour and ten minutes past low
tide (the UTC time is indicated in the figure title). An
optimal trajectory deployed from the yellow circle at this
instant of time is plotted in white. The black lines are

the level curves V (t, ·) = T, T = 0 h, 1 h, . . . . When the
deployment time is known in advance, these maps can
be used to plan the deployment position of the vehicle.
However, when the deployment time is not predetermined,
this requires us to inspect these contours for all considered
values of the deployment time, and compare initial states
across different cost maps, which is cumbersome. We would
ideally like to have the information relevant for mission
planning condensed into a single time-invariant scalar
field, as that is easiest for visualization.

If the vehicle is to be deployed at x, we can calculate
the optimal time for deploying the vehicle by minimizing
V (·,x):

t⋆(x) := argmin
t

V (t,x)

This is a scalar field defined over the set of all departure
positions. If there are any a priori constraints on the
deployment time, these can be taken into account by only
including the acceptable values of t in the minimization.

Fig. 3. Optimal deployment time

As an example, Figure 3 shows the optimal deployment
time over a subset of the operational area using the values
of the flow for the tide period starting at September 13th,
23:27:00 UTC. The color indicates the optimal deployment
time relative to that instant of time in hours. Note that
the values of the deployment time range over a finite set
because the value function is known only at a discrete set
of time instants.

Assuming that a vehicle deployed at the initial position
x is always deployed at the corresponding optimal time
t⋆(x), the time variable is eliminated from the equation,
and we can compare deployment positions as follows. If
µ is a function which assigns to each initial state (t,x) a
real number µ(t,x) which is an indicator of the quality
of the trajectory departing from the initial state (t,x),
we can obtain a time-invariant scalar map by computing
µ⋆(x) := µ(t⋆(x),x). The simplest choice of a metric is
the value function itself, i.e. µ(t,x) = V (t,x). The µ⋆ map
corresponding to this metric, for the example of Figure 3,
is shown in Figure 4.

Another interesting choice of µ is
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Fig. 4. Optimal time to target

µ(t,x) =
s(t,x)

rV (t,x)
− 1,

where s(t,x) denotes the path length of the optimal
trajectory departing from the initial state (t,x). Since the
trajectories are computed by numerically integrating (1),
and hence approximated by a sequence of discrete states,
s can be computed by simply summing the distances
between consecutive positions. Note that the denominator,
rV (t,x), is equal to the distance that the vehicle travels
(at nominal speed r) in an amount of time equal to the
optimal mission duration. Hence, µ(t,x) can be seen as the
gain in the vehicle’s average velocity along the trajectory,
describing how much the vehicle benefited from the flow
velocity when departing from (t,x). Naturally, µ may take
on negative values at initial states from which the vehicle
will face opposing current velocities.

Fig. 5. Gain in the average velocity

This is exemplified in Figure 5, using the same value func-
tion as in Figure 3. There are several discontinuities in the
map which divide regions where the optimal trajectories
go through different sides of the same obstacles, which is
not visible in any of the other plots.

4. OPTIMAL TIME RENDEZVOUS

We now illustrate how the value function corresponding
to the minimum time control problem can be used to plan
a rendezvous between two or more vehicles. Specifically,
we consider the problem of finding a trajectory for each
vehicle such that all the vehicles arrive at a target location
at the same time. We discuss how the value function can
be used to find the feasible deployment times and locations
for each vehicle, assuming that the deployment time and
location of one of the vehicles are fixed a priori.

For simplicity and clarity of presentation, we focus on
the two vehicle case, and assume that the two vehicles
travel at the same nominal speed r. In this case, a single
computation of the minimum time to reach the target
is sufficient for obtaining optimal trajectories which lead
the two vehicles to arrive at the target approximately at
the same time. When the two vehicles travel at different
nominal speeds, what follows still applies, but with a
different value function for each vehicle. The operational
area and target set are the same as in the previous section.
Let xi and ti be the deployment position and time of the
ith vehicle, respectively, where i = 1, 2. We henceforth
assume that t1 and x1 have been chosen a priori, e.g. via
the methods described in the previous section.

If we assume that the two vehicles are deployed at the same
time, i.e. t2 = t1, then in order to have the two vehicles
arrive simultaneously at the target we should have

V (t1,x2) = V1

where V1 := V (t1,x1), i.e., x1 and x2 should lie on the
same level set of V (t1, ·). An example is shown in Figure 6.
If the first vehicle is deployed from the position marked
in yellow, the second vehicle can be deployed from any
of the positions along the black dashed curve in order to
arrive at the target position (the red point) simultaneously.
(Note that this formulation does not include provisions to
preclude collisions.)

Fig. 6. Set of feasible deployment positions for timed
rendezvous when the vehicles are deployed at the same
instant of time.

In practice, the arrival times will not be exactly the same.
If we specify instead that the two vehicles arrive at the
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target within ε units of time of each other, then x2 should
be chosen from the set

{x | |V1 − V (t1,x)| ≤ ε} .

An example is shown in Figure 7. The shaded region
indicates the set of positions the second vehicle may be
deployed from in order to have the two vehicles arrive
within fifteen minutes of each other, when the first vehicle
is deployed from the position indicated by the yellow dot.

Fig. 7. Set of feasible deployment positions for approxi-
mate rendezvous

When the deployment time of the second vehicle is not
necessarily equal to t1, x2 and t2 should jointly satisfy the
equation

t1 + V1 = t2 + V (t2,x2), (3)

i.e., the arrival times should be equal. If t2 is fixed, the
set of feasible deployment positions is again a single level
curve of the value function, {x | V (t2,x) = t1 + V1 − t2},
so the selection of the deployment position can be made
in a way similar to the above (assuming that this set is
nonempty). When t2 is not fixed, we can use the following
approach: for each x2 compute

tr(x2) := arg min
t∈A(x2)

|t1 + V1 − t− V (t,x2)| , (4)

i.e., tr(x2) is the deployment time which leads to the least
absolute difference in the arrival time of the two vehicles.
Here A(x2) = {t : V (t,x2) < M}, where M is as in
section 2.2. Any a priori restrictions on the deployment
time can be taken into account by further restricting the
set of t over which the minimization is performed. If for
a particular value of x2 there are multiple solutions to
the minimization (4), some other criterion must be used
to choose tr from among those solutions. The function tr

is analogous to the function t⋆ of the previous section.
An example computation of tr is shown in Figure 8.
The deployment position of the first vehicle is indicated
by the yellow circle and the colors indicate the optimal
deployment time relative to the start of the time window
considered in the computation of the value function.

Figure 9 shows an example of the trajectories generated
for two vehicles using this method. The trajectory shown
in blue corresponds to the trajectory of a vehicle deployed

Fig. 8. The optimal deployment time for timed rendezvous
of two vehicles as a function of the deployment posi-
tion

Fig. 9. Trajectories for rendezvous of two vehicles

from the position indicated by the yellow circle in Figure 8,
and the deployment time for the second vehicle was
selected using the map shown in that figure. Note that
the trajectories coincide after a certain point; several
approaches can be employed to deal with this problem,
such as having the vehicles navigate at different depths, or
coordinated operation of the AUVs (see, e.g., Jan H. van
Schuppen (2014)). A thorough treatment of this problem
is outside the scope of this paper.

In the case of n vehicles, if the value function of the ith
vehicle is Vi and (t1,x1) is fixed, the condition on each
(ti,xi) is

ti + Vi(ti,xi) = t1 + V1(t1,x1).

5. CONCLUSIONS

We explored the use of the value function associated to
minimum time optimal control problems involving un-
manned underwater vehicles operating under the influence
of currents. This is done for a realistic setting, where the
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time-varying values of the currents are obtained from state
of the art prediction models. In particular, we showed
how the value function can be used to plan the optimal
deployment time and location of the vehicle, and how it
can be used to plan a two vehicle mission where the two
vehicles should arrive at a target set at the same time.

In the first problem, we focused on the case where the
deployment time is not fixed in advance. The cost-to-go
depends on the initial position and on the deployment
time, making it hard to compare the cost of several
candidate deployment positions. Our approach is to first
compute the optimal deployment time as a function of
the deployment position, and then compare deployment
positions with the understanding that the vehicle will be
deployed at the optimal time associated to its deployment
position. This eliminates the time variable and allows us to
compare candidate deployment positions in terms of their
cost or other scalar functions of the optimal trajectory
associated to each initial state.

In the second problem, assuming that the deployment time
and position of one of the vehicles is fixed, we showed how
the value function can be used to plan the deployment
position of a second vehicle. When the deployment time
of the second vehicle is not fixed, an approach similar to
the one taken for the first problem once again allows us to
focus on choosing the deployment position.

Although our mission examples focused on autonomous
underwater vehicles, the ideas presented in this paper are
largely independent of the type of vehicle or the medium
through which it travels, and should be useful whenever
there is a time-varying factor (in the case of our examples,
the current velocity) which can have a meaningful impact
on mission planning decisions.

A possible direction for further research is the application
of similar techniques in multi-stage missions. In the case
of underwater vehicles under the influence of currents, the
deployment depth, which was not considered here, could
also play a significant role when the flow has considerable
vertical variability.
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