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Abstract: The most important design parameters of each phase-locked loop (PLL) are the local
and global stability properties, and the pull-in range. To extend the pull-in range, engineers often
use type 2 PLLs. However, the engineering design relies on approximations which prevent a full
exploitation of the benefits of type 2 PLLs. Using an exact mathematical model and relying on
a rigorous mathematical thinking this problem is revisited here and the stability and pull-in
properties of the third-order type 2 analog PLLs are determined. Both the local and global
stability conditions are derived. As a new idea, the harmonic balance method is used to derive
the global stability conditions. That approach offers an extra advantage, the birth of unwanted
oscillations can be also predicted. As a verification it is shown that the sufficient conditions
of global stability derived by the harmonic balance method proposed here and the well-known
direct Lyapunov approach coincide with each other, moreover, the harmonic balance predicts
the birth of oscillations in the gap between the local and global stability conditions. Finally, an
example when the conditions for local and global stability coincide, is considered.

Keywords: Phase-locked loop, third-order PLL, type 2 PLL, nonlinear analysis, harmonic
balance method, describing function, global stability, birth of oscillations, hold-in range,
pull-in range, lock-in range, Egan conjecture.

1. INTRODUCTION

Synchronization of signals is a fundamental problem
in many applications from satellite navigation (Kaplan
and Hegarty, 2017), wireless communications (Du and
Swamy, 2010; Rouphael, 2014; Best et al., 2016), optical
communication (Cho, 2006; Ho, 2005; Helaluddin, 2008;
Rosenkranz and Schaefer, 2016), power inverter synchro-
nization (Zhong and Hornik, 2012, pp. 361–366), to clock
signal generation (Sakamoto and Nakao, 2006), and in
many other applications (Best, 2018). The most frequently
used solution is offered by the phase-locked loops (PLLs),
which enable to synchronize the output signal of a voltage-
controlled oscillator with a reference signal (Gardner,
1966; Viterbi, 1966; Shakhgil’dyan and Lyakhovkin, 1966;
Best, 2007).

The most important PLL characteristics are the hold-in,
pull-in and lock-in ranges. The hold-in range corresponds
to the existence of a locked state, the pull-in range guar-
antees acquisition for any frequency errors, and the lock-in
range defines fast-locking conditions (see, e.g. (Kuznetsov
et al., 2015; Leonov et al., 2015; Best et al., 2016) for rigor-
ous mathematical definitions). While the hold-in range can

? The work is supported by the Russian Science Foundation (project
19-41-02002).

be studied by the Routh-Hurwitz criterion and the Nyquist
plot, the analysis of global stability and the estimation of
the pull-in and lock-in ranges is a challenging task.

It is known that the second-order type 2 PLL has infinite
pull-in range, i.e., the corresponding system of ODEs is
globally stable for any value of frequency error [for rigorous
proof refer to (Aleksandrov et al., 2016)]. Exploiting this
observation, a loop filter including an ideal integrator, i.e.,
a pole at s = 0 is frequently used in higher-order loops to
extend the PLL pull-in range (Gardner, 2005; Best, 2018).

This paper derives both the local and global stability
conditions of a third-order type 2 Analog Phase-locked
Loop (APLL). Section 2 explains the operation principle of
two-phase APLL studied here. Section 3 uses the Routh-
Hurwitz criterion to determine the APLL local stability
conditions. The harmonic balance method is used in Sec-
tion 4 to estimate that domain of APLL parameters over
which the global stability is achieved. Finally, an example
of the lock-in range estimation is considered.

2. MATHEMATICAL MODEL OF PLL

An ideal analog multiplier is used in the APLLs to im-
plement the phase detector (PD). However, the analog
multipliers produce an unwanted sum-frequency periodic
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Fig. 1. Block diagram of a two-phase APLL.

component at their output in addition to the desired low-
frequency error signal. The unwanted periodic PD output
generating a harmful FM in the APLL output is neglected
in the vast majority of APLL analyses [see, e.g., (Gardner,
2005; Kolumbán, 2005; Best, 2007)], making the results
questionable. In the built APLLs extra low-pass filtering
is used to suppress the effect of sum-frequency PD output.

The unwanted sum-frequency PD output is fully elimi-
nated in the two-phase PLLs (Emura et al., 2000; Best
et al., 2014; Bianchi et al., 2016) by using a special PD
configurations. As shown in Fig. 1, the block diagram
of two-phase PD includes multipliers, phase shifters and
an adder to eliminate the sum-frequency output. From
a mathematical point of view, the two-phase PD is an
analog multiplier where only the desired low-frequency
error signal appears at the PD output. Note, the baseband
APLL model used everywhere in the literature gives an
accurate model only for the two-phase APLL while it is
only an approximation of the operation of other APLLs
built with different PDs including analog multipliers, EX-
OR gates, etc.

The unified baseband model of APLLs (Gardner, 2005;
Kolumbán, 2005; Best, 2007) is depicted in Fig. 2 where
θref(t) and θvco(t) denote the phases of reference and
voltage-controlled oscillator (VCO) signals, respectively,
θe(t) = θref(t)− θvco(t) defines the phase error, Kvco > 0
is the VCO gain, ωfree

vco denotes VCO free-running frequency
and the integrator 1

s describes the VCO transfer function
where the initial state is given by θvco(0). The APLL ac-
quisition properties are studied here, therefore, we assume
that θ̇ref ≡ ωref .

In this paper we consider a second-order loop filter (LF)
with the initial state x(0) =

(
x1(0), x2(0)

)
and the follow-

ing transfer function

F (s) = KF
(1 + sτz1)(1 + sτz2)

s(1 + sτp)

where KF > 0, τz1 > 0, τz2 > 0, τp > 0. The
parameters of the loop filter are set in such a way that
τp 6= τz1, τp 6= τz2. The loop filter is driven by the
PD output, i.e., the error signal, and its output vf (t)
controls the instantaneous frequency of VCO circuit. Note,
the APLL under study includes two integrators, one of
them is implemented by the loop filter while the other is
introduced by the VCO transfer function. Therefore, the
APLL studied here is a type 2 PLL (Gardner, 2005, p.12).

+-

+

VCO

LFPD

Fig. 2. Baseband model of APLLs.

The behavior of APLL baseband model in the state space
is described by a third-order nonlinear ODE:

ẏ = Py + q sin(rT y), (1)

y(t) =

(
x1(t)− ωfree

e

KFKvco
, x2(t), θe(t)

)T
where

P =

 0 0 0

0 − 1

τp
0

−KFKvco −KFKvco 0

 ,

rT = (0, 0, 1) , q =


1

(τz1 − τp)(τp − τz2)

τ2p
−KvcoKF

τz1τz2
τp

 ,

(
x1(t), x2(t)

)
∈ R2 gives LF state and ωfree

e is a frequency

error ωfree
e = ωref − ωfree

vco .

3. LOCAL STABILITY ANALYSIS

The engineering definition of the hold-in range, corre-
sponding to the local stability analysis, is the following.
Suppose the phase-locked conditions 1 have been achieved
in the PLL. Now vary the reference frequency slowly and
the VCO frequency will follow it. The hold-in frequency
ωh = |ωref − ωfree

vco | is determined by the lower and upper
values of ωref for which the phase-lock is lost. The hold-
in range represents the maximum static tracking range
and is determined by the saturation characteristics of
the nonlinear loop elements in the PLL (Gardner, 2005;
Kolumbán, 2005; Best, 2007).

A strict mathematical definition for the hold-in range has
been published in (Kuznetsov et al., 2015; Leonov et al.,
2015; Best et al., 2016).

Definition 1. The hold-in range (Kuznetsov et al., 2015;
Leonov et al., 2015; Best et al., 2016). A hold-in range
is the largest interval of frequency errors |ωfree

e | ∈ [0, ωh)
where the phase-locked conditions are maintained; ωh is
called a hold-in frequency.

To perform the local stability analysis, the equilibrium
points of system (1) have to be determined. Then the

1 Under phase-locked conditions the phase error θe(t) is constant
and a steady state is considered to be stable: if the APLL is in
phase-lock, after applying a small perturbation to the state of the
system it returns to its previous state.
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stability of these equilibria can be evaluated by the
Routh-Hurwitz criterion. The conclusion is that equilibria
(0, 0, π + 2πn), n ∈ Z are unstable and the equilibria
(0, 0, 2πn), n ∈ Z are asymptotically stable if and only
if

KFKvcoτz1τz2(τz1 + τz2) > τp − τz1 − τz2. (2)
Condition (2) has been determined using open-loop trans-
fer function G(s) of the linearized (sin θe ≈ θe) baseband
model:

G(s) = Kvco
F (s)

s
= KvcoKF

(1 + sτz1)(1 + sτz2)

s2(1 + sτp)
. (3)

During the stability analysis the characteristic equation
has been determined first then the Routh-Hurwitz cri-
terion has been applied. Since system (1) does not de-
pend on the frequency error ωfree

e , it does not appear
explicitly in stability conditions. Thus, in the considered
third-order type 2 APLL the hold-in range is infinite 2

[0, ωh) = [0, +∞) when condition (2) is fulfilled, otherwise
ωh = 0.

4. GLOBAL STABILITY ANALYSIS VIA THE
HARMONIC BALANCE METHOD

The birth of periodic or chaotic oscillations implies the loss
of global stability in the PLL. Although the birth of chaotic
signals in third-order analog PLL has been already shown
for the case when all equilibria are unstable in the circuit
[see, e.g., (Kolumbán and Vizvari, 1995; Kolumban et al.,
1997)], the situation studied here is completely different
from that case, because in the case studied here a locally
stable equilibrium exists in the circuit but in addition to
the locally stable equilibrium another attractor may be
also present which develops a periodic orbit in the PLL.
The harmonic balance method (Krylov and Bogolyubov,
1947; Khalil, 2002) is widely used for the study of periodic
oscillations. Although the harmonic balance method relies
on approximation [see, e.g., (Tsypkin, 1984; Leonov and
Kuznetsov, 2013)] it can be used to predict the birth of
oscillation and, consequently, to check the global stability
of phase-lock loop [see, e.g., (Rey, 1960; Shakhgil’dyan and
Lyakhovkin, 1966; Homayoun and Razavi, 2016)].

To analyze the periodic solutions using the harmonic
balance method we introduce the coefficient of harmonic
linearization k and rewrite system (1) in the form:

ẏ = P0y + qϕ(rT y) (4)

where
P0 = P + kqrT , ϕ(σ) = sinσ − kσ.

The coefficient k is chosen in such a way that the matrix
P0 has a pair of imaginary eigenvalues ±iω0 (ω0 > 0);
values of k and ω0 are found from the equation 3

1 + kG(iω0) = 0. (5)

2 From an engineering point of view, the hold-in range is limited
by saturation. In general, the PD, loop filter and amplifier and VCO
can get into saturation. Here the integrator implemented by the loop
filter assures that the steady state phase error θe is always zero (mod
2π). Therefore, the PD never can get into saturation. To simplify the
problem we assume in the rest of the contribution that neither the
amplifier/loop filter, nor the VCO can get into saturation.
3 Formula (5) can be obtained by consideration the following matrix:
(a11 = 1, a12 = rT ; a21 = −kq, a22 = P−sI). By Schur complement,
we get det(P − sI + kqrT ) = (1 + kG(s)) det(P − sI) where G(s) is
transfer function (3). Since P +kqrT = P0, substituting s = iω0 one
gets formula (5).

Thus, ω0 and k can be found from the following equations:

ImG(iω0) = 0, k = −
(
ReG(iω0)

)−1
.

For system (1) such k and ω0 exist if and only if

τp − τz1 − τz2 > 0 (6)

and have the form

ω0 =

√
τp − τz1 − τz2
τz1τpτz2

> 0, (7)

k =
τp − τz1 − τz2

KFKvcoτz1τz2(τz1 + τz2)
> 0. (8)

To determine the amplitude of the periodic solution by
the harmonic balance method, we represent solutions of
system (4) in the Cauchy form:

y(t) = eP0ty(0) +

∫ t

0

eP0te−P0τqϕ
(
rT y(τ)

)
dτ. (9)

There exists an invertible matrix S such that the similar
matrix J = S−1P0S has the Jordan form:

J =

(
0 −ω0 O
ω0 0 O
O O λ3

)
where λ3 < 0 is the third eigenvalue of P0. Hence,

eP0t = SeJtS−1 = S

cos(ω0t) − sin(ω0t) 0
sin(ω0t) cos(ω0t) 0

0 0 eλ3t

S−1.

Then we multiply solution (9) by the vector (1 0 0)S−1

and put t = 2π
ω0

:

(1 0 0)

∫ 2π
ω0

0

e−JτS−1qϕ
(
rT y(τ)

)
dτ =

= (1 0 0)S−1
(
y(

2π

ω0
)− y(0)

)
.

(10)

Further, equality (10) allows one to obtain formulae for
the describing function, which are used in the harmonic
balance method for the determination of the amplitude of
periodic solution — cycle of the first or the second kind.

4.1 Cycles of the first kind

Let us assume first that a periodic, almost sinusoidal
solution develops in the PLL:

y(t) = y(t+
2π

ω0
) ∀t ≥ 0, (11)

rT y(t) = θe(t) ≈ a0 sin(ω0t) (12)

where a0 and ω0 > 0 are the amplitude and the frequency
of oscillations. Periodic solution (11) is referred to as a
cycle of the first kind.

Substituting (11) and (12) into (10), we can determine a0
from the relation

Φ1(a0) = 0 (13)

where

Φ1(a) =

∫ 2π
ω0

0

ϕ
(
a sin(ω0τ)

)
sin(ω0τ)dτ

is a describing function.

Evaluating (13) for ϕ(σ) = sinσ − kσ, we get

2
J1(a)

a
= k (14)
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where J1(a) is the Bessel function of the first kind

[Jn(a) = 1
π

π∫
0

cos(nt−a sin t)dt]. The amplitude a0 can be

found from equation (14) numerically. The boundedness of
the left-hand side of (14) implies the existence condition of
the amplitude a0: k < 1. Taking into account formula (8),
we get that the existence condition of a0 coincides with
the condition of local stability (2). Thus, the harmonic
balance method predicts a cycle of the first kind in system
(1) if and only if conditions (2) and (6) are fulfilled, i.e., in
addition to the desired phase-locked conditions a periodic
solution exists in the PLL according to the harmonic
balance method.

4.2 Cycles of the second kind

In this section we assume that a phase modulated sinu-
soidal signal develops in the PLL. Suppose that system
(1) has a periodic solution

y(t) = y(t+
2π

ω0
)− (0, 0, 2π)

T ∀t ≥ 0 (15)

which can be expressed in the form of a phase modulated
sinusoidal signal

rT y(t) = θe(t) ≈ ω0t+ a0 sin(ω0t). (16)

Again, the harmonic balance method will be used to find
the parameters of the periodic solution.

Substituting (15) and (16) into (10), we can obtain an
equation for the determination of the amplitude a0:

Φ2(a0) = k
2π

ω0
(17)

where Φ2(a) =
∫ 2π
ω0
0 ϕ

(
ω0τ + a sin(ω0τ)

)
sin(ω0τ)dτ.

Evaluating (17) for ϕ(σ) = sinσ−kσ, we get the equation
J0(a)− J2(a) = ka which gives the amplitude a0 of a cycle
of the second kind. Note, in this case a0 exists for any value
of k. Thus, the harmonic balance method predicts cycles
of the second kind in system (1) if and only if condition
(6) is fulfilled.

4.3 The pull-in range estimation

The engineering definition of pull-in range assumes that
the phase-locked conditions do not exist at the start of the
pull-in process. The pull-in frequency ωp = |ωref − ωfree

vco |
is the maximum initial frequency difference between the
reference and VCO free-running frequencies both in posi-
tive and negative directions, for which the PLL eventually
achieves the phase-locked conditions (Kolumbán, 2005).

A strict mathematical definition for the pull-in range has
been published in (Kuznetsov et al., 2015; Leonov et al.,
2015; Best et al., 2016).

Definition 2. Pull-in range (Kuznetsov et al., 2015; Leonov
et al., 2015; Best et al., 2016). A pull-in range is the largest
interval of frequency errors |ωfree

e | ∈ [0, ωp) for which the
phase-locked conditions are acquired for arbitrary initial
state; ωp is called a pull-in frequency.

System (1) does not depend on the frequency error ωfree
e ,

therefore, both the hold-in and pull-in ranges are either
infinite or empty. The physical explanation is that the PLL

cycles of 1st kind (HB)

cycles of 2nd kind (HB)

    local stability boundary

Global stability

Local stability

Fig. 3. Stability regions observed in the third-order type
2 APLLs. Note, the region of local stability [PLL
hold-in range, given by conditions (2)] is much larger
than the region of global stability [PLL pull-in range,
given by conditions (18)]. The gap between the two
regions is filled by the periodic steady state solutions
determined by the harmonic balance method.

studied here is a type 2 feedback system and if a type 2
system can reach the phase-locked conditions then its hold-
in and pull-in ranges are infinite. Hence, the problem of the
pull-in range estimation turns to the problem of estimation
of those values ofKvco,KF , τz1, τz2, τp for which system (1)
is globally stable.

The harmonic balance method has been used in Sec-
tions 4.1, 4.2 to check the presence of harmonic oscillation.
According to the harmonic balance, periodic solution does
not develop in steady state if the following condition is
met:

τz1 + τz2 − τp > 0. (18)
Remark that the same estimate (18) can be obtained
by a Lyapunov function of the Lurie-Postnikov form and
a modification 4 of the direct Lyapunov method for the
cylindrical phase space (Kuznetsov et al., 2019).

Comparing the derived conditions of local and global sta-
bility [(2) and (18), respectively], we conclude that the
domain of parameters satisfying (2) is wider than the
domain of parameters satisfying (18). As shown in Fig. 3,
a gap exists between these domains where the harmonic
balance method predicts the existence of periodic oscilla-
tions referred to as the cycles of the first and the second
kind above. Therefore, a parameter region can be observed
where the PLL after reaching phase-lock maintains the
phase-lock conditions (hold-in region) but cannot reach
phase-lock when it is started from arbitrary initial condi-
tions (pull-in range). According to our terminology, the
pull-in range is empty in this region. Hence, the Egan
conjecture on the infiniteness of pull-in range of type 2
PLLs (Egan, 2007, p.59, p.138, p.161) requires further
study and additional clarifications.

4.4 Example

Although the harmonic balance method relies on approx-
imation, it may provide the necessary and sufficient con-
4 Note that in the cylindrical phase space, the classical Barbashin-
Krasovsky theorem and the LaSalle invariance principle cannot be
used together with a Lyapunov function V (x, θe) of “quadratic part
plus integral of nonlinearity” form, because in those theorems the
Lyapunov function V (x, θe) must be radially unbounded while in
the cylindrical phase space V (0, θe) 6→ +∞ as |θe| → +∞ [see
(Gelig et al., 1978; Leonov and Kuznetsov, 2014; Abramovitch, 1988;
Kuznetsov et al., 2020)].
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ditions of global stability and the birth of oscillation.
Consider the case τz2 = τp = 0:

F (s) = KF
1 + sτz1

s
=

1 + sτ2
sτ1

(19)

where τ1 = 1
KF

> 0, τ2 = τz1 > 0. Substituting τz2 = τp =

0 and τz1 = τ2 > 0 into (6), we can see that the parameters
ω0 and k do not exist for the corresponding second-order
type 2 PLL model with τ1 > 0, τ2 > 0. Hence, in this case
the harmonic balance method provides global stability of
the model and shows that both the hold-in and pull-in
ranges are infinite. This result can be verified by the direct
Lyapunov method [see (Aleksandrov et al., 2016)].

However, please recognize that the existence of global
stability says nothing about the pull-in time which can
be extremely long. To reduce the long acquisition time
acquisition aids are frequently used or the lock-in concept
is exploited (Gardner, 2005; Kolumbán, 2005; Best, 2007).

In engineering, the lock-in range is defined in the following
manner: Consider a PLL which is in phase-lock and then
change the reference frequency suddenly in an abrupt
manner according to a unit step function. The lock-in
range ωl = |ωref − ωfree

vco | is the frequency range over
which the PLL re-establishes the phase-locked conditions
without cycle slipping 5 . The frequency range over which
the transient decays without cycle slipping is referred to a
lock-in range.

For a rigorous mathematical definition on the lock-in range
refer to (Kuznetsov et al., 2015; Leonov et al., 2015; Best
et al., 2016).

Definition 3. Lock-in range (Kuznetsov et al., 2015; Leonov
et al., 2015; Best et al., 2016). A lock-in range is the
largest interval of frequency errors from the pull-in range:
|ωfree
e | ∈ [0, ωl) ⊂ [0, ωp) such that the APLL being in a

steady state, after any abrupt change of ωfree
e within the

interval acquires a steady state without cycle slipping; ωl
is called a lock-in frequency.

The considered second-order type 2 PLL, built with a
loop-filter transfer function defined by (19), has an in-
finite pull-in range and a finite lock-in range. Figure 4
compares the lock-in ranges determined by the numer-
ical computation 6 (black curve) and calculated by the
approximative equations (red curve) used in engineering
design: ωl ≈ Kvcoτ2

τ1
[see, e.g., (Gardner, 2005, p.187)

where Kd = 1, Ko = Kvco, (Kolumbán, 2005, p.3748)
where Kd = 1, Kv = Kvco, and (Best, 2007, p.67) where

ωl ≈ 2ζωn, ωn =
√
Kvco/τ1, ζ = ωnτ2/2]. The two results

are similar to each other but the error between them shows
that the results known from the literature have to be
updated.

5 It is said that cycle slipping occurs if supt>0 |θe(0)− θe(t)| ≥ 2π.
6 For the considered model the boundary value ωl is deter-
mined by such an abrupt change of ωfree

e that the correspond-
ing trajectory tends to the nearest unstable equilibrium, i.e.,
limt→+∞ |θe(0)− θe(t)| = π. For a larger frequency error |ωfree

e | the
limit is limt→+∞ |θe(0)− θe(t)| = 2π and cycle slipping occurs. Since
the lock-in range is defined as a half-open interval, the boundary
value ωfree

e = ωl is not included in it. Corresponding behaviour is
not observed in practice, because it is unstable and disturbed by
noise.

103 104
0

100

200

300

400

500

600
Exact value
Engineering estimate

Fig. 4. Lock-in range comparison. Parameter τ2 = 0.0225.

5. CONCLUSION

As is known, the second-order type 2 PLLs have infinite
hold-in and pull-in ranges, however these PLLs are not
often found in practice (Gardner, 2005). To improve the
transient characteristics of PLLs, high-frequency poles are
often added and the corresponding high-order PLLs are
considered (Abramovitch, 1988; Craninckx and Steyaert,
1998; De Muer and Steyaert, 2003; Gardner, 2005).

Exploiting the harmonic balance method the hold-in and
pull-in ranges of third-order type 2 analog PLLs have
been determined here. The exact rigorous mathematical
analysis revealed that in general, this PLL can be char-
acterized by three distinct operation regions: (i) the lock-
in range which is always smaller than the pull-in range,
(ii) the pull-in range and (iii) a periodic range. In the
periodic range at least two attractors coexist in the PLL,
the desired phase-lock and a periodic solution. By using
the harmonic balance method we have shown that two
kinds harmonic oscillations can be observed in the periodic
range: a sinusoidal waveform referred to a cycle of the first
kind and a phase modulated sinusoidal waveform referred
to a cycle of the second kind. The theory derived here gives
a better estimation of the lock-in and pull-in regions which
are among the most important PLL design parameters.

ACKNOWLEDGMENT

Authors would like to thank Roland E. Best for valuable
comments and discussions.

REFERENCES

Abramovitch, D. (1988). Analysis and design of a third or-
der phase-lock loop. In 21st Century Military Communi-
cations – What’s Possible?. Conference record. Military
Communications Conference, 455–459.

Aleksandrov, K., Kuznetsov, N., Leonov, G., Neittaan-
maki, N., Yuldashev, M., and Yuldashev, R. (2016).
Computation of the lock-in ranges of phase-locked loops
with PI filter. IFAC-PapersOnLine, 49(14), 36–41. doi:
10.1016/j.ifacol.2016.07.971.

Best, R. (2007). Phase-Locked Loops: Design, Simulation
and Application. McGraw-Hill, 6th edition.

Best, R. (2018). Costas Loops: Theory, Design, and
Simulation. Springer International Publishing.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6460



Best, R., Kuznetsov, N., Leonov, G., Yuldashev, M., and
Yuldashev, R. (2014). Simulation of analog Costas
loop circuits. International Journal of Automation and
Computing, 11(6), 571–579. doi:10.1007/s11633-014-0
846-x.

Best, R., Kuznetsov, N., Leonov, G., Yuldashev, M., and
Yuldashev, R. (2016). Tutorial on dynamic analysis of
the Costas loop. IFAC Annual Reviews in Control, 42,
27–49. doi:10.1016/j.arcontrol.2016.08.003.

Bianchi, G., Kuznetsov, N., Leonov, G., Seledzhi, S.,
Yuldashev, M., and Yuldashev, R. (2016). Hidden
oscillations in SPICE simulation of two-phase Costas
loop with non-linear VCO. IFAC-PapersOnLine, 49(14),
45–50. doi:10.1016/j.ifacol.2016.07.973.

Cho, P. (2006). Optical phase-locked loop performance in
homodyne detection using pulsed and CW LO. In Opti-
cal Amplifiers and Their Applications/Coherent Optical
Technologies and Applications, JWB24. Optical Society
of America.

Craninckx, J. and Steyaert, M. (1998). Wireless CMOS
Frequency Synthesizer Design. Springer.

De Muer, B. and Steyaert, M. (2003). CMOS Fractional-
N Synthesizers: Design for High Spectral Purity and
Monolithic Integration. Springer.

Du, K. and Swamy, M. (2010). Wireless Communication
Systems: from RF subsystems to 4G enabling technolo-
gies. Cambridge University Press.

Egan, W. (2007). Phase-Lock Basics. John Wiley & Sons,
New York, 2nd edition.

Emura, T., Wang, L., Yamanaka, M., and Nakamura, H.
(2000). A high-precision positioning servo controller
based on phase/frequency detecting technique of two-
phase-type PLL. IEEE Transactions on Industrial
Electronics, 47(6), 1298–1306.

Gardner, F. (1966). Phaselock techniques. John Wiley &
Sons, New York, 1st edition.

Gardner, F. (2005). Phaselock Techniques. John Wiley &
Sons, New York, 3rd edition.

Gelig, A., Leonov, G., and Yakubovich, V. (1978). Stability
of Nonlinear Systems with Nonunique Equilibrium (in
Russian). Nauka. [English transl: Stability of Stationary
Sets in Control Systems with Discontinuous Nonlinear-
ities, 2004, World Scientific].

Helaluddin, G.M. (2008). An improved optical Costas loop
PSK receiver: simulation analysis. Journal of Scientific
& Industrial Research, 67, 203–208.

Ho, K. (2005). Phase-Modulated Optical Communication
Systems. Springer.

Homayoun, A. and Razavi, B. (2016). On the stability of
charge-pump phase-locked loops. IEEE Transactions on
Circuits and Systems I: Regular Papers, 63(6), 741–750.
doi:10.1109/TCSI.2016.2537823.

Kaplan, E. and Hegarty, C. (2017). Understanding GP-
S/GNSS: Principles and Applications. Artech House,
3rd edition.

Khalil, H. (2002). Nonlinear Systems. Prentice Hall, N.J.
Kolumbán, G. (2005). Phase-locked loops, volume 4, 3735–

3767. John Wiley & Sons, New-York.
Kolumban, G., Hasegawa, A., Endo, T., and Kis, G.

(1997). Direct signal generation for chaos communi-
cation and chaotic measurement by analog PLL. In
Proceedings of 1997 IEEE International Symposium on
Circuits and Systems. Circuits and Systems in the In-

formation Age ISCAS’97, volume 2, 901–904. IEEE.
Kolumbán, G. and Vizvari, B. (1995). Nonlinear dynamics

and chaotic behaviour of the analog phase-locked loop.
In Proc. NDES’95, 99–102.

Krylov, N. and Bogolyubov, N. (1947). Introduction to
non-linear mechanics. Princeton Univ. Press, Princeton.

Kuznetsov, N., Leonov, G., Yuldashev, M., and Yuldashev,
R. (2015). Rigorous mathematical definitions of the
hold-in and pull-in ranges for phase-locked loops. IFAC-
PapersOnLine, 48(11), 710–713. doi:10.1016/j.ifacol.2
015.09.272.

Kuznetsov, N., Lobachev, M., Yuldashev, M., and Yulda-
shev, R. (2019). On the Gardner problem for phase-
locked loops. Doklady Mathematics, 100(3), 568–570.
doi:10.1134/S1064562419060218.

Kuznetsov, N., Lobachev, M., Yuldashev, M., Yuldashev,
R., Kudryashova, E., Kuznetsova, O., Rosenwasser, E.,
and Abramovich, S. (2020). The birth of the global
stability theory and the theory of hidden oscillations.
In 2020 European Control Conference Proceedings, 769–
774.

Leonov, G. and Kuznetsov, N. (2013). Hidden attractors in
dynamical systems. From hidden oscillations in Hilbert-
Kolmogorov, Aizerman, and Kalman problems to hid-
den chaotic attractors in Chua circuits. International
Journal of Bifurcation and Chaos in Applied Sciences
and Engineering, 23(1). doi:10.1142/S021812741330002
4. art. no. 1330002.

Leonov, G. and Kuznetsov, N. (2014). Nonlinear mathe-
matical models of phase-locked loops. Stability and oscil-
lations. Cambridge Scientific Publishers.

Leonov, G., Kuznetsov, N., Yuldashev, M., and Yuldashev,
R. (2015). Hold-in, pull-in, and lock-in ranges of PLL
circuits: rigorous mathematical definitions and limita-
tions of classical theory. IEEE Transactions on Circuits
and Systems–I: Regular Papers, 62(10), 2454–2464. doi:
10.1109/TCSI.2015.2476295.

Rey, T. (1960). Automatic phase control: theory and
design. Proceedings of the IRE, 48(10), 1760–1771.

Rosenkranz, W. and Schaefer, S. (2016). Receiver design
for optical inter-satellite links based on digital signal
processing. In Transparent Optical Networks (ICTON),
2016 18th International Conference on, 1–4. IEEE.

Rouphael, T. (2014). Wireless Receiver Architectures and
Design: Antennas, RF, Synthesizers, Mixed Signal, and
Digital Signal Processing. Elsevier Science.

Sakamoto, Y. and Nakao, Y. (2006). PLL clock signal
generation circuit. US Patent 7,109,764.

Shakhgil’dyan, V. and Lyakhovkin, A. (1966). Fazovaya
avtopodstroika chastoty (in Russian). Svyaz’, Moscow,
1st edition.

Tsypkin, Y. (1984). Relay Control Systems. Univ Press,
Cambridge.

Viterbi, A. (1966). Principles of coherent communications.
McGraw-Hill, New York.

Zhong, Q.C. and Hornik, T. (2012). Control of power in-
verters in renewable energy and smart grid integration,
volume 97. John Wiley & Sons.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6461


